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Abstract

When group members claim a portion of limited resources, it is tempting to invest more effort to get a
larger share. However, if everyone acts similarly, they all get the same piece they would obtain without
extra effort. This is the involution game dilemma that can be detected in several real-life situations. It
is also a realistic assumption that resources are not uniform in space and time, which may influence the
system’s resulting involution level. We here introduce spatio-temporal heterogeneity of social resources and
explore their consequences on involution. When spatial heterogeneity is applied, network reciprocity can
mitigate the involution for rich resources, which would be critical otherwise in a homogeneous population.
Interestingly, when the resource level is modest, spatial heterogeneity causes more intensive involution in a
system where most cooperator agents, who want to keep investment at a low level, are present. This picture
is partly the opposite in the extreme case when more investment is less effective. Spatial heterogeneity
can also produce a counterintuitive effect when the presence of alternative resource levels cannot explain
the emergence of involution. If we apply temporal heterogeneity additionally, then the impact of spatial
heterogeneity practically vanishes, and we turn back to the behavior observed in a homogeneous population
earlier. Our observations are also supported by solving the corresponding replicator equations numerically.
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1. Introduction

In a social dilemma, defective individuals gain more payoff at the expense of cooperative ones; meanwhile,
the massive occurrence of defection leads to the lowest payoff for them, which is irrational for the group. How
selfish individuals choose cooperation and how the rationality of the group prevails can be studied effectively
by evolutionary dynamics [1, 2, 3]. The evolutionary game theory principle assumes that individuals imitate
strategies from a more successful partner. In structured populations where interactions are fairly fixed, this
can be done by comparing payoff values with neighbors, resulting in cooperation supporting outcomes and
fascinating images [4, 5]. The simplest dilemma situations can be studied by pairwise interactions, such as
the prisoner’s dilemma (PD), snowdrift (SD) and stag-hunt (SH) games [6, 7, 8]. By considering additional
factors, such as incomplete information [9] and multiple labels [10, 11], we can further promote cooperation
in pairwise interactions in the framework of the network reciprocity offered by structured populations [12].

Naturally, we can also consider more subtle situations where the description based on pairwise interactions
is insufficient, because the simultaneous presence of more partners may induce further effects that cannot be
understood based on two-point interactions [13, 14, 15, 16, 17]. The most well-known and most intensively
studied multiplayer game is the public goods game (PGG) which extends PD from pairwise interactions to
group interactions [18, 19, 20]. Similarly, additional factors have also been considered in multiplayer games
to promote cooperation, such as reputation [21, 22, 23, 24, 25, 26, 27], punishment [28, 29, 30, 31, 32, 33, 34],
exclusion [35, 36, 37], discounting and synergy [25, 38], fluctuating population size [39], interdependence of
different strategies [40, 41], emerging alliance [42, 43], environmental feedback [44, 45], and reinvestment
[46]. The possibility of real-world experiments [47] and applications to real scenarios was also an inspiring
force along this research path.
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Perhaps it is worth stressing that the types of multiplayer games are not limited to PGG, but also
include N-person snowdrift games [48], N-person stag hunt games [49], N-person Hawk-Dove games [50],
common-pool resource games [51], and so on [52]. In particular, a recently proposed multiplayer game is the
so-called “involution game,” inspired by meaningless competition in a social group where available resources
are fixed [53, 54]. Accordingly, the total payoff that all players can gain is constant, but each player receives
a portion of the total payoff depending on the relative investments they made. In this way, the proportion
of total payoff that each player receives depends on the ratio of the utility of their individual effort to the
utility of all their collective efforts. As a natural reaction, a rational player is ready to invest more effort
to gain a larger share, but if all think similarly, then the critical ratio remains intact; hence they obtain
the same source that would be available reach for a lower price. In this way, keeping efforts low could be
considered a cooperative act, while investing “more” is a sort of “buying some privilege”; hence the latter
is evaluated as a kind of defection.

Previous research introducing heterogeneity in evolutionary game models from different angles revealed
a variety of new phenomena. One angle is the heterogeneity of networks, which was first raised by San-
tos and Pacheco [55], but recently Cimpeanu et al. [56] also showed that network heterogeneity strongly
influences safety development behaviours of advanced technologies. Another angle is the heterogeneity of
game parameters. In pairwise games, for instance, heterogeneous parameters in the payoff matrix have
been considered [57]. Similar approaches apply to multiplayer games. For the PGG, the heterogeneity of
wealth [58], allocation [59], productivity (the synergy factor) [60], input [26, 61, 62, 63], and the combina-
tions of these have been studied [64, 65, 66]. In sum, it is generally believed that heterogeneity could be a
cooperator-supporting condition, but it could also generate large inequality [67].

Although it is a fundamental assumption in the traditional involution game to have fixed social resources
within each game group, this value should not necessarily be equal for all groups. Actually, the opposite
scenario is more natural and can be observed in several real-life situations [68]. For example, a worker in a
developing country receives less payoff than another worker in a developed country devoting the same effort
because their countries are endowed with different social resources. Or, a viewer who stands up in some
cinemas will see more clearly (while blocking other viewers) than if he stands up in other cinemas because
the quality of the screen varies from cinema to cinema. The social resources in different social entities are
always not equal for participators to compete for. That is, we can assume heterogeneity of available resources
for different groups. Of course, besides spatial heterogeneity, we may also consider temporal heterogeneity
when the complete group benefit also changes in time [69].

Motivated by the above-described considerations, in this paper, we explore the possible consequences
of heterogeneous resources in the involution game and reveal how they affect the fraction of defectors
(i.e., the general involution level). A general framework of this type of work includes three complementary
approaches: equilibrium calculations, evolutionary simulations, and behavioral experiments [70]. This paper
mainly focuses on evolutionary simulations in a structured population (Section 2 and 3). On the other hand,
however, we also present equilibrium calculations in a well-mixed population as a complementary approach
that helps understand the proper consequences of a structured population (Section 4). But first, we define
our spatial model.

2. Model

We consider an involution game on an L×L square lattice with periodic boundary conditions where N =
L2 agents are distributed. Two strategies are available for an agent i to choose during an elementary Monte
Carlo (MC) step tMC : investing less effort (cooperation, S(i, tMC) = C); or more (defection, S(i, tMC) = D)
in the competition for social resources. Notably, every agents should bear a cost o(i, tMC) depending on
their choices. In particular,

o(i, tMC) =

{

c, if S(i, tMC) = C,

d, if S(i, tMC) = D,
(1)

where c < d.
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The cost’s utility in the competition for resources, u(i, tMC), which measures the competitiveness of
agent i at step tMC , depends both on the cost and strategy. Namely,

u(i, tMC) =

{

c, if S(i, tMC) = C,

βd, if S(i, tMC) = D.
(2)

Here β > 0 is the relative utility of the defector strategy. If β < 1 then more investment has less utility
than less effort, and vice versa if β > 1 [53].

We denote the game group centered on agent i by N(i), where the group size centered on agent i is
|N(i)|. In this work, we use Von Neumann neighborhood where every agent interacts with their four nearest
neighbors, hence |N(i)| = 5.

Similar to the PGG setup, an agent i participates in |N(i)| involution games centered on itself and
on each of its neighbors j ∈ N(i), averaging the payoff in each play as the final payoff π(i, tMC). In
the involution game centered around agent j, all k ∈ N(j) players involved in the group compete for social
resources valued M̃(j, t). This resource is divided among group members proportionally to each participant’s
competitiveness u(k, tMC). In this way, the proportion of resources M̃(j, t) that agent i acquires from the
specified competition is u(i, tMC)/

∑

k∈N(j) u(k, tMC). Evidently, the cost o(i, tMC) should be subtracted.

Therefore, the calculation of agent i’s payoff π(i, tMC) at step tMC follows

π(i, tMC) =
1

|N(i)|

∑

j∈N(i)

(

u(i, tMC)
∑

k∈N(j) u(k, tMC)
M̃(j, t) − o(i, tMC)

)

=























1

|N(i)|

∑

j∈N(i)

(

c

(nC(j, tMC) + 1)c+ nD(j, tMC)βd
M̃(j, t)− c

)

, if S(i, tMC) = C,

1

|N(i)|

∑

j∈N(i)

(

βd

nC(j, tMC)c+ (nD(j, tMC) + 1)βd
M̃(j, t)− d

)

, if S(i, tMC) = D,
(3)

where nC(j, tMC) and nD(j, tMC) respectively denote the numbers of cooperative and defective co-players
(other than agent i) in the group centered around agent j at step tMC .

According to the evolutionary principle, we randomly select an agent i and another agent i′ ∈ N(i) to
calculate their payoff values during an elementary step. Due to the pairwise comparison strategy updating
protocol, player i adopts the strategy of player i′ with the probability

p[S(i, tMC+1)← S(i′, tMC)] =
1

1 + exp{[π(i, tMC)− π(i′, tMC)]/κ}
. (4)

Here the parameter κ > 0 characterizes the noise level of adoption [71]. Evidently, in the κ→ 0 limit, this
update becomes fully rational, while for large κ values, strategy change may also happen even if the payoff
difference would not justify it. Notably, if we repeat the above described elementary step N times, then we
execute a full MC step when on average every player has a chance to update its strategy.

In the previous work we assumed a homogeneous system where every group used the same value of
social resource M [53, 54]. In our present work, however, we focus on a heterogeneous model, where this
M resource value may depend on space and time, rewritten by M̃(i, t), indicating that the environment can
be different for various groups and we are interested in whether it has any consequence on the resulting
involution level.

First, we consider a time-independent spatial heterogeneity of social resources by introducing a parameter
ηS (ηS ≥ 0). For each agent i = 1, . . . , N , we generate a random number χ(i) from a uniform distribution
satisfying −ηS ≤ χ(i) ≤ ηS . Then, we set

M̃(i, t) = M0 + χ(i), (5)
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Table 1: Main symbols used in this work.

Symbol Interpretation Property
L The side length of the square. L = 400.
N The number of agents in the system. N = L× L = 160000.
κ The noise in selection. κ = 0.1.
c The cost of cooperation. c = 1.

d The cost of defection.
Independent parameter.
d > c.

β The relative utility of defection. Independent parameter.
M0 The baseline of social resources. Independent parameter.
ηS The spatial heterogeneity of social resources. Independent parameter.
ηT The temporal heterogeneity of social resources. Independent parameter.

f
(O)
D The defective fraction in a homogeneous population by MC simulations. Dependent variable.

f
(S)
D The defective fraction in a heterogeneous population by MC simulations. Dependent variable.

f
(E)
D The expected fraction of defection in a heterogeneous population.

Dependent variable,

calculated by f
(O)
D .

f
(C)
D The defective fraction by numerical replicator equations. Dependent variable.

where the nonzero value of χ(i) leads to spatial heterogeneity and ηS determines its degree. Evidently, M0

represents the baseline of social resources, hence the average resource value

∫ M0+ηS

M0−ηS

M̃(i, t) dM̃(i, t) =

∫ ηS

−ηS

(M0 + χ(i)) dχ(i) = M0 (6)

remains intact, no matter the specific value may change from place to place.
Second, we set a parameter ηT (0 ≤ ηT ≤ 1) to measure an additional temporal heterogeneity of social

resources. At the very beginning of each full MC step t, we go through the whole population. For each
i = 1, . . . , N agent we regenerate a random number χ(i) with a probability ηT and update M̃(i, t) according
to the new χ(i) value. Otherwise, M̃(i, t) remains unchanged, hence M̃(i, t) = M̃(i, t− 1). After processing
M̃(i, t) for i = 1, . . . , N , we execute N elementary MC steps in a usual way for a full MC step. Perhaps it
is worth noting that in the suggested way spatial and temporal heterogeneities remain comparable.

To summarize the strategy updating procedure, we set system parameters N , L, c, d, β, κ, M0, ηS , ηT ,
and initialize S(i, tMC) and M̃(i, t) for all i = 1, . . . , N players (groups) before launching the simulation. In
the starting state both strategies are distributed randomly among players with equal weights. At each full
MC step t, we first go through i = 1, . . . , N and update M̃(i, t) by using the above described protocols. In
this paper, we use κ = 0.1, c = 1, L = 400, hence N = 160000. But we note that qualitatively similar results
can be obtained for other values. During the simulation we monitor the fraction of defector agents, denoted
by fD, which measures the average involution level. The stationary results of fD are obtained by running
10000 full MC steps and averaging its value over the last 2000 full MC steps. The key control parameters
which determine the evolutionary outcome are d, β, M0, ηS , and ηT . The main symbols we use in this work
are listed in Table 1.

3. Results and discussion

As we already noted in the introduction, spatial populations may behave somewhat differently from the
case when the interactions are randomized. Therefore, to gain a first impression, it is instructive to consider
our spatial system in the absence of any heterogeneities. Technically it simply means that both ηS and
ηT parameters, which characterize the degree of heterogeneities, are set to be zero. In this way, all groups
benefit from the same level of resources. Fig. 1 summarizes the results of evolutionary simulations, where
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Figure 1: The stationary fraction of defectors, f
(O)
D

, as a bivariate function of control parameters M0 and d in the absence
heterogeneities (ηS = 0, ηT = 0). M0 varies from −30 to 80, with 111 data points for each d. d varies from 1.1 to 101, with
50 data points for each M0. The panels show the system behavior for three representative values of relative utility parameter
β. We can notice easily that the parameter M0 is a decisive factor and the involution level depends sensitively on its value.
For further reference, we marked the representative M0 values which will serve as a basis for later cases when heterogeneity is
applied. We also marked the critical d values separating the full cooperator and full defector states in the large M0 limit.

we plotted f
(O)
D , the stationary fraction of defectors. Note that superscript “O” refers to the homogeneous,

lack of resource heterogeneity case.
If we compare the system behavior to the well-mixed case presented in Ref. [53] then we can identify

some generally valid features. For instance, in the case when more investment has more utility, shown in

Fig. 1(a), f
(O)
D decreases monotonously as we increase d. For completeness, we can also simulate the region

when M0 < 0. In the area of d < c/β, strategy D can prevail. This is because it receives fewer negative
resources (M0 < 0) although it devotes more effort than strategy C does. Nevertheless, we do not give a
realistic interpretation of the area of M0 < 0, because the simulation of this area only intends to provide
the original data points used for heterogeneous cases.

Qualitatively different behavior can be found for β < 1 when more investment has less utility. This
situation is shown in Fig. 1(b) and in Fig. 1(c). If the resource is moderate, which means M0 is not too high,
then cooperators prevail for all d values. For higher M0 values, which means richer resources, however, there
is a non-monotonous d-dependence of involution level. Here cooperators dominate for small d < c/β values,
which means it is better to keep involution at a low level. Beyond a critical d value, however, the higher
effort of defector strategy pays, and the system evolves to a full defector state. This solution remains valid
until a critical d value where the accompanying cost of defectors becomes intolerably high, hence cooperators
prevail again. We note that qualitatively similar general behavior was also reported for the well-mixed case
[53].

In the following, we introduce spatial heterogeneity of resources (ηS ≥ 0), without considering temporal
heterogeneity (ηT = 0). First, we fix β = 1.2, which represents the case when more investment has more
utility. Our observations are summarized in Fig. 2. Here we present the results obtained at three different
cases where the average resource levels are M0 = 0, M0 = 20, and M0 = 50, respectively. For comparison,
these resource levels were already marked by red lines in Fig. 1. The actual stationary fraction of defectors
obtained from simulations is shown in the first column in Fig. 2. Evidently, here the ηS = 0 border of
the parameter plane marks what we obtain for a homogeneous system at the specific M0 value. Starting

from this line, if we fix the value of d and increase ηS , then the involution level f
(S)
D (“S” means the

simulation results when introducing heterogeneities) may grow or decay depending on Fig. 2(a1), Fig. 2(b1),
or Fig. 2(c1) panel is considered. The lack of an obvious trend would be frustrating, but we can detect a

certain rule in the data. In particular, if we start from a high involution level, which means f
(O)
D is high,
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Figure 2: The stationary fraction of defectors when spatial heterogeneity is introduced (ηS ≥ 0), but temporal heterogeneity is
not considered (ηT = 0). In all panels, the control parameters are the “relative” investment d of defectors (because cooperators
invest a unit) and ηS , the degree of spatial heterogeneity. Rows from (a) to (c) show cases at different general resource levels.

These levels are marked by red lines in Fig. 1. The first column shows the f
(S)
D

results of evolutionary simulations, while the

second column, panels from (a2) to (c2), shows the f
(E)
D

expected fraction of defectors calculated by the weighted average

due to different emerging resource levels according to Eq. (7). The third column depicts the f
(S)
D

− f
(E)
D

difference between
the proper and calculated values. The results shown in the last column can be considered a filtered or purified version of the
previous column, which helps to reveal the proper impact of spatial heterogeneity. Accordingly, the red (blue) area denotes
the parameter region where spatial heterogeneity provides higher (lower) general involution activity than the expected value
obtained from the average of homogeneous cases at different source levels.In every cases β = 1.2 was used.

then f
(S)
D becomes lower by increasing ηS . This trend can be seen in Fig. 2(b1) and Fig. 2(c1). However,

the opposite is also true: if the involution level is low in the homogeneous case, then an increase in ηS will

elevate f
(S)
D . In other words, if we increase the degree of heterogeneity by increasing ηS , it will reverse the

trend of involution level that we obtained for the related homogeneous system.
However, the proper consequence of spatial heterogeneity is more subtle because, as we illustrated in

Fig. 1, the involution level depends sensitively on the M0 social resource level. For example, the increase
of M0 can elevate the involution level in a group significantly. However, there are also cases, depending on
the original M0 and d values, when the change has no noticeable impact. Both scenarios can happen in a
heterogeneous system where different groups should divide different values of the total payoff. To be more
specific, in Fig. 2(a1), where M0 = 0, a positive ηS involves M̃(i, t) < 0 value for some groups. Referring

to Fig. 1(a), we can see that a negative resource level always indicates f
(O)
D = 0 the full cooperation state.

On the other hand, in a heterogeneous population, we also have M̃(i, t) > 0 for other groups. Still referring

Fig. 1(a), we can see that positive M0 value can easily result in an f
(O)
D = 1 full defector state. Naturally,
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similar arguments can also be given for other M0 values.
Therefore we can obtain a more realistic view about the consequence of spatially varying resource levels if

we consider the whole set of available M̃(i, t) values and calculate the resulting involution activity obtained
for related homogeneous populations. The average of these values gives a better estimation of our expec-
tations in a population where groups enjoy different resource levels. Therefore we introduce an estimated
fraction of defectors, calculated as

f
(E)
D =

1

2ηS + 1

M0+ηS
∑

M̃=M0−ηS

f
(O)
D . (7)

We can see that Eq. (7) provides the average of f
(O)
D values, shown in Fig. 1, obtained for resource values

in the range of M0 − ηS ≤ M̃(i, t) ≤ M0 + ηS . For instance, for β = 1.2, M0 = 0 and ηS = 10 control

parameter values we estimate f
(E)
D from the average of the 21 original data points f

(O)
D from M0 = −10 to

M0 = 10 in Fig. 1(a). Similarly, we can compute f
(E)
D for every ηS − d pairs, shown in the second column

of Fig. 2.
We must stress that our calculation is just an approximation because how we averaged involution level

ignores the fact that groups interact with each other. Indeed, the resulting plots in the second column
are quite similar to the first column we obtained from actual MC simulations. However, still, they are not
precisely equal. The difference between them indicates the real impact of spatial heterogeneity of social

resources on the involution level. Therefore we calculate their difference, f
(S)
D − f

(E)
D , which is shown in the

third column of Fig. 2.
The resulting difference is rather complex, but we can generally interpret them in the following way.

When f
(S)
D − f

(E)
D > 0, then the actual fraction of cooperators exceeds the expected level indicating that

spatial heterogeneity of social resources aggravates involution. In the opposite case, when f
(S)
D − f

(E)
D < 0,

we can say that spatial heterogeneity of resources inhibits involution. Last, when f
(S)
D − f

(E)
D = 0, there is

no significant interaction between neighboring groups hence the simulation results shown in the first column
are just a simple superposition of the results obtained from groups enjoying different social resources.

Admittedly, it is hard to interpret the heat-map directly. Therefore we present the fourth column where
we have divided the parameter plane into three regions and marked the cases mentioned above with different

colors. In the first case, we plotted by red those parameter pairs where f
(S)
D > f

(E)
D +0.0001. Here we used a

threshold value of 0.0001 because the accuracy of simulation results is limited; hence, this threshold helps us
identify unambiguously those regions where the real involution level exceeds the estimated one. Similarly,

we marked the parameter region by blue where f
(S)
D < f

(E)
D − 0.0001, therefore spatiality truly helps to

suppress involution activity. Last, we marked those parameter pairs by green where there is no significant
difference between the measured and estimated value within the accuracy of simulations.

As expected, the fourth column is a real help in interpreting the consequence of spatial heterogeneity of
resources. As Fig. 2(a4) shows, the interaction of neighboring groups strengthens the involutions activity

for the modest resource level, but this effect is not really “dangerous” because the f
(S)
D is low; hence the

involution is poor when M0 = 0. In the opposite extreme case, when M0 is high, shown in Fig. 2(c4), the
blue becomes significant, signaling that spatiality can mitigate the general involution. We stress that it is an
important observation because previously, in a well-mixed system, we found that more abundant resources
promote involution, which simply means that a rich environment could be harmful for the evolution of
cooperation [53]. However, this consequence is partly fixed in a spatially heterogeneous population where
network reciprocity helps cooperators, as observed many times earlier.

In the following, we still apply pure spatial heterogeneity by keeping ηT = 0 but consider β = 0.8, which
characterizes the situation when more investment is less effective. The results are summarized in Fig. 3
where we used the same setup we applied in Fig. 2. Naturally, the heat maps are different from those we
observed previously because not only the area where d > c/β exists but also the area of d < c/β emerges
due to β < 1. From the evolutionary simulations, shown in the first column, we can say that the access to

various resources elevates involution; hence f
(S)
D grows by increasing ηS . As previously, the expected f

(E)
D
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Figure 3: The stationary fraction of defectors when pure spatial resource heterogeneity is applied. All parameters are identical
to those we used in Fig. 2 except for β = 0.8; hence the relative utility of more effort is less effective. In general, the main
conclusions about the proper role of spatial resource heterogeneity are the same as we observed earlier for the β > 1 case.

values calculated by Eq. (7) is shown in the second column. Take Fig. 3(a2) as an example, we can see that

there is a pattern of f
(E)
D > 0 and f

(E)
D increases with ηS in both the area of d < c/β and d > c/β, while

f
(E)
D = 0 near d = c/β. It should be noted that the consequences of f

(E)
D > 0 on the alternative sides of

d = c/β are different. Scanning up and down the line of M0 = 0 in Fig. 1(b), it is conceivable that the

results for f
(E)
D > 0 in the area of d < c/β in Fig. 3(a2) are originated from those local groups who have

M̃(i, t) < M0, while the results for f
(E)
D > 0 in the area of d > c/β come from those groups who enjoy

M̃(i, t) > M0 higher resource level. Furthermore, there is a qualitative difference between Fig. 3(a1) and
Fig. 3(a2) because the mentioned area is connected in reality while it is separated into two parts in the
estimated case.

Another interesting phenomenon can be detected in Fig. 3(c1) where M0 = 50 is used. In the d < c/β

area, we can observe positive f
(S)
D value as ηS increases, which is a kind of “creating something from nothing”

effect. To give deeper insight, let us go back to the line of M0 = 50 in Fig. 1(b) and check its neighborhood.

We can see that f
(O)
D = 0 always holds in the 20 ≤ M̃(i, t) ≤ 80 region if d is small. Therefore, given that

0 ≤ ηS ≤ 30, defectors have no chance to emerge in any local group. Still, f
(S)
D becomes positive, as it

is shown in Fig. 3(c1), which should only be a spatial effect due to the interaction of networked groups.

One may claim that positive f
(S)
D can also be detected in Fig. 3(b1) where M0 = 20. In the latter case,

however, some groups may have M̃(i, t) ≥ −10 resource level, which can reach the full defector stage, as it
is illustrated in Fig. 1(b). Therefore a nonzero involution level can be expected for heterogeneous resources
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Figure 4: The stationary fraction of defectors when pure spatial resource heterogeneity is applied. All parameters are identical
to those we used in Fig. 2 and Fig. 3. The only difference is β = 0.4 here. The last column highlights that the role of spatial
heterogeneity of resources is conceptually different from those cases we discussed earlier. This is a straightforward consequence
of a low β value.

with M0 = 20. However, not for M0 = 50, as we explained, which merits the dramatic name we used above.
For a complete view, we have also repeated our simulations and made related calculations for the β = 0.4

case, representing a situation when more investment is really ineffective. Our results are summarized in
Fig. 4. As in the above-discussed cases, the key finding can be found in the fourth column, where the
proper role of spatial resource heterogeneity is evaluated. In the area of d < c/β, when M0 is small, there
is a parameter area where spatial heterogeneity tends to enhance cooperation (blue), which appears on the
left side of Fig. 4(a4). For larger M0, this blue area shrinks and survives only for high ηS values. It is
also a generally valid observation that there is an optimal intermediate d interval where significant resource
heterogeneity helps to eliminate involution activity, and this effect is more pronounced for more prosperous
resource conditions.

Interestingly, in our last case, the conclusion is somehow the opposite we reported earlier. More precisely,
the spatial heterogeneity induced additional network reciprocity works more efficiently when the average
resource level M0 is low and more efficient for a rich resource case. This observation is essentially expected
because low β makes defectors weak in general hence heterogeneous resources cannot add anything relevant
to the system behavior. Therefore we here basically witness conceptually similar behavior we reported for
a homogeneous population earlier.

Next, besides spatial, we also add temporal heterogeneities to social resources to explore their collective
impacts on the involution activity. Practically it means that both ηS and ηT parameters are positive. It
is easy to see that the smaller the applied spatial heterogeneity ηS , the more limited the reachable impact
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Figure 5: The f
(S)
D

stationary fraction of defector strategy obtained from MC simulations when beside a permanent ηS = 30
spatial heterogeneity we also imply temporal resource heterogeneity ηT > 0 for groups. Rows from (a) to (c) show cases at
different levels of average resources, as shown in the vertical axis. Each column shows results obtained at different β values,
representing various utility levels of more effort. The control parameters on heat maps are the range of temporal resource
heterogeneity (ηT ) and the d relative investment of defector players. Note that we used logarithmic scales on both axes.

of temporal heterogeneity ηT on the results. It is because the practical consequence of nonzero ηS is to
provide a [M0 − ηS ,M0 + ηS ] range of resources for each local group. Evidently, this effect is marginal for
small spatial heterogeneities. Hence, in the ηS = 0 limit, nonzero ηT usage has no detectable impact on
the results. Therefore, to observe the possible effect more easily, we apply ηS = 30, which is the maximum
degree of permanent spatial heterogeneity range in Fig. 2, Fig. 3, and Fig. 4. As the mentioned figures
illustrate, this degree value can ensure the maximal consequence of spatial heterogeneity.

The results of our MC simulation are summarized in Fig. 5 where we used ηT and d as control parameters

to show the f
(S)
D fraction of cooperator strategy. Horizontally we show results obtained at different M0

average source values, while vertically, we used alternative β utility levels of more effort used by defector
strategy. For easier comparison, we apply the same parameter values we used in earlier figures in both
cases. We note that both axes of heat maps are logarithmic here. Evidently, when ηT = 0, we get back the
results shown in the first column in previous figures at ηS = 30 horizontal line. As we apply more intensive

temporal heterogeneity by increasing ηT , the way how f
(S)
D changes depends slightly on other parameters.

However, there is a general valid observation. Namely, when ηT ≫ 0, the resulting involution levels resemble
those we obtained at ηS = 0 in previous figures.
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This observation actually further supports our previous findings of how spatial heterogeneity of resources
modifies the general involution level. As we argued, the main impact is based on the fact that groups may
enjoy different resource levels, which determines the emerging pattern of strategies. Once this fixed structure
is broken by applying ηT > 0, the consequence of the external resource condition cannot be maintained
anymore. As a result, the impact of spatial heterogeneities practically vanishes, and we turn back to the
behavior observed in a homogeneous population. Fig. 5 also illustrates that this effect occurs relatively early,
no matter ηT values are shown on a logarithmic scale.

4. Equilibrium calculations in an infinite well-mixed population

To complete our study, in the remainder of this work, we present mean-field calculations of a model which
assumes an infinitely large population. For this goal, we extend and generalize the method of replicator
dynamics used in Ref. [53]. We stress that this section is just a complementary approach using different
dynamics, but it can help identify the generally valid behaviors.

Since the population is infinite, the individuals in each case enjoying M̃ resource level are also infinite.
Also, there are infinite subsets of individuals who can be distinguished by the available M̃ value. Accordingly,
in analogy with Eq. (3), a player’s π(M̃) payoff who reaches M̃ is the following:

π(M̃ ) =
u

nCc+ nDβd+ u
M̃ − o

=











c

(nC + 1)c+ nDβd
M̃ − c := πC(M̃), if S = C,

βd

nCc+ (nD + 1)βd
M̃ − d := πD(M̃), if S = D.

(8)

Next, because of the limited feasibility of the applied mathematical technique, we consider two special
cases, which are ηT = 0 and ηT ≫ 0.

4.1. The case for ηT = 0

As a reference, we first study the ηT = 0 case when each player has access to a permanent resource value.
The average payoff for cooperators and for defectors who reach M̃ resource level is

〈πC(M̃)〉 =

n−1
∑

nD=0

(

n− 1

nD

)

〈y〉nD (1− 〈y〉)n−nD−1πC(M̃), (9a)

〈πD(M̃)〉 =
n−1
∑

nD=0

(

n− 1

nD

)

〈y〉nD (1− 〈y〉)n−nD−1πD(M̃). (9b)

where n denotes the number of players in a group, hence nC + nD = n− 1, and 〈y〉 is the average fraction
of defectors in the whole population. The focal individual who is directly linked to M̃ resource can play
involution games with others from all categories who also participate in various M̃ . Since the distribution of
M̃ is uniform, 〈y〉 should be the average fraction of defectors from all categories with M̃ ∈ [M0−ηS ,M0+ηS ],
and is calculated as

〈y〉 =

∫M0+ηS

M0−ηS

y(M̃)dM̃
∫M0+ηS

M0−ηS
dM̃

=
1

2ηS

∫ M0+ηS

M0−ηS

y(M̃)dM̃, (10)

where y(M̃) is the fraction of defectors who are linked to M̃ resource value.
By choosing a simple, but consistent evolutionary description, we apply the Fermi updating rule in

replicator dynamics [72]. For each subset with M̃ , the updating of strategies following its replicator dynamics,
which can be written as

ẏ(M̃) = y(M̃)(1 − y(M̃))
1

1 + e
−

〈πD(M̃)〉 − 〈πC(M̃)〉

κ

− (1− y(M̃))y(M̃)
1

1 + e
−

〈πC(M̃)〉 − 〈πD(M̃)〉

κ

. (11)
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In Eq. (11), strategies are only contagious among individuals belonging to the same subset (distinguished
by M̃), which is a standard approach in replicator dynamics [58, 72].

For the whole system, the time evolution of the fraction of defectors, ˙〈y〉 (different from 〈ẏ〉), is depicted
by using the derivative of 〈y〉 with respect to t:

˙〈y〉 =
d

dt
〈y〉 =

1

2ηS

∫ M0+ηS

M0−ηS

ẏ(M̃)dM̃. (12)

We note that the stability of y(M̃) for ∀M̃ ∈ [M0 − ηS ,M0 + ηS ] is not a necessary condition of the

equilibrium for 〈y〉. For example, ˙〈y〉 = 0 may hold when ẏ(M̃) < 0 for some M̃ and ẏ(M̃) > 0 for
others. However, we here intuitively define 〈y〉 achieving stability by y(M̃) achieving stability for ∀M̃ ∈
[M0−ηS ,M0+ηS ]. Based on this definition and the domain 0 ≤ y∗(M̃) ≤ 1, the system of Eq. (12) has at least
two equilibria: (i) 〈y〉∗ = 0, cooperation exists only, which holds if y∗(M̃) = 0 for ∀M̃ ∈ [M0− ηS ,M0+ ηS ];
(ii) 〈y〉∗ = 1, defection exists only, which holds if y∗(M̃) = 1 for ∀M̃ ∈ [M0 − ηS ,M0 + ηS ]. There may also
be other equilibria in 0 < 〈y〉∗ < 1, where cooperation and defection coexist. As reported previously [53],
it is challenging to study the inner equilibrium point, where 0 < 〈y〉∗ < 1, directly. But we can overcome
this difficulty because the stability of 〈y〉∗ = 0 and 〈y〉∗ = 1 extreme points is feasible. If both are unstable,
then we can conclude that cooperation and defection coexist.

For ∀M̃ ∈ [M0 − ηS ,M0 + ηS ], the first-order Jacobian matrix of Eq. (11) is

dẏ(M̃)

dy(M̃)
=

[

d

dy(M̃)
y(M̃)(1 − y(M̃))

]









1

1 + e
−

〈πD(M̃)〉 − 〈πC(M̃)〉

κ

−
1

1 + e
−

〈πC(M̃)〉 − 〈πD(M̃)〉

κ









+ y(M̃)(1 − y(M̃))









d

dy(M̃)









1

1 + e
−

〈πD(M̃)〉 − 〈πC(M̃)〉

κ

−
1

1 + e
−

〈πC(M̃)〉 − 〈πD(M̃)〉

κ

















,

(13)

where, according to Eq. (9), we have

〈πD(M̃)〉 − 〈πC(M̃)〉 =
n−1
∑

nD=0

(

n− 1

nD

)

〈y〉nD (1 − 〈y〉)n−nD−1(πD(M̃)− πC(M̃)). (14)

First, we study the stability of 〈y〉∗ = 0, which is equivalent to the stability of y∗(M̃) = 0 for ∀M̃ ∈
[M0 − ηS ,M0 + ηS ]. In this case, the only non-zero term of Eq. (14) is the term of nD = 0, which results
in 〈πD(M̃)〉 − 〈πC(M̃)〉 = πD(M̃) − πC(M̃). Also, only the first line of Eq. (13) is non-zero. Therefore,
Eq. (13) is given by

dẏ(M̃)

dy(M̃)

∣

∣

∣

∣

∣

y(M̃)=0

=









1

1 + e
−

πD(M̃)− πC(M̃)

κ

−
1

1 + e
−

πC(M̃)− πD(M̃)

κ









∣

∣

∣

∣

∣

∣

∣

∣

y(M̃)=0

. (15)

According to a basic calculus, y∗(M̃) = 0 is stable if dẏ(M̃)/dy(M̃)|y(M̃)=0 < 0, which is equivalent

to πD(M̃) − πC(M̃) < 0 due to Eq. (15). Therefore, 〈y〉∗ = 0 is stable if πD(M̃) − πC(M̃) < 0 for
∀M̃ ∈ [M0 − ηS ,M0 + ηS ]. By using Eq. (8), πD(M̃)− πC(M̃) < 0 can be calculated as

(

βd

(n− 1)c+ βd
−

1

n

)

M̃ − (d− c) < 0. (16)
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The left side of Eq. (16) increases with M̃ if [c/(βd) − 1](n− 1) < 0, and vice versa. In multiplayer games,
n > 1, hence the condition is equivalent to c/(βd)−1 < 0. Therefore, when d > c/β, the left side of Eq. (16)
increases with M̃ . Since M̃ ≤M0 + ηS , the sufficient condition of stability is

Q−

1 =:

(

βd

(n− 1)c+ βd
−

1

n

)

(M0 + ηS)− (d− c) < 0. (17)

Similarly, when d < c/β, the left side of Eq. (16) decreases with M̃ . Since M̃ ≥ M0 − ηS , the sufficient
condition of stability is

Q−

2 =:

(

βd

(n− 1)c+ βd
−

1

n

)

(M0 − ηS)− (d− c) < 0. (18)

In sum, we obtain two curves Q−

1 = 0 and Q−

2 = 0 in parameter space d > c/β and d < c/β, respectively,
indicating the transition points between the full cooperation and coexisting phases.

Secondly, we study the stability of 〈y〉∗ = 1. The only non-zero part of Eq. (14) is the term of nD = n−1,
which also reduces Eq. (14) to 〈πD(M̃)〉 − 〈πC(M̃)〉 = πD(M̃) − πC(M̃). Then, Eq. (13) can be calculated
as

dẏ(M̃)

dy(M̃)

∣

∣

∣

∣

∣

y(M̃)=1

= −









1

1 + e
−

πD(M̃)− πC(M̃)

κ

−
1

1 + e
−

πC(M̃)− πD(M̃)

κ









∣

∣

∣

∣

∣

∣

∣

∣

y(M̃)=1

. (19)

Here the condition dẏ(M̃)/dy(M̃)|y(M̃)=1 < 0 requires −(πD(M̃) − πC(M̃)) < 0. Therefore 〈y〉∗ = 1 is

stable if −(πD(M̃)− πC(M̃)) < 0 for ∀M̃ ∈ [M0 − ηS ,M0 + ηS ], which is
(

c

(n− 1)βd+ c
−

1

n

)

M̃ + (d− c) < 0. (20)

When d > c/β, the sufficient condition of stability is

Q+
1 =:

(

c

(n− 1)βd+ c
−

1

n

)

(M0 − ηS) + (d− c) < 0. (21)

For d < c/β, the sufficient condition of stable equilibrium is

Q+
2 =:

(

c

(n− 1)βd+ c
−

1

n

)

(M0 + ηS) + (d− c) < 0. (22)

We now have Q+
1 = 0 and Q+

2 = 0 curves in the parameter space d > c/β and d < c/β, respectively,
separating the full defector and coexistence phases.

The results of our numerical calculations are summarized in Fig. 6 where we plotted the f
(C)
D equilibrium

fraction of defectors. Similar to previous figures, rows show results obtained at different levels of average
resources. Here we use the same M0 values applied earlier. Columns depict cases obtained at different utility
levels of defector investments. Again, these β values are equal to those we used in other figures for proper
comparison. The control parameters are the range of spatial heterogeneity ηS and enhanced investment of
defectors, d.

The color code which characterizes the involution level is from numerical calculation of Eq. (12) when
˙〈y〉 = 0. The lines are the solutions of Q−

1 = 0, Q−

2 = 0 and Q+
1 = 0, where Q−

1 , Q
−

2 and Q+
1 are defined by

Eq. (17), Eq. (18) and Eq. (21). They mark the borderlines separating the full cooperator, full defector, and
coexistence phases. Note that the curve of Q+

2 = 0 is invisible because it always hides in the area of M0 < 0
according to Eq. (22). In addition, it is worth mentioning that Fig. 6 resembles the expectation results
in second column of Figs. (2−4) qualitatively. This is because both approaches assumed the unstructured
population condition.
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Figure 6: The f
(C)
D

stationary fraction of defector strategy obtained form the numerical calculation of Eq. (12) when n = 5.
Rows from (a) to (c) show cases at different levels of average resources, as shown in the vertical axis. Each column shows
results obtained at different β values; hence they represent various utility levels of more effort. The control parameters on heat
maps are the range of spatial resource heterogeneity (ηS) and defector players’ relative investment d. The analytical curves,
which are defined in the main text, mark the borderlines of different phases. Here we have full cooperator, full defector phases,
and between them, a mixed phase where strategies coexist.
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4.2. The case for ηT ≫ 0

The other case which can be calculated easily is the strong temporal heterogeneity (ηT ≫ 0) limit.
Here the subset of resources where an individual belongs is the statistical average of all available M̃ ∈
[M0 − ηS ,M0 + ηS ] values. Accordingly, the expected payoff for a cooperator player is

〈πC(M̃)〉 =

∫ M0+ηS

M0−ηS

n−1
∑

nD=0

(

n− 1

nD

)

〈y〉nD (1 − 〈y〉)n−nD−1πC(M̃)dM̃

=

n−1
∑

nD=0

(

n− 1

nD

)

〈y〉nD (1− 〈y〉)n−nD−1πC(M0). (23a)

Similarly, the expected defector’s income is

〈πD(M̃)〉 =
n−1
∑

nD=0

(

n− 1

nD

)

〈y〉nD (1 − 〈y〉)n−nD−1πD(M0). (23b)

If we check these expressions, we can see that these values agree with those we obtained for the classical model
where all groups obtain M0 resource. Consequently, the conclusion is similar, hence the strong temporal
heterogeneity limit ηT ≫ 0 gives back the system behavior we observed in the homogeneous, ηT = 0 and
ηS = 0 classical model.

5. Conclusion

In social dilemmas, cooperation always assumes a coordinated action from competitors while a defector
generally enjoys behaving differently from the others. This is exactly the case in a situation described by the
involution game. When the reachable resource divided among group members is limited, some players may
want to invest more to get a large pie from the common pizza. Others should also invest more to restore
the original fragments and avoid being overtaken. As a result, everybody gets the original share, but for
a higher price. Accordingly, in the above-described situation, those behave as cooperators who coordinate
their acts and try the necessary investment at a low level. A seemingly paradoxically, those who invest
more are the defectors because they generate a larger investment activity. Our previous work obtained in
a well-mixed population has pointed out that the fraction of defectors, which means the general degree of
involution, depends sensitively on the actual resource value of the group. However, this level should not
necessarily be equal for all groups. This can be justified by varying environments or other time-dependent
factors. Motivated by this observation in the present work, we have studied the possible consequences of
spatio-temporal heterogeneity in the available social resources.

First, we have considered the case of fixed but spatially heterogeneous resource distribution. Our Monte
Carlo simulation highlighted that the proper interaction between neighboring groups could mitigate the in-
volution level when the resource value is generally high. This is a positive consequence of network reciprocity
because, in the absence of resource heterogeneity, the involution level would be high in these circumstances.
The effect of spatial heterogeneity, however, is not as straightforward because in a poor resource environ-
ment, when involution would be low in a homogeneous system, the heterogeneity induces a slight growth of
involution. Luckily, the resulting global involution level is still tolerable.

For completeness, we also have studied the case when the utility of additional investment of defectors is
less effective. Let us stress that it is mostly just a theoretical option because, in this case, defectors are not
strongly motivated to invest more. Interestingly, however, spatial heterogeneity supports the original effect
we observed in homogeneous populations in this partly exotic case.

Furthermore, we have also added temporal heterogeneities to spatially varying resource distribution.
Here the key finding is that the additional temporal heterogeneity practically vanishes the impact of spatial
heterogeneity. The final system behavior is familiar to the one we observed in a homogeneous population
at the given resource level. We have also solved the related replicator equation numerically and found
conceptually similar system behavior to support simulation observations.
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It is a frequently observed and broadly accepted observation that heterogeneities can elevate the coop-
eration level in a system formed by competitors with conflicting individual interests [73, 74, 75, 76]. The
general argument explains it because heterogeneity involves largely different payoff distribution, which helps
more successful players coordinate their neighborhoods. However, this process helps cooperator strategy
to gain higher success and is harmful to defectors who cannot exploit neighbors anymore. In our present
study, a whole group needed to share a certain resource value; therefore, the interaction of groups becomes
more important. Our key conclusion is that heterogeneity may have positive consequences, but the picture
is more subtle when the external environment is less supportive for defectors.
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