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Summary

In this paper, we present a game-theoretic model describing the voluntary social dis-
tancing during the spread of an epidemic. The payoffs of the agents depend on the
social distancing they practice and on the probability of getting infected. We con-
sider two types of agents, the non-vulnerable agents who have a small cost if they
get infected, and the vulnerable agents who have a higher cost. For the modeling
of the epidemic outbreak, we consider a variant of the SIR (Susceptible-Infected-
Removed) model involving populations of susceptible, infected and removed persons
of vulnerable and non-vulnerable types. The Nash equilibria of this social distanc-
ing game are studied. The main contribution of this work is the analysis of the case
where the players, desiring to achieve a low social inequality, pose a bound on the
variance of the payoffs. In this case, we introduce and characterize a notion of Gen-
eralized Nash Equilibrium (GNE) for games with a continuum of players. Through
numerical studies, we show that inequality constraints result in a slower spread of the
epidemic and an improved cost for the vulnerable players. Furthermore, it is possible
that inequality constraints are beneficial for non-vulnerable players as well.
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1 INTRODUCTION

Epidemics harass humanity for centuries, and people investigate several strategies to contain them. The development of
medicines and vaccines and the evolution of healthcare systems with specialized personnel and equipped hospitals have signifi-
cantly affected the spread of many epidemics and have even eliminated some contagious diseases. However, during the current
COVID-19 pandemic, due to the lack or scarcity of appropriate medicines and vaccines, Non-Pharmaceutical Interventions (pri-
marily social distancing) have been among the most effective strategies to reduce the disease spread. Due to the slow roll-out
of the vaccines, their uneven distribution, the emergence of SARS-CoV-2 variants, age limitations, and people’s resistance to
vaccination, social distancing is likely to remain significant in a large part of the globe for the near future.
Epidemiological models are essential in designing measures and strategies to control epidemics1. In the last century, epi-

demiologists have made significant progress in the mathematical modeling of the spread of epidemics. From the seminal works
of Kermack and McKendrick2 and Ross3, a prevalent approach in the mathematical modeling of epidemics is compartmental

†I. Kordonis e-mail: jkordonis1920@yahoo.com, A.-R. Lagos e-mail: lagosth@mail.ntua.gr, G.P. Papavassilopoulos e-mail: yorgos@netmode.ntua.gr
1For example, Imperial College London’s report 1 profoundly influenced UK’s response to COVID-19 epidemic.
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models. These models consider that each agent belongs in some compartment according to her infection state (e.g., Susceptible-
Infected-Recovered) and study the evolution of each compartment’s population. The literature on these models is extensive, so
for a summary, we refer to Chapter 2 of Allen et al.(2008)4. There are also other elegant approaches to epidemics modeling,
such as the ones that take into consideration the heterogeneous networked structure of human interconnections5. However, the
compartmental models remain a well-studied and fruitful approach, widely used in real-life applications.
The development of epidemiological models is a valuable tool in designing protective measures against the spread of an

epidemic. Still, these measures will be adopted by agents who act in a self-interested manner, at least to some extent. Thus,
game theory is an appropriate complementary mathematical tool to be used in this field. Indeed, many game-theoretic models
have been developed to study voluntary vaccination6,7,8,9,10,11,12,13 and behavioral changes of the agents14,15,16,17,18,19,20,21, such
as social distancing, use of face masks, and better hygiene practice. Another closely related stream of research is the study of
the adoption of decentralized protection strategies in engineered and social networks22,23,24,25. Recently, with the emergence of
the COVID-19 pandemic, there is a renewed interest in modeling individual behaviors. Related tools include dynamic game
analysis of social distancing26, evolutionary game theory27,28,29,30 and network game models31.
The majority of game-theoretic models are based on the assumption that the rational behavior for an agent is to maximize

selfishly her own payoff ignoring the social impacts (externalities) of this choice. This can lead to ‘free-riding’ phenomena
in vaccination games9,12 or in disobedience of social distancing rules in social distancing games, which can both result in a
higher prevalence of the spread of the epidemic9,32 and to harmful consequences for the vulnerable members of the society.
The phenomenon that the Nash equilibrium strategies result to a social welfare less than the optimal one is well known in
game theory community as the Tragedy of the Commons33. There are some notable exceptions34,35 analyzing epidemic games
involving altruistic individuals. However, even in the cases considering that the agents prefer the strategies that maximize a
social welfare function, there may still exist significant inequalities among their payoffs.
Epidemics may create vastly unequal outcomes in terms of health risks. For example, the severe illness or fatality risk for

a person infected by SARS-COV-2 varies widely with age and underlying health conditions36,37. There is a lot of empirical
evidence that people are often motivated by fairness considerations38,39. That is, people are often willing to sacrifice some of
their own payoff to achieve a more equitable outcome. When it comes to health inequalities, people are often very inequality
averse40. Especially if an agent has vulnerable relatives, it is rather natural for her to alter her behavior during an epidemic
outbreak to protect them. In the context of the current COVID-19 crisis, it has been observed that communication strategies that
aim to indicate the effects of social distancing behavior on others, especially on vulnerable persons (strategy of the identifiable
victim), are very effective41.
In this work, we employ a novel approach to model the agents’ possible desire to keep the inequality among their payoffs

below a certain threshold. Particularly, we consider that the players share a common constraint bounding inequality, modeled
as their costs variance. This modeling approach can be useful for future waves of COVID-19 pandemic (probably involving
variants of the virus) or for future epidemics.
Following the literature42,43,44, we consider a compartmental model (SIR) for the spread of an epidemic and a social distancing

game among the agents. The payoffs of the agents consist of two terms: a cost for the social distancing and a cost proportional to
the probability of getting infected. There are two types of agents, non-vulnerable agents, who have a small cost if they get infected
and vulnerable agents, who have a higher cost. The size of the society is considered large, so the game has a continuum of players
(it is a non-atomic game). In this game, the agents determine their actions to optimize their payoff and simultaneously respect a
constraint concerning the variance of all the agents’ payoffs. Due to this constraint, the game is, in fact, a generalized game with
a non-convex constraint. The majority of the bibliography on generalized games45,46 does not analyze generalized games with
non-convex constraints. Furthermore, there are a few references on generalized non-atomic games47,48,49. However, in these
papers, the convexity of the constraint set is built into the definition of the Generalized Nash Equilibrium (GNE). Another related
paper by Singh and Wiszniewska-Matyszkiel50 examines a dynamic game with a continuum of players having state-dependent
constraints. In this work, we give a new definition and characterization of GNE for constrained non-atomic games.
Numerical examples indicate that there may be many Nash equilibria inducing different costs for the players. Thus, even in

the absence of social distancing regulations, it is beneficial for the players to coordinate and choose the ‘best’ equilibrium. In
the variance constrained case, we numerically find that the inequality constraint (bounding the variance) is always beneficial for
the vulnerable players. Sometimes, inequality constraints are beneficial for the group of non-vulnerable agents as well.
The rest of the paper is organized as follows. Section 2 describes the compartmental model for the epidemic outbreak and the

social distancing game between the agents. In Section 3, we analyze the game and characterize its Nash equilibria. In Section
4, we introduce the constraint that concerns the variance of the payoffs and derive an appropriate definition of generalized
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Nash equilibrium for variance constrained games. In section 5, we present a methodology for the computation of the Nash
equilibrium strategies of section 3 and then give some numerical examples.Moreover, in the same section, we present an example
of generalized Nash equilibrium computation for the variance constrained game. In the Appendix, we collocate the proofs of
several propositions of the paper.

2 MATHEMATICAL MODEL

This section presents a variation of a popular epidemics model which assumes a continuum of agents. The state of each agent
could be Susceptible (S), Infected (I), Recovered (R) or Dead (D). A susceptible person may be infected at a rate proportional to
the rate she meets with infected people. Infected persons either recover or die at a constant rate. We assume that an individual
recovered from the infection is immune i.e., she could not be infected again.
We distinguish between two types of agents: non-vulnerable and vulnerable. We use the index j = 1 for non-vulnerable

agents and j = 2 for vulnerable. The difference of the two types of agents is the severity of a possible infection (including
the probability to survive). An infected agent recovers with a probability rate �′j and dies with a probability rate �j − �′j . The
evolution of the individual states is presented in Figure 1.

S I R

D
αj-α'j

α'j

FIGURE 1 The Markov process describing the evolution of the state of each individual.

We analyze the behavior of the agents for a time interval [0, T ]. Denote by ui ∈ [um, uM ] the action of player i, indicating
the fraction of time this person spends in public places. The minimum value of the actions um describes the minimum contact a
person needs for surviving and uM describes a restriction placed by the government. In the absence of a restriction we consider
uM = 1.
Assumption 1: The actions ui of all the players are constant during a time interval [0, T ]. This interval represents a wave of

the epidemic.

Remark 1. In a more general model ui could be function of the state variables or time, but there are some arguments in favor of
this choice. First, there may be a high uncertainty for the values of the state variables. Second, ui’s reflect some everyday routine
choices of the people and these choices may be difficult to adapt constantly.

Denote by �1 a (Borel) measure on [um, uM ] describing the distribution of the actions of the players in category 1 i.e., for
A ⊂ [um, uM ], the value of �1(A) denotes the mass of the players using an action u ∈ A. Similarly, denote by �2 the distribution
of actions of the players of type 2. The total mass of players of types 1 and 2 is n1 and n2 respectively i.e., �1([um, uM ]) = n1
and �2([um, uM ]) = n2. We first describe the evolution of the epidemic for general distributions �1, �2.
Denote by S1u(t) the probability a non-vulnerable player who plays u ∈ [um, uM ] to be susceptible at time t and by I1u(t) the

probability to be infected. Similarly defineS2u(t), I2u(t). The rate at which this person gets infected is given by: ruIf ,where r is a
positive constant and If denotes the density of infected people in ‘public places’. Each player contributes to If (t) proportionally
to her probability of being infected at time t. The dynamics is given by:

Ṡju = −ruSjuIf (t)
İju = ruSjuIf (t) − �1Iju
ż = If (t)

, (1)

where z is an auxiliary variable, j = 1, 2 and:

If (t) = ∫
[um,uM ]

I1u′(t)u′ ⋅ �1(du′) + ∫
[um,uM ]

I2u′(t)u′ ⋅ �2(du′). (2)
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The initial conditions are
S1u(0) = S2u(0) = (1 − I0), I1u(0) = I2u(0) = I0, (3)

where I0 is the percentage of infected persons at time 0. Here we assume, without loss of generality, that at the beginning of the
time interval [0, T ], the agents of both types are infected with the same probability I0.
Before showing the existence of a solution for the initial value problem (1)–(3), we introduce some function spaces. Let:

X = C([um, uM ],ℝ4) ×ℝ,

where C([um, uM ],ℝ4) be the space of continuous functions defined on [um, uM ] and values on ℝ4. The space X equipped with
the norm:

‖x‖ = max{|x1u|, |x2u|, |x3u|, |x4u|, |x5| ∶ u ∈ [um, uM ]},
is a Banach space. We also consider the Banach space Y of signed measures on [um, uM ] with the total variation norm.

Proposition 1. The initial value problem (1)–(3) has a unique solution. Furthermore, this solution is continuous on u.

Proof: See Appendix A. □
The cost of an agent i of type j consists of two terms. The first term is proportional to the probability of getting infected and

the vulnerability of the player. The second term, represents the benefits earned from social interactions. The cost is given by:

Ji = GjPi −Qj(ui, ū1, ū2), (4)

where Gj corresponds to the expected severity of a possible infection, Pi is the probability that i gets infected within the time
interval [0, T ]. Note that G2 > G1. The quantity Qj(ui, ū1, ū2) represents the utility derived from the interaction with others
where ū1, ū2 are the mean actions of the players of types j = 1 and j = 2 respectively. For simplicity we assume that Qj has the
form:

Qj(ui, ū1, ū2) = sj1uiū1 + sj2uiū2,
where sj1, sj2 are non-negative constants.

Remark 2. In the computation of the second term in (4), we assume that the number of people in these types is approximately
constant with time. This is a good approximation in epidemics with a low mortality rate and duration small compared to the
average human life.

Let us then compute the probability of getting infected Pi. The probability S ijui(t) that an agent i of either type (j = 1 or j = 2)
is not infected up to time t evolves according to:

Ṡ ijui = −rS
i
jui
uiI

f .
Thus, we have:

Pi = 1 − S ijui(T ) = I0 + (1 − I0)
⎡

⎢

⎢

⎣

1 − exp
⎛

⎜

⎜

⎝

−rui

T

∫
0

If (t)dt
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

.

Here we assume that at the beginning of the time interval [0, T ], all the agents are infected with a small probability I0. Denoting
by F (�1, �2) = r ∫

T
0 If (t)dt the cost is written as:

Jj(ui, �1, �2) = Gj
[

I0 + (1 − I0)
[

1 − exp
(

−uiF (�1, �2)
)]]

− sj1uiū1 − sj2uiū2.

Since we assume a very large population of players, each one of them is not able to affect the distributions �1, �2. It is interesting
to observe that the individual cost Ji is concave in ui. To see this take the second derivative of Ji with respect to ui:

)2Ji
)u2i

= −Gj(1 − I0) exp
⎛

⎜

⎜

⎝

−rui

T

∫
0

If (t)dt
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

−

T

∫
0

If (t)dt
⎞

⎟

⎟

⎠

2

< 0.

Therefore, the possible actions minimizing the individual cost are ui = um and ui = uM . Thus, to compute the Nash equilibria,
we focus on distributions assigning the entire mass on {um, uM}.

Remark 3. The fact that the cost function Ji is concave in ui simplifies the analysis a lot, implying that players choose either
u = um or u = uM . It further allows us to describe dynamics using a finite-dimensional model.
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3 NASH EQUILIBRIUM

To analyze the Nash equilibrium we focus on distributions having all the mass on {um, uM}.The dynamics is given by:

Ṡjum = −rumI
fSjum , Ṡ1uM = −ruMI

fSjuM ,

İjum = rumI
fSjum − �jIjum , İjuM = ruMI

fSjuM − �jIjuM ,
ż = If ,

(5)

where j = 1, 2, the total mass of ‘free infected people’ If is given by:

If (t) =
2
∑

j=1
nj((1 − ũj)umIjum(t) + ũjuMIjuM (t)),

and ũj = �j({uM}) is the percentage of players of type j using uM . The initial conditions are given by:

Sjum(0) = SjuM (0) = (1 − I0), Ijum(0) = Ijum(0) = I0, z(0) = 0 (6)

Denote by �zũ1,ũ2(t) the z-part of the solution of the differential equation (5) with initial conditions (6). Then it holds:

F (�1, �2) = F (ũ1, ũ2) = r�zũ1,ũ2(T ).

Remark 4. We view the equilibria where some players of type j play um and some uM as equilibria in symmetric mixed strategies.
Particularly, each player of type j plays uM with probability ũj .

Proposition 2. Consider a set of strategies characterized by ũ1, ũ2, where a fraction 1 − ũj of the players of type j use u = um
and a fraction ũj of the players of type j use u = uM . This set of strategies is a Nash equilibrium if and only if, for each j = 1, 2,
one of the following holds:

(i) 0 < ũj < 1 and:
Gj(1 − I0)(e−umF (ũ1,ũ2) − e−uMF (ũ1,ũ2)) = (uM − um)(sj1ū1 + sj2ū2),

where ūj = um + (uM − um)ũj .

(ii) ũj = 0 and:
Gj(1 − I0)(e−umF (ũ1,ũ2) − e−uMF (ũ1,ũ2)) ≥ (uM − um)(sj1ū1 + sj2ū2).

(iii) ũj = 1 and:
Gj(1 − I0)(e−umF (ũ1,ũ2) − e−uMF (ũ1,ũ2)) ≤ (uM − um)(sj1ū1 + sj2ū2).

Proof : The proof is immediate, observing that (i) corresponds to the case where the players of type j are indifferent between
um and uM and (ii), (iii) correspond to preference of um over uM and uM over um respectively. □
The existence of a Nash equilibrium is a consequence of Theorem 1 of Mas-Colell(1984)51.

Corollary 1. Assume that s11 = s21 and s12 = s22. Then the possible Nash equilibria (ũ1, ũ2) are in of one of the following
forms (0, 0), (ũ1, 0), (1, 0), (1, ũ2), (1, 1).

Proof : Let (ũ1, ũ2) be a Nash equilibrium. Then, if ũ1 < 1 it holds:

G1(1 − I0)(e−umF (ũ1,ũ2) − e−uMF (ũ1,ũ2)) ≥ (uM − um)(s11ū1 + s12ū2).

Since, s11 = s21, s12 = s22 and G2 > G1 we have:

G2(1 − I0)(e−umF (ũ1,ũ2) − e−uMF (ũ1,ũ2)) > (uM − um)(s21ū1 + s22ū2).

But, since (ũ1, ũ2) is a Nash equilibrium Proposition (2) implies that ũ2 = 0 □

Corollary 2. If um = 0, then (ũ1, ũ2) = (0, 0) is always a Nash equilibrium.

4 THE VARIANCE CONSTRAINED GAME

This section analyzes a game situation, where the players pose a shared bound on the variance of their costs. To do so, we first
introduce a notion of equilibrium with a shared constraint, for non-atomic games, and then characterize it in terms of small
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variations. We assume that the strategies of the players are symmetric (that is all the players of the same type use the same
strategy), allowing for randomization. Consider a pair of distributions (�1, �2) for the actions of the players. Then, the players
of type j randomize according to �̄j(⋅) = �j(⋅)∕nj .
The variance of the costs is given by:

V (�1, �2) =
∫ (J1(u′, �1, �2) − J̄ )2�1(du′) + ∫ (J2(u′, �1, �2) − J̄ )2�2(du′)

n1 + n2
,

=
n1 ∫ (J1(u′, �1, �2) − J̄ )2�̄1(du′) + n2 ∫ (J2(u′, �1, �2) − J̄ )2�̄2(du′)

n1 + n2
,

(7)

where J̄ = (n1J̄1 + n2J̄2)∕(n1 + n2), and:

J̄j =
1
nj ∫

Jj(u′, �1, �2)�j(du′) = ∫ Jj(u′, �1, �2)�̄j(du′).

We then describe a notion of equilibrium for the generalized game with variance constraint. Ideally, to have an equilibrium,
the actions of each player should minimize the cost subject to the variance constraint. The difficult point here is that, since we
have a continuum of players, the variance does not depend on the actions of individual players. To define a meaningful notion
of equilibrium, instead of analyzing the effect of a deviation of a single player, we consider the deviation of a small fraction of
players of type j and see how a variation from the nominal mixed strategy �̄j affects the cost of this small group of players and
the total variance. Then, we take the limit as the total mass of the group of players tends to zero.
Denote by j the type of players containing the deviating group and by −j the other type of players. Assume that the total mass

of deviating players is " and that the deviating players use a mixed strategy �̄′j (note that it holds �̄
′
j([um, uM ]) = 1). Then, the

distribution of the actions of the players of type j is given by:

�j + "(�̄′j − �̄j) = �j + "��j .

The mean cost of the deviating players after the deviation is:

J̄ dev
j = ∫ Jj(u′, �j + "(�̄′j − �̄j), �−j)�j

′(du′),

while before the deviation is J̄j . The following lemma expresses this the limit of this deviation, as well as the directional
(Gateaux) derivative of the variance, in terms of linear bounded operators. This result will be used to define the Generalized
Nash equilibrium.

Lemma 1. For all �−j it holds:

(i) The limit of the variation J̄ dev
j − J̄j , as "→ 0, is a linear function of ��j . Particularly, it is written as:

lim
"→0
(J̄ dev
j − J̄j) =Kj

�1,�2
��j = ∫ Jj(u′, �j , �−j)��j(du′), (8)

whereKj
�1,�2 ∈ Y

⋆ and Y ⋆ is the space of bounded linear functionals on Y .

(ii) The directional derivative of the variance V (�j , �−j) in the direction ��j is expressed as:

lim
"→0

V (�j + "��j , �−j) − V (�j , �−j)
"

=Lj
�1,�2

��j ,

whereLj
�1,�2 ∈ Y

⋆. Furthermore,Lj
�1,�2 can be written as:

Lj
�1,�2

��j = ∫ f var
j,V ,�1,�2

(u′)��j(du′),

with f var
j,V ,�1,�2

(u′) continuous.

Proof: See Appendix B. □

Definition 1 (Generalized Nash Equilibrium). A distribution of actions described by (�1, �2) is a Generalized Nash Equilibrium
(GNE) with variance constraint V ≤ C if either:
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(i) V (�1, �2) < C and for any j = 1, 2 and any probability measure �̄′j , it holds:

Kj
�1,�2

��j ≥ 0,

where ��j = �̄′j − �̄j , or

(ii) V (�1, �2) = C and for any j = 1, 2 and any probability measure �̄′j , it holds:

Kj
�1,�2

��j < 0 ⇐⇒ Lj
�1,�2

��j > 0,

where ��j = �̄′j − �̄j .

Remark 5. In the first case of the definition, any small group of players is not sufficient to increase the variance above C . Thus,
if �1, �2 is an equilibrium, there is no profitable deviation, and the definition coincides with the equilibrium of Section 3. In the
second case, �1, �2 is an equilibrium, if any profitable deviation for a small group of players, increases the variance above C .

Remark 6. Some notions of GNE for games with a continuum of players were already introduced in the literature47,48,49. How-
ever, these definitions assume a convex constraint set. Let us note that Definition 1 is neither a generalization nor a special case
of the these definitions.

We then introduce a refinement of GNE, called non-singular GNE. It turns out that non-singular GNE are easier to compute.

Definition 2 (non-singular GNE). A pair (�1, �2) is variance stationary if either:

(i) for all ��1 = �̄′1 − �̄1, with �̄
′
1 probability measure, it holds:

L1
�1,�2

��1 ≥ 0,

or

(ii) for all ��2 = �̄′2 − �̄2, with �̄
′
2 probability measure, it holds:

L2
�1,�2

��2 ≥ 0.

We call a GNE (�1, �2) non-singular if it is not variance stationary.

Lemma 2. Assume that (�1, �2) is not variance stationary. Then, (�1, �2) is a Generalized Nash equilibrium with variance
constraint V ≤ C if and only if either it satisfies (i) of Definition 1 or V (�1, �2) = C and for any probability measure �̄′, it holds:

Kj
�1,�2

��j < 0 ⇐⇒ Lj
�1,�2

��j ≥ 0, (9)

where ��j = �̄′j − �̄j .

Proof: The direct part is immediate. Assume that the converse is not true, that is, there is a probability measure �̄′j such that:

Kj
�1,�2

(�̄′j − �̄j) < 0, L
j
�1,�2

(�̄′j − �̄j) = 0.

Then, since (�1, �2) is not variance stationary, there is a probability measure �̄′′j such that Lj
�1,�2(�̄

′′
j − �̄j) < 0. Hence, there is

a � ∈ (0, 1) such that:
Kj
�1,�2

(��̄′j + (1 − �)�̄
′′
j − �̄j) < 0, L

j
�1,�2

(��̄′j + (1 − �)�̄
′′
j − �̄j) < 0.

But this contradicts (9). □
Assume that VA(�1, �2) = C and (�1, �2) is not variance stationary. Then, (�1, �2) is an equilibrium if and only if there is no

��j = �̄′j − �̄j such that:
Kj
�1,�2

��j < 0 and Lj
�1,�2

��j < 0. (10)
The following proposition characterizes the non-singular GNE in terms of measures supported on at most two points.

Proposition 3. If there is a probability measure �̄′j such that (10) holds true, then there is another probability measure �̄′′j
supported on at most two points which also satisfies (10) with �� = �̄′′ − �̄.

Proof: See Appendix C □
Let us introduce the following quantities:

gKj,�1,�2(u) =Kj
�1,�2

(du − �̄j), gLj,�1,�2(u) =Lj
�1,�2

(du − �̄j),
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wheredu is a Dirac measure supported on u. Using these quantities we have the following necessary (Corollary 3), and necessary
and sufficient conditions (Corollary 4).

Corollary 3. If (�1, �2) is a GNE then for all u ∈ [um, uM ], j = 1, 2 if gKj,�1,�2(u) < 0 then g
L
j,�1,�2

(u) ≥ 0.

Corollary 4. A non variance stationary pair (�1, �2) is a GNE if and only if for all u′, u′′ ∈ [um, uM ], � ∈ [0, 1], j = 1, 2 if
�gKj,�1,�2(u

′) + (1 − �)gKj,�1,�2(u
′′) < 0 then �gLj,�1,�2(u

′) + (1 − �)gLj,�1,�2(u
′′) ≥ 0.

Remark 7. The proposed formulation describes pro-social behaviors in terms of bounding the variance of the costs. There are
various alternative formulations. For example, people may bound the maximum number of infected individuals, reflecting the
bounded capacity of the healthcare systems. Another alternative would be to consider altruistic players52. Finally, pro-social
behavior can be modeled as Kantian behavior53. We chose to model pro-social behavior as bounding the variance, because of
the vast health inequities created by the current COVID-19 pandemic.

5 COMPUTATIONAL STUDY

We then present some numerical results. In Subsection 5.1, we compute numerically the Nash equilibria of the unconstrained
game providing two illustrative examples and in Subsection 5.2, we study an example for the variance constrained game.

5.1 Computing Unconstrained Nash Equilibria
The computation of the value of F (ū1, ū2) corresponds to the numerical integration of (5). The search for pure Nash equilibria
needs just the computation of F (0, 1), F (1, 0), and F (1, 1) and checking the corresponding inequalities.
Let us then describe the procedure to find equilibria in the form of the (ũ1, 0) or (ũ1, 1). We have first to find the solutions of:

Hũ2(ũ1) = G1(1 − I0)(e
−umF (ũ1,ũ2) − e−uMF (ũ1,ũ2)) − (uM − um)(sj1(um + (uM − um)ũ1) + sj2ū2) = 0,

with respect to ũ1, for a fixed value of ũ2 = 0, 1. To do so we use line search (an alternative, would be to use a multi-start Newton
algorithm). Having found a solution of Hũ2(ũ1) = 0 for ũ2 = 0 or ũ2 = 1 we need also to check the corresponding inequality.
The computation of possible equilibria in the form (0, ũ2) or (1, ũ2) is similar.
Let us compute any possible Nash equilibrium where both types use mixed strategies (internal Nash equilibria). Then we

should have:
G1(1 − I0)(e−umF (ũ1,ũ2) − e−uMF (ũ1,ũ2)) = (uM − um)(s11ū1 + s12ū2)
G2(1 − I0)(e−umF (ũ1,ũ2) − e−uMF (ũ1,ũ2)) = (uM − um)(s21ū1 + s22ū2)

(11)

Any solution of this equation should belong to the line:

G2(s11ū1 + s12ū2) = G1(s21ū1 + s22ū2)

or equivalently:
(G2s11 − G1s21)ũ1 + (G2s12 − G1s22)ũ2 =

G1(s21 + s22) − G2(s11 + s12)
uM − um

um. (12)

Therefore, to find any internal Nash equilibria, we examine using line search if there are solutions of (11) on the line (12).
We then present some examples with concrete values for the parameters.
Example 1: The parameters are T = 100, r = 5∕16, I0 = 0.01, n1 = 0.8, n2 = 0.2, �1 = �2 = 1∕8. These parameters

correspond to an epidemic with basic reproduction number R0 = 2.5, where people remain infectious for a mean time of 8
days30. The s parameters are s11 = s21 = 2 and s12 = s22 = 0.5. We assume that uM = 0.8 and um = 0.5. We compute the
equilibria for different values ofG1 andG2, assuming thatG2∕G1 = 10. This choice roughly corresponds to the infection fatality
risks of the older people compared with the infection fatality risks of younger people36. The variation described corresponds to
varied ways that people may weight health, money and well being.
The equilibria of the game are presented in Figure 2.We observe for all the values ofG1, G2 withG2∕G1 = 10 there is a unique

Nash equilibrium. When G1, G2 are small, the equilibrium strategies are ũ1 = ũ2 = 1. Then, as G1, G2 become larger, there is
a mixed Nash equilibrium (1, ũ2). For intermediate values of G1, G2, there is a unique equilibrium with ũ1 = 1 and ũ2 = 0. For
larger values of G1, G2 the equilibrium has the form ũ1 = ũ2 = 0. Finally for large G1, G2 there is a unique equilibrium ũ1 = 0
and ũ2 = 0.
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FIGURE 2 The upper part of the image presents the equilibria when G1 ∈ [0.2, 0.5]. In this region, players of type 1 (non-
vulnerable players) play u = uM and players of type 2 randomize between um and uM . The probability to play uM denoted by ũ2
is illustrated in the upper part. Similarly the lower part presents the equilibria for G1 ∈ [0.5, 50]. In this region, all the players
of type 2 play u = um, while the players of type 1 randomize with probability ũ1.

Example 2: In this example there is a strong homophily. Particularly, s11 = s22 = 2 and s21 = s12 = 0.5. The rest of the
parameters are as in Example 1, including the fact that G2∕G1 = 10. The equilibria for various values of are presented in Figure
3. For low values of G1 there is a unique pure Nash equilibrium, where all the players play uM . Then around G1 = 0.292, in
addition to the pure equilibrium (1, 1), a pair of equilibria appears. One of the new equilibra is pure and the other is mixed. In
the new pure equilibrium all the players of type 1 play uM and all the players of type 2 play um. In the mixed equilibrium, players
of type 2 randomize, that is the mixed equilibrium has the form (1, ũ2). As G1 becomes larger the value of ũ2 increases and
eventually, around G1 = 0.363, the mixed equilibrium (1, ũ2) meets with the pure equilibrium (1, 1) and they both disappear.
Then, for G1 ∈ [0, 363, 3.8] there is a unique Nash equilibrium where all the players of type 1 play uM and players of type 2
play um. On the interval G1 ∈ [3.8, 40.1], there is a unique mixed Nash equilibrium where all the players of type 2 play um and
the players of type 1 randomize. For larger values of G1 all the players play um.

5.2 Computing Constrained Equilibria
We then search for generalized Nash equilibria with variance constraints. Let us first note that if the pair (�1, �2) satisfies
Definition 1.(i) then it also is an unconstrained Nash equilibrium. Thus, it is sufficient to check if the Nash equilibria computed
in the previous section satisfy the constraint V (�1, �2) ≤ C .
We then compute GNE, satisfying Definition 1.(ii), in the case where the policies (�1, �2) are of the form �1 = n1du1 ,

�2 = n2du2 , where du is a Dirac measure concentrated on u. We use a grid to find the pairs (u1, u2) such that the equality
V (�1, �2) = C holds approximately. These points are candidates for GNE. For each of these points in the grid, we compute the
functions gKj,�1,�2(u) and g

L
j,�1,�2

(u) for j = 1, 2 and a grid of points u. The details of the computation of gKj,�1,�2(u) and g
L
j,�1,�2

(u)
are given in Appendix D. We then use Corollary 4 to check weather each of these points is a GNE.
Example 3: In this example the parameters are as in Example 1, and the vulnerability parameters G1 = 8 and G2 = 80. The

unconstrained Nash equilibrium is ũ1 = 0.602, ũ2 = 0. The cost for the non-vulnerable and vulnerable players under the Nash
equilibrium are J1 = 0.185 and J2 = 9.12 respectively.
The GNE under the constraint V ≤ C , for various values of C is illustrated in Figure 4. We observe that for some values

of C there are multiple GNE. Figure 5 shows how costs of the non-vulnerable and vulnerable players vary as a function of C .
We observe that, as the value of the constraint C becomes smaller the cost of the vulnerable players decreases monotonically.
Furthermore, compared to the unconstrained case, the cost of the non-vulnerable players under the variance constrained is
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FIGURE 3 The figure presents the equilibria of the game. The upper part present ũ2, when G1 ∈ [0.2, 0.4]. In this interval all
the players of type 1 play uM , that is ũ1 = 1. There are at most three equilibria. The equilibria for G1 ∈ [0.4, 50] are presented
in the lower part of the figure. In this region all the players of type 2 play u = um, while the players of type 1 randomize with
probability ũ1.

improved as well. Figure 6 illustrates the evolution of the epidemic for various values of C . We observe that, as the constraint
becomes more restrictive i.e., as C decreases the prevalence of the epidemic decreases as well.

FIGURE 4 The contour line V = C , for various values of C and the corresponding GNE.

6 CONCLUSION

We analyzed social distancing games, involving vulnerable and non-vulnerable populations of players, characterized the Nash
equilibria and investigated how inequality constraints influence the epidemic spread and the costs of the players. We also defined
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FIGURE 5 The costs for vulnerable and non-vulnerable players for various values of C . The dashed lines correspond to the
minimum and maximum values for all the equilibria and the solid lines for an average value.

FIGURE 6 The evolution over time for the total number of susceptible and infected persons for the Nash equilibrium and the
GNE for various values of C .

a Generalized Nash equilibrium concept for non-atomic games with variance constraints, and characterized it in terms of single-
point-supported deviations. Inequality constraints are always beneficial for the vulnerable players, and in some cases they could
be beneficial for the non-vulnerable players as well. Furthermore, inequality constraints delay the spread of epidemics and reduce
its prevalence.
There are several directions for future research. First, the model can be generalized, including many classes of players having

different vulnerabilities, minimum actions, degrees, etc. Another direction is to use real data to check the predictions of the
model, the modeling of the dynamic response of players and the study of other applications of the variance constrained games
defined.
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APPENDIX

A PROOF OF PROPOSITION 1

Equation (1) can be written as:

ẋ1u = −rux1u ⋅ (Mx)
ẋ2u = −rux2u ⋅ (Mx)
ẋ3u = rux1u ⋅ (Mx) − �1x3u
ẋ4u = rux2u ⋅ (Mx) − �1x4u
ẋ5 =Mx

, (A1)

whereM ∈ X⋆ with:
Mx = ∫ x3uu�1(du) + ∫ x4uu�2(du).

Note that ‖M‖ ≤ n1 + n2. The initial conditions are x1u(0) = x2u(0) = 1 − I0, x3u(0) = x4u(0) = I0, for all u ∈ [um, uM ] and
x5(0) = 0. In compact form we write ẋ = f�1,�2(x).

Lemma 3. Any solution of (A1) with the given initial conditions satisfies 0 ≤ x1u,… , x4u ≤ 1. Let us denote this set by X0
i.e., X0 = {x ∈ X ∶ 0 ≤ x1u,… , x4u ≤ 1, for all u}.

Proof : Consider such a solution. Observe that, x1u(t), x2u(t) ≥ 0 for all u and t. Similarly, since x ≥ 0 implies Mx ≥ 0 we
have x3u(t), x4u(t) ≥ 0 for all t, u. Finally, ẋ1u + ẋ3u ≤ 0 and thus, x3u(t) ≤ x1u(0) + x3u(0) = 1. Similarly, x4u(t) ≤ 1. □

Lemma 4. Let x(t) be a solution of (A1) with the given initial conditions. Then, xju(t) is continuous on u, for j = 1,… , 4.

Proof : Let ℎ(t) =Mx(t). Then, 0 ≤ ℎ(t) ≤ n1 + n2. The solution of ẋ1u = −ruℎ(t)x1u given by:

x1u(t) = (1 − I0) exp
⎛

⎜

⎜

⎝

−ru

t

∫
0

ℎ(s)ds
⎞

⎟

⎟

⎠

depends continuously on u, t. A similar argument shows that x2u is continuous on u, t. Then, observe that the third equation of
(A1) can be written as:

ẋ3u = b(u, t) − �1x3u,
where b(u, t) = rux1u ⋅Mx is continuous on u and bounded by uMr(n1+n2)(1−I0). The solution of this differential equation is:

x3u(t) = x3u(0)e−�1t +

t

∫
0

e�1(�−t)b(u, �)dt,

which is again continuous on u, t. A similar argument shows that x4u is continuous on u, t. □
We then proceed to the proof of the proposition. Consider a saturated version of (A1):

ẋ1u = −rusat1(x1u) ⋅ sat2(Mx)
ẋ2u = −rusat1(x2u) ⋅ sat2(Mx)
ẋ3u = rusat1(x1u) ⋅ sat2(Mx) − �1x3u
ẋ4u = rusat1(x2u) ⋅ sat2(Mx) − �2x4u
ẋ5 =Mx

, (A2)

where sat1(z) = max{min{z, 1}, 0} and sat2(z) = max{min{z, n1 + n2}, 0}. Due to Lemma 3, any solution of (A1), with the
given initial conditions, is also a solution of the modified system. Denote this system in compact form as ẋ = f̃ (x). It is not
difficult to see that f̃ ∶ X → X is Lipschitz with constant:

L = 2ruM (n1 + n2) + �1 + �2.

Thus, Theorem 7.3 of Brezis (2010)54 implies that there exists a unique solution within the space C([0, T ], X) of continuous
functions with values in X. Lemma 4, along with the compactness of [um, uM ] show that there is no solution of (A1) not
belonging to C([0, T ], X). □
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Remark 8. Note that f̃ is uniformly Lipschitz. The constant is uniform in �1, �2, for positive measures of total mass n1, n2.

B PROOF OF LEMMA 1

We then proceed to the proof Lemma 1 and the computation of a formula for the directional derivative of the variance. To this
end, we first consider the sensitivity of the solution of (1) with respect to the deviation "��j .
We first compute the directional derivative of f�1,�2(x) in the direction ��. The value of f�1,�2(x) depends on �j through the

quantity If (t). This quantity can be written as:

If (t) = T�jIj⋅(t) +T�−jI−j⋅(t),

where Ij⋅(t) ∶ [um, uM ]→ ℝ with u → Iju(t) andT� ∈ (C([um, uM ],ℝ))⋆ with:

T�Ij⋅(t) = ∫ Iju′(t)u′ ⋅ �(du′). (B3)

The directional derivative of f�1,�2(x) in the direction ��j is:

D��j [f�1,�2(x)] =

[−ruSjuT��jIj⋅, − ruS(−j)uT��jIj⋅, ruSjuT��jIj⋅, ruS(−j)uT��jIj⋅, T��jIj⋅]
T .

Observe that, due to the form ofT��j in (B3), there is a bounded linear operatorB�1,�2(t) ∶ Y → X such that:

D��j [f�1,�2(x(t))] =B�1,�2(t)��j .

The linearized version of (1), around the trajectories (S1u, S2u, I1u, I2u), is given by:

ẋ′1u = −(ruI
f )x′1u − ruS1u(T�1x

′
3⋅ +T�2x

′
4⋅) − ruS1uT��jIj⋅

ẋ′2u = −(ruI
f )x′2u − ruS2u(T�1x

′
3⋅ +T�2x

′
4⋅) − ruS2uT��jIj⋅

ẋ′3u = (ruI
f )x′1u + ruS1u(T�1x

′
3⋅ +T�2x

′
4⋅) − �1x

′
3u + ruS1uT��jIj⋅

ẋ′4u = (ruI
f )x′2u + ruS2u(T�1x

′
3⋅ +T�2x

′
4⋅) − �2x

′
4u + ruS2uT��jIj⋅

ẋ′5 = T�1x
′
3u +T�2x

′
4u +T��jIj⋅

, (B4)

where If = If�1,�2 as in (2). Thus, (B4) is a LTV system in the form:

ẋ′ = A�1,�2(t)x
′ +B�1,�2(t)��j . (B5)

Lemma 5. Denote by ��1,�2(t) the solution of (1). Then, the directional derivatives x′lu = D��j�
lu
�1,�2

(t), for l = 1,… , 4 and
x′5 = D��j�

5
�1,�2

(t) satisfy (B5), with zero initial conditions.

Proof: Consider the function: f̄ ∶ Y ×X → X with:

f̄ (�̄, x) = f�̄,�−j (x)

and the set D = X0 × {� ∈ Y ∶ ‖�‖ = nj}
The function f̄ (�̄, x) is continuously Fréchet differentiable with respect to x. Its derivative is the operator A�1,�2(t) given in

(B4)–(B5), which is continuous and bounded in D. The directional derivative:

D��j [f̄ (�̄, x)] =B�1,�2(t)��j ,

is also continuous in x and bounded in D. Furthermore, X0 is positively invariant. Thus, Theorem 1 of Banks et al. (2006)55
applies and the proof is complete. □
Therefore, F is continuous in �j and Jj(u′, �j , �−j) is continuous in �j , uniformly in u′. This proves (8).

Lemma 6. There is a continuous function f var
j,F ,�1,�2

(u) such that the directional derivative of F (�1, �2) on the ��j direction is
given by:

D��jF (�1, �2) = rx
′
5(T ) = ∫ f var

j,F ,�1,�2
(u′)��j(du′).
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Proof: Observe that B�1,�2(t) ∶ Y → X can be written as a composition of two linear operators B1
�1,�2

(t) ∶ Y → ℝ and
B2
�1,�2

(t) ∶ ℝ → X with: B1
�1,�2

(��) = T��jIj⋅ and

B2
�1,�2

(l) =
[

−rux1ul −rux2ul rux1ul rux2ul l
]T .

The solution of the LTV system (B5) with zero initial conditions is written in the form (e.g. paragraph 1.4 of Deim-
ling(2006)56):

x′(T ) =

T

∫
0

Ψ(T , t)B�1,�2(t)��jdt

where Ψ(t, s) ∶ X → X is the state transition operator.
Denote by C ∶ X → ℝ the operator picking the last component i.e., C(x′) = x′5. Then, x

′
5(T ) can be written as:

x′5(T ) =

T

∫
0

[CΨ(T , t)B2
�1,�2

(t)]B1
�1,�2

(t)��jdt.

Note that  t = CΨ(T , t)B2
�1,�2

is a linear function  t ∶ ℝ → ℝ. Write this function as  t(l) = '(t) ⋅ l. Thus:

x′5(T ) =

T

∫
0

'(t)∫ uxj+2,u(t)��j(du)dt = ∫

⎡

⎢

⎢

⎣

u

T

∫
0

'(t)xj+2,u(t)dt
⎤

⎥

⎥

⎦

��j(du)

Define:

f var
j,F ,�1,�2

(u) = ru

T

∫
0

'(t)xj+2,u(t)dt

Observe that, since xj+2,u(t) is continuous with respect to u, the function f var
j,F ,�1,�2

(u) is also continuous in u. Thus:

D��jF (�1, �2) = rx
′
5(T ) = ∫ f var

j,F ,�1,�2
(u)��j(du),

and the proof is complete □
The directional derivative of ūj is given by:

D��j ūj = ∫ u′��j(du′)∕nj .

The directional derivative of the cost of a player of type j′ who uses an action u is given by:

D��jJj′(u, �j , �−j) = Gj′(1 − I0)ue
−uFD��jF − sj′juD��j ūj

= ∫ f var
j,Jj′ ,�1,�2

(u′, u)��j(du′), (B6)

where:
f var
j,Jj′ ,�1,�2

(u′, u) = Gj′(1 − I0)ue−uFf var
j,F ,�1,�2

(u′) − sj′juu′∕nj ,

is a continuous function of u′, u. The directional derivative of the mean cost of the players of type j (the same with the type of
the deviating players) is given by:

D��j J̄j = lim"→0

[

1
"nj

[

∫ Jj(u, �j + "��j , �−j)(�j + "��j)(du) − ∫ Jj(u, �j , �−j)�j(du)
]]

= ∫ D��jJj(u, �j , �−j)�̄j(du) + lim"→0

[

1
nj ∫

Jj(u, �j + "��j , �−j)��j(du)
]

= ∫ D��jJj(u, �j , �−j)�̄j(du) +
1
nj ∫

Jj(u, �j , �−j)��j(du).



I. Kordonis, A.-R. Lagos, G.P. Papavassilopoulos 15

Substituting (B6) into the last equation and using Fubini’s theorem, we get:

D��j J̄j = ∫

[

1
nj
Jj(u, �j , �−j) + ∫ f var

Jj ,�1,�2
(u′, u)�̄j(du)

]

��j(du′)

= ∫ f var
j,J̄j ,�1,�2

(u′)��j(du′) (B7)

Similarly:

D��j J̄−j = ∫

[

∫ f var
j,J−j ,�1,�2

(u′, u)�̄−j(du)
]

��j(du′) = ∫ f var
j,J̄−j ,�1,�2

(u′)��j(du′)

Combining the last two equations we compute the variation of the mean cost:

D��j J̄ = (n1D��j J̄1 + n2D��j J̄2)∕(n1 + n2) = ∫ f var
j,J̄ ,�1,�2

(u′)��j(du′).

We then proceed to the computation of the directional derivative of the variance in two steps. The first part is:

D��j

[

∫ (Jj(u, �j , �−j) − J̄ )2�j(du)
]

= lim
"→0

1
"

[

∫ (Jj(u, �j + "��j , �−j) − J̄ (�j + "��j , �−j))2(�j + "��j)(du)−

− ∫ (Jj(u, �j , �−j) − J̄ (�j , �−j))2�j(du)
]

= ∫ (Jj(u, �j , �−j) − J̄ )2��j(du) + 2∫ (Jj(u, �j , �−j) − J̄ (�j , �−j))∫ [f var
j,Jj ,�1,�2

(u′, u) − f var
j,J̄ ,�1,�2

(u′)]��j(du′)�j(du)

= ∫ f var
j,Vj ,�1,�2

(u′)��j(du′).

In the second equality the interchange of the integral with the limit is possible, because the convergence lim"→0[Jj(u, �j +
"��j , �−j) − Jj(u, �j , �−j)]∕" is uniform in u. In the last equality we use again Fubini’s theorem. Note that f var

j,Vj ,�1,�2
(u′) is

continuous in u′.
Similarly:

D��j

[

∫ (J−j(u, �j , �−j) − J̄ )2�j(du)
]

=

= 2∫ (J−j(u, �j , �−j) − J̄ (�j , �−j))∫ [f var
j,J−j ,�1,�2

(u′, u) − f var
j,J̄ ,�1,�2

(u′)]��j(du′)�j(du′)

= ∫ f var
j,V−j ,�1,�2

(u′)��j(du′)

Therefore, the directional derivative of the variance is written as:

D��jV (�j , �−j) = ∫ f var
j,V ,�1,�2

(u′)��j(du′),

for a continuous function f var
j,V ,�1,�2

(u′).

C PROOF OF PROPOSITION 3

Let us drop the dependence on j. Inequalities (10), recalling that �̄′ is a probability measure, can be written as:

∫ f̄K(u′)�̄′(du′) < 0,

∫ f̄L(u′)�̄′(du′) < 0,

where f̄K(u′) = Jj(u′, �1, �2) − ∫ Jj(u′, �1, �2)�̄(du′), f̄L(u′) = f var
j,Vj ,�1,�2

(u′) − ∫ f var
j,Vj ,�1,�2

(u′)�̄(du′).
Using the (uniform) continuity of f̄K , f̄K we have that for a set of u1,… , uN and c1,… , cN > 0 it holds:

c1f̄K(u1) +⋯ + cN f̄K(uN ) < 0,

c1f̄L(u1) +⋯ + cN f̄L(uN ) < 0,
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If there is a point uk where f̄K(uk) < 0 and f̄L(uk) ≤ 0 or f̄K(uk) ≤ 0 and f̄L(uk) < 0 we are done. Thus, assume that there
is no such point. Excluding from the summation the terms where both f̄K(uk) and f̄L(uk) are non-negative the inequalities still
hold true. Thus, assume that for any point uk either f̄K(uk) < 0 < f̄L(uk) or f̄L(uk) < 0 < f̄K(uk). Reordering the terms, the
inequalities can be written as:

x1 +⋯ + xn − y1 −⋯ − ym < 0
−z1 −⋯ − zn +w1 +⋯ +wm < 0

(C8)

where

xi = cki f̄K(uki), ki ∈ {k ∶ ckf̄K(uk) > 0},
yi = |cki f̄K(uki)|, ki ∈ {k ∶ ckf̄K(uk) < 0},
wi = cki f̄L(uki), ki ∈ {k ∶ ckf̄L(uk) > 0},
zi = |cki f̄L(uki)|, ki ∈ {k ∶ ckf̄L(uk) < 0}.

Let i0 be such that yi0∕wi0 ≥ yi∕wi for all i and denote � = yi0∕wi0 .
Claim 1: There is a j0 such that �zj0 > xj0 . Indeed if this in not true, and �zj ≤ xj for all j, then multiplying the second
relationship with � we get:

−�z1 −⋯ − �zn + �w1 +⋯ + �wm ≥ −x1 −⋯ − xn + y1 +⋯ + ym > 0.

This completes the proof of the claim.
Claim 2: We may choose a � ∈ [0, 1] such that:

�xj0 − (1 − �)yi0 < 0
−�zj0 + (1 − �)wi0 < 0

Indeed for � in the interval: yi0
�zj0 + yi0

< � <
yi0

xj0 + yi0
,

both inequalities are valid. The interval is not empty, since �zj0 > xj0 .
Choose such a �. Then, using the form of x, y, z, w, there are k1, k2 such that:

�ck1 f̄K(uk1) + (1 − �)ck2 f̄K(uk2) < 0,

�ck1 f̄L(uk1) + (1 − �)ck2 f̄K(uk2) < 0,
Thus, taking

�̄′′ =
�ck1

�ck1 + (1 − �)ck2
duk1

+
(1 − �)ck2

�ck1 + (1 − �)ck2
duk2

,

wheredu is the Dirac measure at u, and the proof is complete.

D COMPUTATION OF GNE

Consider a discrete set Ud ⊂ [um, uM ] and a grid Ud ×Ud of pairs (u1, u2). We first find the set of pairs (u1, u2) on the grid, such
that V (n1du1 , n2du2) = C approximately holds. The dynamics becomes:

Ṡ1u1 = −ru1I
fS1u1 , Ṡ2u2 = −ru2I

fS2u2 ,

İ1u1 = ru1I
fS1u1 − �1I1u1 , İ2u2 = ru2I

fS2u2 − �2I2u2
ż = If ,

, (D9)

where If (t) = u1n1I1u1(t) + u2n2I2u2(t).
For every point on the grid that V (n1du1 , n2du2) = C approximately holds, we compute the function gKj,�1,�2(u), for u ∈ U , as:

gKj,�1,�2(u) = Jj(u,du1 ,du2) − Jj(uj ,du1 ,du2).

For j = 1, 2 and a grid of values of u ∈ U , we solve the pair of differential equations:

Ṡ1u = −ruIfS1u, İ1u = ruIfS1u − �jI1u
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where If is the quantity computed during the solution of (D9).
Consider the variation ��j = du−duj The linearized system around the solution of (D9) consists of 5 differential equations:

ẋ′1u1 = −(ru1I
f )x′1u1 − ru1S1u1(n1u1x

′
3u1
+ n2u2x′4u2) − ru1S1u1(Iju − Ijuj )

ẋ′2u2 = −(ruI
f )x′2u2 − ru2S2u2(n1u1x

′
3u1
+ n2u2x′4u2) − ru2S2u2(Iju − Ijuj )

ẋ′3u1 = (ru1I
f )x′1u1 + ru1S1u1(n1u1x

′
3u1
+ n2u2x′4u2) − �1x

′
3u1 + ru1S1u1(Iju − Ijuj )

ẋ′4u2 = (ru2I
f )x′2u2 + ru2S2u2(n1u1x

′
3u1
+ n2u2x′4u2) − �2x

′
4u2 + ru2S2u2(Iju − Ijuj )

ẋ′5 = n1u1x
′
3u1
+ n2u2x′4u2 + Iju − Ijuj

,

with zero initial conditions. It holds D��jF (�1, �2) = x′5(T ), and D��j ūj = (u − uj)∕nj . The directional derivative
D��jJj′(u, �j , �−j) is given in (B6) and the directional derivativeD��j J̄j by:

D��j J̄j = D��jJj(uj , �j , �−j) +
1
nj
(Jj(u, �j , �−j) − Jj(uj , �j , �−j)).

FurthermoreD��j J̄−j = D��jJ−j(u−j , �j , �−j) andD��j J̄ = (n1D��j J̄1 + n2D��j J̄2)∕(n1 + n2). The directional derivative of the
variance can be written as:

D��jV = (D��jV1 +D��jV2)∕(n1 + n2),
where

D��jV1 = D��j

[

∫ (Jj(u′, �j , �−j) − J̄ )2�j(du′)
]

= (Jj(u, �j , �−j) − J̄ )2 − (Jj(uj , �j , �−j) − J̄ )2+

+ 2nj(Jj(uj , �j , �−j) − J̄ (�j , �−j))
[

D��jJj(uj , �j , �−j) −D��j J̄
]

,

and:

D��jV2 = D��j

[

∫ (J−j(u′, �j , �−j) − J̄ )2�−j(du′)
]

= 2n−j(J−j(u−j , �j , �−j) − J̄ (�j , �−j))
[

D��jJ−j(u−j , �j , �−j) −D��j J̄
]

We then compute the values of gLj,�1,�2(u), for u ∈ U and use Corollary 4 to check if u1, u2 is a GNE.

References

1. Ferguson N, Laydon D, Nedjati Gilani G, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce
COVID19 mortality and healthcare demand. 2020.

2. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of the royal society
of london. Series A, Containing papers of a mathematical and physical character 1927; 115(772): 700–721.

3. Ross R. An application of the theory of probabilities to the study of a priori pathometry. Proceedings of the Royal Society
of London. Series A, Containing papers of a mathematical and physical character 1916; 92(638): 204–230.

4. Allen LJ, Brauer F, Driessche V. dP, Wu J. Mathematical epidemiology. 1945. Springer . 2008.

5. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex networks. Reviews of
modern physics 2015; 87(3): 925.

6. Zhang H, Zhang J, Zhou C, Small M, Wang B. Hub nodes inhibit the outbreak of epidemic under voluntary vaccination.
New Journal of Physics 2010; 12(2): 023015.

7. Chang SL, Piraveenan M, Prokopenko M. Impact of network assortativity on epidemic and vaccination behaviour. arXiv
preprint arXiv:2001.01852 2020.



18 I. Kordonis, A.-R. Lagos, G.P. Papavassilopoulos

8. Bauch CT, Earn DJ. Vaccination and the theory of games. Proceedings of the National Academy of Sciences 2004; 101(36):
13391–13394.

9. Bauch CT, Galvani AP, Earn DJ. Group interest versus self-interest in smallpox vaccination policy. Proceedings of the
National Academy of Sciences 2003; 100(18): 10564–10567.

10. Reluga TC, Bauch CT, Galvani AP. Evolving public perceptions and stability in vaccine uptake.Mathematical biosciences
2006; 204(2): 185–198.

11. Reluga TC, Galvani AP. A general approach for population gameswith application to vaccination.Mathematical biosciences
2011; 230(2): 67–78.

12. Zhang H, Fu F, Zhang W, Wang B. Rational behavior is a ‘double-edged sword’when considering voluntary vaccination.
Physica A: Statistical Mechanics and its Applications 2012; 391(20): 4807–4815.

13. Fine PEM, Clarkson JA. Individual versus public priorities in the determination of optimal vaccination policies. American
journal of epidemiology 1986; 124(6): 1012–1020.

14. Kremer M. Integrating behavioral choice into epidemiological models of AIDS. The Quarterly Journal of Economics 1996;
111(2): 549–573.

15. Vardavas R, Breban R, Blower S. Can influenza epidemics be prevented by voluntary vaccination?. PLoS computational
biology 2007; 3(5).

16. Del Valle S, Hethcote H, Hyman JM, Castillo-Chavez C. Effects of behavioral changes in a smallpox attack model.
Mathematical biosciences 2005; 195(2): 228–251.

17. Chen FH. Rational behavioral response and the transmission of STDs. Theoretical population biology 2004; 66(4): 307–316.

18. Funk S, Salathé M, Jansen VA. Modelling the influence of human behaviour on the spread of infectious diseases: a review.
Journal of the Royal Society Interface 2010; 7(50): 1247–1256.

19. Funk S, Gilad E, Watkins C, Jansen VA. The spread of awareness and its impact on epidemic outbreaks. Proceedings of the
National Academy of Sciences 2009; 106(16): 6872–6877.

20. Chen FH. Modeling the effect of information quality on risk behavior change and the transmission of infectious diseases.
Mathematical biosciences 2009; 217(2): 125–133.

21. d’Onofrio A,Manfredi P. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence
of infectious diseases. Journal of Theoretical Biology 2009; 256(3): 473–478.

22. Theodorakopoulos G, Le Boudec JY, Baras JS. Selfish response to epidemic propagation. IEEE Transactions on Automatic
Control 2012; 58(2): 363–376.

23. Trajanovski S, Hayel Y, Altman E, Wang H, Van Mieghem P. Decentralized protection strategies against SIS epidemics in
networks. IEEE Transactions on Control of Network Systems 2015; 2(4): 406–419.

24. Hota AR, Sundaram S. Game-theoretic vaccination against networked SIS epidemics and impacts of human decision-
making. IEEE Transactions on Control of Network Systems 2019; 6(4): 1461–1472.

25. Huang Y, Zhu Q. A differential game approach to decentralized virus-resistant weight adaptation policy over complex
networks. IEEE Transactions on Control of Network Systems 2019; 7(2): 944–955.

26. Toxvaerd F. Equilibrium social distancing. Cambridge working papers in Economics 2020.

27. Karlsson CJ, Rowlett J. Decisions and disease: a mechanism for the evolution of cooperation. Scientific Reports 2020; 10(1):
1–9.

28. Amaral MA, Oliveira dMM, Javarone MA. An epidemiological model with voluntary quarantine strategies governed by
evolutionary game dynamics. arXiv preprint arXiv:2008.05979 2020.



I. Kordonis, A.-R. Lagos, G.P. Papavassilopoulos 19

29. Ye M, Zino L, Rizzo A, Cao M. Modelling epidemic dynamics under collective decision making. arXiv preprint
arXiv:2008.01971 2020.

30. Kabir KA, Tanimoto J. Evolutionary game theory modelling to represent the behavioural dynamics of economic shutdowns
and shield immunity in the COVID-19 pandemic. Royal Society open science 2021; 7(9): 201095.

31. Lagos AR, Kordonis I, Papavassilopoulos G. Games of Social Distancing during an Epidemic: Local vs Statistical
Information. arXiv preprint arXiv:2007.05185 2020.

32. Boven vM, Klinkenberg D, Pen I, Weissing FJ, Heesterbeek H. Self-interest versus group-interest in antiviral control. PLoS
One 2008; 3(2).

33. Hardin G. The tragedy of the commons. Science 1968; 162: 1243–1248.

34. Alfaro L, Faia E, Lamersdorf N, Saidi F. Social interactions in pandemics: fear, altruism, and reciprocity. tech. rep., National
Bureau of Economic Research; 2020.

35. N. Brown PN, Collins B, Hill C, Barboza G, Hines L. Individual Altruism Cannot Overcome Congestion Effects in a Global
Pandemic Game. arXiv preprint arXiv:2103.14538 2020.

36. Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of
infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. European journal
of epidemiology 2020: 1–16.

37. Hoffmann C, Wolf E. Older age groups and country-specific case fatality rates of COVID-19 in Europe, USA and Canada.
Infection 2021; 49(1): 111–116.

38. Fehr E, Schmidt KM. A theory of fairness, competition, and cooperation. The quarterly journal of economics 1999; 114(3):
817–868.

39. Fowler JH, Johnson T, Smirnov O. Egalitarian motive and altruistic punishment. Nature 2005; 433(7021): E1–E1.

40. Robson M, Asaria M, Cookson R, Tsuchiya A, Ali S. Eliciting the level of health inequality aversion in England. Health
economics 2017; 26(10): 1328–1334.

41. Lunn PD, Timmons S, Belton CA, Barjaková M, Julienne H, Lavin C. Motivating social distancing during the Covid-19
pandemic: An online experiment. Social Science & Medicine 2020; 265: 113478.

42. Reluga TC. Game theory of social distancing in response to an epidemic. PLoS computational biology 2010; 6(5).

43. Poletti P, Ajelli M, Merler S. Risk perception and effectiveness of uncoordinated behavioral responses in an emerging
epidemic. Mathematical Biosciences 2012; 238(2): 80–89.

44. Poletti P, Caprile B, Ajelli M, Pugliese A, Merler S. Spontaneous behavioural changes in response to epidemics. Journal
of theoretical biology 2009; 260(1): 31–40.

45. Facchinei F, Kanzow C. Generalised Nash Equilibrium Problems. Ann. Oper. Res. 2010; 175: 177-211.

46. Facchinei F, Pang JS. Finite-dimensional variational inequalities and complementarity problems. Springer Science &
Business Media . 2007.

47. Paccagnan D, Gentile B, Parise F, Kamgarpour M, Lygeros J. Nash and wardrop equilibria in aggregative games with
coupling constraints. IEEE Transactions on Automatic Control 2018; 64(4): 1373–1388.

48. Jacquot P, Wan C. Nonsmooth aggregative games with coupling constraints and infinitely many classes of players. arXiv
preprint arXiv:1806.06230 2018.

49. Jacquot P, Wan C. Nonatomic Aggregative Games with Infinitely Many Types. arXiv preprint arXiv:1906.01986 2019.



20 I. Kordonis, A.-R. Lagos, G.P. Papavassilopoulos

50. Singh R, Wiszniewska-Matyszkiel A, others . Linear quadratic game of exploitation of common renewable resources with
inherent constraints. Topological Methods in Nonlinear Analysis 2018; 51(1): 23–54.

51. Mas-Colell A. On a theorem of Schmeidler. Journal of Mathematical Economics 1984; 13(3): 201–206.

52. Shim E, Chapman GB, Townsend JP, Galvani AP. The influence of altruism on influenza vaccination decisions. Journal of
The Royal Society Interface 2012; 9(74): 2234–2243.

53. Kordonis I. A Model for Partial Kantian Cooperation. In: Springer. 2020 (pp. 317–346).

54. Brezis H. Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media .
2010.

55. Banks HT, Nguyen HK. Sensitivity of dynamical systems to Banach space parameters. Journal of mathematical analysis
and applications 2006; 323(1): 146–161.

56. Deimling K. Ordinary differential equations in Banach spaces. 596. Springer . 2006.


	Nash Social Distancing Games with Equity Constraints: How Inequality Aversion Affects the Spread of Epidemics
	Abstract
	1 Introduction
	2 Mathematical Model
	3 Nash Equilibrium
	4 The Variance Constrained Game
	5 Computational Study
	5.1 Computing Unconstrained Nash Equilibria
	5.2 Computing Constrained Equilibria

	6 Conclusion
	Appendix
	A Proof of Proposition 1
	B Proof of Lemma 1
	C Proof of Proposition 3
	D Computation of GNE
	References


