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Abstract. This paper is concerned with the backward stochastic differential equations whose
generator is a weighted fractional Brownian field: Y; = £ + ftTYSW(ds,BS) — ftT ZsdBg, 0 <
t < T, where W is a (d + 1)-parameter weighted fractional Brownian field of Hurst parameter
H = (Hy,Hy,--- ,Hy), which provide probabilistic interpretations (Feynman-Kac formulas) for
certain linear stochastic partial differential equations with colored space-time noise. Conditions on
the Hurst parameter H and on the decay rate of the weight are given to ensure the existence and
uniqueness of the solution pair. Moreover, the explicit expression for both components Y and Z of
the solution pair are given.
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1 Introduction and main result

Let R? be the d-dimensional Euclidean space. Let W = (W (t,z),t > 0,z € R?) be a weighted
fractional Brownian field. Namely, W is a mean-zero Gaussian random field with the following

covariance structure:

d
E W (t,2)W (s,9)] = Ry (s, t)p(x)p(y) [ [ Rer, (@i i) (1.1)
i=1
where and throughout the paper, we assume H; € (1/2,1) for all i = 0,1,--- ,d, and Ry (§,n) =
[P + n*H — |¢ = n|?7] /2, for all &,n € R and p(z) is a continuous function from R? to R
satisfying some properties which will be specified later. We consider the following (one dimensional)
linear backward stochastic differential equation (BSDE for short) with fractional noise generator:

T T
Yi— ¢+ / Y.W (ds, Bs) — / Z.dB,, te[0,1], (12)
t t

where B is a d-dimensional standard Brownian motion. Our interest in this equation is motivated
from the following three aspects.
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(a)

The first aspect is the nonlinear Feynman-Kac formula (in our special case) which relates the
following two stochastic differential equations: the first one is the backward doubly stochastic
differential equation (BDSDE for short)

T
YIT o= @(XpT) + [ flr XY ZET)dr
S T r r r

T

t
+ / g(r, XH% Y12 ZUOW (dr, X507) — / ZY%dB,

where X" is the solution to the following stochastic differential equation
dXb® = b(XE%)ds + o(XE®)dB,, se[t,T], X" =zecR?.
The second one is the stochastic partial differential equation (SPDE for short)

—du(t,x) = [Lu(t,z) + f(t,z,u(t,z), Vu(t,z)o(z))] dt
+g(t,z,u(t, ), Vu(t, z)o(x))W(dt,z), (t,z)€[0,T] x R, (1.3)
w(T,z) = ¢(z),

where £ is the generator associated with the Markov process X5*. There are many articles
along this direction since the work of [I0]. Most scholars studied the BDSDEs under various
conditions, whose solution can be used as the nonlinear Feynman—Kac formula to represent
the solution to the correlated semi-linear SPDEs driven by white noise. We refer to [T,
Theorem 5.1] and the references therein for the exact relation between the solutions of these
two equations. It is worth noting that, BDSDEs and probabilistic interpretation (nonlinear
Feynman-KAC formula) of SPDEs driven only by temporal white noise have been studied
extensively in several directions, see e.g. [], [5], [6] and [§]. Although Feynman-Kac formulas
of (linear or non-linear) SPDE with spatial-temporal noise is obtained in [I], [I2]and [16] for
example, there are limited works to characterize the solution of SPDEs by using the solution
of BSDEs. To the best of our knowledge only [7] and [9] dealt with such problems.

If b =0and o0 =1, then £ = %A = %Ele ;—; is the half of the Laplacian. If further
g(r,x,u,p) = u, then the above SPDE ([L3)) becomes

—du(t,x) = %Audt +u(t,x)W(dt,x), uw(T,z) = ¢(x). (1.4)

This equation has enjoyed a great attention in recent decade (when the terminal condition
is replaced by the initial condition and the noise W (dt, z) is replaced by more singular one
#%W(dt, x)), often in the name of parabolic Anderson model. We refer to a survey work
[T1] and references therein for further study. Let us only point out that many works do not
require that the noise is white in time in their study: For the SPDE in the above case (b),

the associated BDSDEs becomes
T t
Yo = ¢(By") + / YW (dr, By — / Zy*dB; (1.5)
S S

where BY" = 2 + (B, — B,) is a d-dimensional Brownian motion starting at time ¢ from the
point x. This equation is of the form ([2]). Its probabilistic interpretation, the explicit form
and some sharp properties of solution will be the main focus of this paper.
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To illustrate our main results of finding the explicit representation of the solution pair using
partial Malliavin derivatives we shall follow the idea of [I]. Define (we shall justify it in the next
section)

ol = exp [/:W(dr, Br)] (1.6)

and denote by F; = 0(B,,0 < s < t;W(t,x),t > 0,2 € R?) the o-algebra generated by Brownian
motion up to time instant ¢ > 0 and W (¢, z) for all ¢t and # € R%. Then we have formally the
following candidate for the solution pair

Y = (ab)"'E[¢al | Fi] = E [5 exp ([ W (dr, B,)) |ft} by [13, Equation (2.11)] ,

(1.7)
Z, = DPY, = DPE [g exp ([T W (dr, B,)) \ﬂ] by [13, Equation (2.23)] |

where DP is the Malliavin gradient with respect to the Brownian motion B (see next section for
the definition and properties), and EZ is the expectation with respect to B (explained in detail in
the proof of Proposition 21]). Here is the main result of this paper.

Theorem 1.1. Suppose Z?Zl(ZHZ- —6i) <2and € € ]D)}B’,q is measurable w.r.t. o-field ]::,5, for

2
SH 1’ where H = min{Hy, ..., Hy}. Then we have the following results:

q >

(1) The processes {(Yi, Z¢),0 < t < T} formally defined by (7)) are well-defined and square
integrable, and they are the solution pair to the BSDE (I2)). Moreover, Z has the following
alternative expression:

T
Z, =E|el{ WarBpBe | / el WrBDY, (v, W) (ds, By)
t

ft} . (1.8)

(2) If for all ¢ > 2, E|DB¢ — DB¢|a < C|t — s|%9/2 for some r € (0,2), then for any a > 1 and
for any € > 0, we have the following Hélder continuity for Y and Z:

E[Y, - Y|® < Colt — 8|2, E|Z — Z|" < Ce|t — s|CHo I8y 5 ¢ € [0,T). (1.9)

(3) If a pair (Y,Z) satisfies (2) for some a,r > 0, then (Y, Z) is represented by (LT) and hence
the BSDEs ([L2)) has a unique solution.

(4) If (Y, Z) € S2(0,T; R) x MZ(0, T;R?) is the solution pair of BSDEs (L2) so that Y, DPY are
DY2 then the solution also has the explicit expression (L) and hence the BSDEs (L2) has a
unique solution.

Remark 1.2. Since we assume Hy > 1/2, we see 2Hy+ H —1 > 0. We can only obtain the Holder
continuity of Z in the mean square sense. We encounter the difficulty to deal with high moments
for Z.

Now let us point out the novelty compared to two relevant works. In the work [9], the
generator W is a fractional Brownian motion (the generator W does not depend on x). In the work
[7] W can depend on the space x, but it is assumed that that it is a backward martingale with to
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time variable ¢ so that the backward martingale technology can be used. In our above theorem,
neither the assumption that W is independent of z, nor the assumption that W is a backward
martingale is assumed. In particular, we can obtain the explicit solution (for linear equation) and
use this expression to obtain the some kind sharp Holder continuity for the solution pair which, to
our best knowledge, are new.

Here is the organization of this work. In next section, we shall show that the quantity
fst W (dr, B,) in (7)) is well-defined and is exponentially integrable so that Y; is well-defined. In
Section Bl we obtain some properties of the process Y; and show that it is Malliavin differentiable
and Z; is well-defined. We show that the pair (Y, Z;) is the solution to the linear BSDE (L2]). A
great difficulty is that we need to show that the process Y is in SE(0,T;R) and Z is in ME(0,T; R)
due to the singularity of the noise W in the generator. We overcome this difficulty by Talagrand
theorem B:2] Borell theorem B3], and a new Lemma[B.7l In Section dl we use the explicit expression
to obtain Holder continuity of the solution pair. The Holder continuity of the process Z; is always
a difficult problem (see e.g. [I3], I8 [19]) however plays a critical role in numerical method. In
Section [ we discuss the relation between the linear BSDE (L3]) and the stochastic PDE ([L4]).

2 Exponential integrability of [ W (ds, B,)

Let T > 0 be a fixed time horizon and let (2, F, P) be a complete probability space, on which the
expectation is denoted by E. Let {B;,0 <t < T} be a d-dimensional standard Brownian motion
defined on (Q,F,P). Suppose W = {W(t,z),t > 0, = € R?} is a weighted fractional Brownian
space-time field whose covariance is given by ([LI]). The stochastic integral with respect to W is
well-defined in many references, and we refer to [I1] and references therein for more details. We
shall use this concept freely. For example, we denote W (¢) = fR+><Rd o(t,x)W (dt, z)dz for any
¢ € D = D(R; x R R), where D is the set of all smooth functions with compact support from
R, x R? to R. We denote the spatial covariance as

d
q(ajvy) = p(x)p(y) HRHz(xz,y,), V= (1'1,’ o 7‘7:d)T7 Y= (yla T 7yd)T € Rd7 (2’1)
=1

where p : R? — R is a continuous function of power decay, and we will specify the conditions that
p are satisfied later. It is known that

d
E[W(h)W(g)] = /}R2 i h(t,z)g(s,y)|s — t\2H°_2p(x)p(y) HRHi (x4, y;)dsdtdzdy (2.2)
X i=1

for all h,g € D. 1t is clear that <h, g>H is a scalar product on D. We denote H the Hilbert space
by completing D with respect to this scalar product.
Let F' be a cylindrical random variable of the form

F=f(W("),...,W(¢m),

where ¢! € D,i=1,--- ,nand f € CI?O(R"), i.e., f and all its partial derivatives have polynomial
growth. The set of all such cylindrical random variables is denoted by P. If F' € P has the above



form, then D' F is the H-valued random variable defined by
pVE=S w6, w66
]:1 81/"7 9 9 ]

The operator D" is closable from L?(2) into L%(Q,H), namely D" is the Malliavin derivative
operator with respect to the fractional Brownian motion W. We define the Sobolev space ]DII/{}) as
the closure of P under the following norm :

1/p
IDY Fllp = (E|F[” +E[DY F|l5) "
Let us denote by ¢ the adjoint of the derivative operator given by duality formula
E(6(u)F) =E ((DV F,u)y) for any F € DII/I’/?,

where §(u) is also called the Skorohod integral of u. We refer to [3] and [2] for a detailed account
on the Malliavin calculus. For any random variable F' € ]D)‘l,[’,2 and ¢ € H, we will often use the
following formula in the text:

FW(¢) =6(F¢) + (D" F, ¢)y

Accordingly, we can define DP the Malliavin derivative operator with respect to the standard
Brownian motion B and ]D)}E;p the Sobolev space in the same way. We say a random field F € D'P
if F'is an element both in ]D)}E;p and ]DII/{}? .

The stochastic integral studied earlier is useful in this paper but is not sufficient for our
purpose. We also need to introduce a new kind of nonlinear stochastic integral similar to that of
Kunita ([20]). To this end, we introduce the approximation of W as follows.

,77 3 B / /Rd 9077 pa B - y)W(dr,y)dy, (2-3)

where ¢, and p. are the approximation of the Dirac delta functions:
1
#n(t) = 3 Lo (0 p=(@) = @me) ™2, forall g, & >0,

Proposition 2.1. Let p : R — R be a continuous function of power decay, i.e., p satisfying
0 <px) < C’H?Zl(l + |2:|) 7%, where B; € (0,2) and 2H; > B; for alli=1,2,...d and suppose

d
= (2H; - ;) < 2. (2.4)
1=1
Then the stochastic integral Vo' = ft (s, Bs)ds converges in L*(2) to a limit denoted by

v, = /TW(ds,BS). (2.5)

Moreover, conditioning on FB, Vi is a mean-zero Gaussian random variable with variance

T T
W(m:/ / s — &[22, HRH B!, B!)dsds'. (2.6)
t t



Proof. Suppose ¢,&',nm,m € (0,1). Throughout the paper denote by E" the expectation with
respect to the random field W which considers other random elements as fixed “constant”. For
example, if F(W, B) is a functional of W and B, then EW (F(W, B)) = E(F (W, B)|F?). By Fubini’s
theorem and (2.3)), we have

T T
W / Wm(s,Bs)ds/ Wi (s, Bs)ds
t t

T pT s s’
=am, / / / / / (s — 1)y (s — " )pe(Bs — y)per (By — /')
t t t Jt R2d

d
=" P2 p(y)p(y') [ | Re (v vi)dydy/ drdr’ dsds’
i=1

T T ps ps
:aHO/ / / / gpn(s—r)gpn/(s'—r')|r—r'|2H°_2 (2.7)
t Je Jr Jt
d .
EXvX’{p(\/EX+B) (Vex'+Bo) [] [RHZ VeX; + B, \/EXHBQ)]}drdT’dst'
=1

=1(e, &, n,n),

where X = (Xy,---,Xy), X" = (X{,---,X];) are independent standard random variables, which
are also independent of F5.

To study the limit of above I(g,&’,n,7') as €,¢’, 7,7 — 0, we observe that, firstly [I, Lemma
A 3] directly yields

/ / (s — 1)y (s’ —1")|r — P2 drdy! < |5 — §'|2H072, (2.8)
Moreover,
1 d
(.9 = 50@)p@) TT [l + i — s — P
i=1
d
< Co()p) T wil?™ + [yi )
=1
d
< CTTO A+ 1wl @+ i+ [ya) ™7 (1 + [yi]) 7 (2.9)
i=1
d
< OTTC+ Il P51 iP5,
i=1
where and throughout this paper C is a generic constant depending only on H;, i =1,...,d.

This can be used to show that

d
L(e,e,s,8") = BN\ p(VEX + Bo)p(VE' X' + By) [ | R, (VEX: + Bi,vEX] + BL)]  (2.10)
=1



is a pathwise bounded continuous function of €,¢’, s, s in the concerned domain (almost surely with
respect to B). Thus, we have

E(I(e, e n,n")

= QHy / / / / (s =)oy (s —1")|r — ' PHo72 L (e,€', 5, 8)drdr dsds’

<aHO/ / — o [2Ho= 2HE (1 + |BY)Hi=Fi(1 4 |BL ) i=Pidsds’
=1

(2.11)

< OT -t < 0.
Moreover, for s # s, as €,¢’, 1,7 tend to zero we have

. / /
_ 5,17%1%01(6, enn')

= lim / / / / (s =)oy (s —1)r —1' Ho=2r (¢, ¢ s, 8 )drdr'dsds’
ea’,nn—>0
:aHo/ / |S—S/|2H0 2 HRH B!, BZ Ydsds' .
e Ji

Therefore, if we put € = &/, n = 1/ and use the estimates ([29) and (2I0), and with the help of
Lebesgue’s convergence theorem we have

/N2 ' )
E(Vf’"—Vf’") =E (V") - 2 (W’"W’")JrE(W’”) —0, as e,e',n,7 — 0.

As a consequence we have V7" is a Cauchy sequence in L?(f2). It has then a limit denoted by
V4, proving the proposition. O

Proposition 2.2. Let p: R? — R be a continuous function satisfying Z4). Then, for all X € R,
T
E [exp ()\/ W (dr, Br))] < 00.
t
Proof. From (2.6]) and the first inequality in (29]), it follows

I:=E :IEW exp (A /tT W (dr, Br))}

=E _exp ((ozHO/\2)/2 /tT /tT ‘s —r
<& |exp (C<aHOA2>/2/tT/tT\s—r\2HO ’ ﬁ(w +\Bf,|2Hi)dsdr>] |

=1

d
2Ho—2p( By)p(By) H Ry, (B!, B;;)dsdr>] (2.12)

Note that

d
< 2d BZ 2H1
<20 ] s |B

d

s T (13 + 1)

=1




2dH (14 sup [BY)*™ 7 <27(1+ sup Z!B’ i 2Hi=fi (2.13)

i1 selt,T| se[t,T) =
d
= Cy(1+ sup |BL)*
( se[tT};

We have

I <E

o (C/tT /tT‘S_r‘2HO_2deT' (1+SEEE~]Z§;|B2|)Q)] )

which is finite thanks to Fernique’s theorem (e.g. [3l Theorem 4.14]) since o < 2, completing the
proof of the proposition. O

3 Linear backward stochastic differential equation

Now we consider the backward stochastic differential equation (L2). In order to study the regularity
of (Y, Z), we approximate it by (2:3]) and obtain the following approximation of ([L.2l):

T T
YtEJZ _ £+ }/se’nWE,n(S7 Bs)ds — / Z:’nst, t e [O,T] . (31)
t t

Due to the regularity of the approximated noise V.Vw7 and Proposition 222 we can explicitly express
its solution as follows (see e.g. [I] and references therein):

Yo = [5 exp (ft en(r, By) r) ‘]:t] by [13l Equation (2.11)] , (3.2)
3.2
77" = DPE [€exp (J] Wey(r, B,)dr) | 7| by [13, Equation (223)] ,
where DP = (DBl, e ,DBd)T is the Malliavin gradient operator with respect to the Brownian

motion B, so that Z;"" is a d-dimensional vector.
We have proved that ftT W (ds, B) is exponentially integrable in Proposition Then we
can define

Y, = E[g exp (/tT W (dr, B,)) | }}]. (3.3)

Lemma 3.1. Assume & € LY(Q) for some q > 2. Then for any t € [0,T], we have Y"" converges
to Yy in LP(Q) for all p € [1,q).

Proof. Denote V" = ft =n(s,Bs)ds. Let ¢'p = qand 1/p'+1/¢ = 1. From [B.2), 33)), Jensen’s
inequality and Holder’s inequality it follows
P
e wf] = efefe(o0 07 —ew ) 7]
E [l Joxp (V) — exp (%)) 64

, M 1/p
Iy [E]exo (V) — exp ()"

IN

N
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Similar to Proposition we can prove

sup E‘ exp(AVf’")‘ <o, VAER.
e,me(0,1]

Proposition 20 implies that V> — V; in probability. Thus, we prove the proposition by Lebesgue’s
convergence theorem. O

Let us denote
SE(0,T;R) := {1,!) = (¢s)s€[0ﬂ 1) is a real-valued F-adapted
continuous process; E [ sup ]ws\p] < oo}.

0<s<T

To prove Y = {Y;,t € [0,7]} € SR(0,T;R) for all p € [1,q), we shall first recall Talagrand’s
majorizing measure theorem.

Lemma 3.2. (Majorizing Measure Theorem, see e.g. [[18, Theorem 2.4.2]]. Let T be a given set

1
and let { Xy, t € T'} be a centred Gaussian process indexed by T'. Denote by d(t, s) = (E | Xt — Xs|2) ’
the associated natural metric on T'. Then

E [sup Xt} = (T, d) := inf sup Z 22 diam (Ap(t)) ,
teT A tel 13

where "<” indicates the asymptotic notation. Note that the infinimum is taken over all increasing
sequence A = {An,n =1,2,---} of partitions of T such that #A, < 22" (#A denotes the number
of elements in the set A ), A, (t) denotes the unique element of A,, that contains t, and diam (A (t))
is the diameter (with respect to the natural distance d(-,-) ) of A,(t).

We shall apply the above majorizing measure theorem to V; = ft (ds, Bs) as a random
variable of W (which is Gaussian under the conditional law knowing B). The assocuated natural
metric (which is a random variable of B) is (assuming t > s)

d(t,5) = \/(EW|V, - Vif2) = \/ (EW| / W BR)
/ / ag,lu — v|2Ho=2p HRHl , BY)dudv 89

< Cyv(B)|t — s|Ho,

where Cy is a constant depending only H;, i =1,...,d and
V(B) := Cy(1+ sup Z |Bi|)". (3.6)
uel0,T] ;=

Next, we choose the admissible sequences (A,,) as uniform partition of [0, 7] such that #(A,,) < 22"

22"
[O,T] = U |;] . 2—2”*1117 (] 4 1) . 2—2n71T> .
=0
9



Thus, we can deduce that, by Lemma 3.2]

EW[ sup V;] < C sup ZZ"/2 diam (A, (t)) (3.7)
te[0,T te[0,7 n>0

where A, (t) is the element of uniform partition .4,, that contains (), i.e.,
Ant) = [ 27T, (G +1) 272 T)

such that j- 272" T <t< (j+1)-272"'T.
Since (Ay,) is a uniform partition, and by using the bound B3] we see the diameter of A, () with
respect to d(t, s) can be estimated by

diam (A, (1)) < Cgv(B)2~ 02" pHo,
Inserting this result into ([B.7]), we have

EW[ sup V;] <C sup 22"/2 diam (A, (t))
te[0,T te[0,T n>0

< CHV(B)THO Z 2n/22—H02n—1 < CHV(B)THO.
n>0

We also need the following two results to show Y € SR(0, T;R).

Lemma 3.3. (Borell-TIS inequality, see e.g. [1j, Theorem 2.1]). Let {X;,t € T} be a centered
separable Gaussian process on some topological index set T with almost surely bounded sample paths.
Then E (sup;er X¢) < 00, and for all A > 0,

)\2
PW{ sup Xy — E <SupXt>‘ > )\} < 2exp (——2> ,
teT teT 207

where 2 := sup,ep E (Xf) .

Lemma 3.4. If the process {X;,t € T} is symmetric, then we have

E [sup\Xt@ 2F [supXt} + 1nf E[\Xtoﬂ (3.9)
teT teT

Now we can state and prove one of the main results of this work.

Theorem 3.5. Suppose & € L1(Q2) for some q > 2 and suppose that [2.4) holds. Then we have
Y= converges to Y = {Y;,t € [0,T]} € SE(0,T;R) for all p € [1,q).

Proof. We just need to verify Y; € SH(0,T;R). Let ¢'p = ¢ and 1/p' +1/¢' = 1. By B2) and

Jessen’s inequality and Doob’s martingale inequality we see

E‘ sup Yt‘p = E‘ sup EB §exp / W (ds, Bs) !.FB”
t€[0,7] t€[0,T]

IN

E
te[0,T] telo,T

sup [Iél”exp{p sup |Vt|}|ﬁ ”
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p 1 1/p’
/d Eex / V.
< - ‘
(p_ |> Hg”‘] p(pp ts[u,p]| t|)

Denote by [|[V[|7 := sup;c(o 1) Vs From Lemma B3 and Lemma B4l it follows for all A > 0,

)\2
PV {||VIr —EY|V]r| = A} < 2exp <—2—2> , (3.10)
or

The above term a% is defined and bounded by

d d
ot = sup EV[[ViP’] < Crp, sup p(Bu) [[ 1B < Crpa(l+ sup > [BY)",  (3.11)
t€[0,T] u€el(0,T] =1 se[t,T) 7

by (2:6) and [2I3). From BI0) we have for any m > 0,
EY [ exp (mlIVli7) | = E [exp {m(IV Iz = EV[[VI12])}] - exp {mE™ |V |]}

< mexp (mEY(VIirl} [~ P (1VIz ~EV Vi) > ) da

A2

< 9mexp {mEW[HVHT]}/ e e 2 ) (3.12)
0
m2
< 2V2mm - o7 exp {mC’HTHOV(B) + 70%} .

22
Since for all z > 0, we have - e2 < 2¢*. Therefore, taking account (3.6) and (FII) it yields
that, there is a constant Cr g, ¢ which only depends on T, m,d, H;, 1 =0,1,...,d such that:

d
EY [exp (mHVHT)] < 4V2mexp {CT,H,m,d(l + :EPT] Z ‘BZDQ} :
u€l0,T] ;=

By the Fernique’s theorem we obtain E [EW [ exp (m[|V[|7)]] < oo, which implies E| Supyefo,7] Yt " <
oo. That is to say Y = {Y;,t € [0,T]} € SF(0,T;R) for all p € [1,¢). The convergence of Y= to
Y ={Y;,t €[0,T]} € S{(0,T;R) for all p € [1,¢) is routine and a little bit more complicated. But
the essential estimates are the same as above. O

Now we want to study the second component of the solution pair of [B.I), i.e. Z%7 =
{Z5", s € [0,T]} defined by ([B2). Introduce the space

T
M%(O,T;Rd) = {qﬁ = (¢s)sefo,1] * R%valued F-progressively measurable and E[/ ‘¢5‘2d8] < oo}.
0
Theorem 3.6. Denote
H = max{Hy, Hy,--- ,Hy} and H=min{Hy, Hy,---,Hy}.

Suppose Ef:1(2Hi — Bi) < 2, terminal condition £ € ]D}éq is measurable w.r.t. o-field FZ, for
ST Then Z&" € M2(0,T;RY) and Z&" has a limit Z = {Zs, s € [0,T]} in M2(0,T;R%).

This limit can be written as

q >

T
Z; = DPY,=DPRE [gexp(/ W (dr, B,)) | Fi (3.13)
t
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T
— E[dfw(dﬂBT)DthjL / et WrBry (v, W) (ds, Bs)|Fi| - (3.14)
t

Proof. Presumably we may apply DZ to Y, given by [B2). But it is inconvenient to deal with
the Malliavin derivative of the conditional expectation. We find that it is more convenient to find
DBY>" by working on (B.1)) directly. In fact applying D to (B yields

T
DByF" = DB¢+ /t W, (s, Bs)DBYE"ds

T T
+/ YN We (s, Bs) o 5 (1) ds —/ DB zemdB,.
t t

Denote Y; = DEY", Z; = DEZS" (we fix 7) and we can rewrite the above equation as
{dfft = —Wey(t, B)Yidt — Y "N oWey(t, By) I g g (r)dt + Z4dBy, r<t<T
Yr = DB¢.
This is another linear backward stochastic differential equation, whose solution has the following
explicit form.
o
R
T Sy .
+ / ele Wen(mBrdryeng v/ (s, Bs)ds\}}} . t>r
T
By [1, Equation (2.11)] and [I, Equation (2.23)] we have

Ztﬁﬂl — DtB}/t&n — E |:eftT Ws,n(TyBT)dTDtBé'

T ) .
+/ Cft Ws,n(T7BT)dT}/;€’nva€7ﬂ(s7 Bs)d8|ft:|
t

1
= Zl?7€777 + Zt 76777'

Assuming DZ¢ is nice, we Zl? “" can be treated in exactly the same way as Ys'".
We shall focus our effort on showing Z,**" € MZ(0,T;R?). Substituting Y;”" given by (B2)
into the above expression, we have

T R T
Zlen E[ /t eftSWg,vz(ﬂBT)dTE[gexp( / We,n(u,Bu)du)\fs]vmwgm(s,Bs)ds\ft

= /tTE[ﬁ VmWE,n(S, Bs) exp (/tT We,n(u,Bu)du) ‘]:t}ds.

Since it involves the term VmWE,n(S, By), this term is much more difficult to deal with. We shall
fully explore the normality of the Gaussian field W. Moreover, there is a conditional expectation
in the expression of Zt1 " which seems to stop us carrying out any meaningful computations. We
shall get around this difficulty by introducing two independent standard Brownian motions B!, B?
which are identical copies of the Brownian motion B. Denote .7-";31’]32 =o{B.,B? 0<s,r<

12



t,Wi(t,x), t > 0,z € ]Rd} by the o-algebra generated by sBm B!, B?2 up to time instant ¢t and
W (t,x) for all t > 0 and x € R%.

Note that, EV only denotes the expectation with respect to W, which consider other random
variables as ”"fixed constant”. Then, we have

2
EW [Ztlﬁ’n] = EW/ / B2)(V W (81, By )) V. We (52, 2)
exp(/ [W,SH (u, By) + W (u, Bg)} du)‘}"B 32] - Bd31d32
¢ _B2—
_ / / NE(B) I (51, 55) | FE BQ] o dsidsa (3.15)

where 17 (s1, s9) is defined by

T
I (s1, 83) : ZEW{Vxlwan(sl,B;l)vxiWE,n(SQ,Bgz)exp < / [Wg,n(u, BY) + We y(u, Bg)] du> }
=1 t
(3.16)

Denote
7y = Ve Wey(s1,BL); 257 = Va, Wey(s2, B,

Yen — We,r](u7 Bu) + WEJ](“’ BS):| du .

Then
I (s1, s2) ZEW{ 75075 exp (Ya’")}

As random variables of W (namely for fixed B!, B?), Zf? , Z;? , Y& are jointly Gaussians, we shall
use the following lemma to compute the above expectations.

Lemma 3.7. Assume that X1, Xo,Y are jointly mean zero Gaussians. Then
E[X1 X5 exp(Y)] = (E(X1Y) + E(XoY) + E(X1 X)) exp [ E(Yﬂ (3.17)
Proof. For any constants s,t € R we have

1
Eexp(Y + sX; +tX5) = exp {§E(Y +sX; + tX2)2}

{E(W) + s*E(X?) 4 t*E(X3) + 2sE(X1Y) + 2tE(X2Y) + 23tE(X1X2)} / 2] .

= exp
Thus
0? 1
E[X1Xoexp(Y)] = m‘s:t 0 €XP E(Y + X1 +tXo)?
1
= (E(X1Y) +E(XpY) + E(X1X3)) exp §E(Y2)
This is (3.17). O
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Applying the above Lemma [B7] to evaluate I57(s1, s9) yields

15,77 / / [ )E(B?) <§d: (Ai’?—i—Ae’"—kAs’n))

=1

A )
exp ( > !fBl BQ] ds1dssy
2 Bl'=B2=B
d
- Z Z Imt ’
7j=11i=1
where
AT =EY(Z7] 25T, AST = EY(Z7Y ), 5.18)
A7 =EW(Z57Yem), AT =BV (V) '
and -,
A )
j Zt : / / [ B2)AE’" exp < > !]:tBl’Bz] dsidss . (3.19)
h B'=B2=pB

Let us consider I i+ in details. The other terms can be treated in similar way. First, let us compute
ATT =EW [vxim,n(sl, BV, We (52, 332)]

s1 s9
=g, / / on(s1 —7r1)ey(s2 —ra)|rs — 7’1\2H0_2d7‘1d7‘2
o Jo

) (3.20)

Vape(BY, — w)Va,pe(B2, — 2)p(w)p(2) | | Rar, (wi, zi)dwdz
R2d i=1

=J1(s1,52)J5 (51, 52) ,

where J{'(s1,s2) and J5(s1,s2) are defined as follows.

( 51 [s2
J?(Sl, 32) = / / 9017(81 — 7"1)9077(32 — 7‘2)|r2 — T’1|2H0_2d7‘1d7‘2 s
0 0
d

Fi(srvsa) = [ Vupe(Bl = w)Vapel B = Dp(wip(e) [ R (i, 2)dwds
R i=1

- Vwipa(B;l - w)vzzpf(Bgz - Z)q(w, Z)dwdz )
\ R2d

where we recall that ¢(z,y) is the spatial covariance of noise given by ([2.1I)). Notice that J5(s1, s2)
is independent of €. It is elementary to see that

J{(s1,82) == / / @n(s1 — 1)y (s2 — 12)|ra — 11|20 2dr1dry — |59 — 512072 ase,n — 0.
o Jo
(3.21)
Moreover, for any p < 1/(2 — 2Hy) and 1/p + 1/q = 1, by Hoélder’s inequality we have

s1 S92
T (s, s)|P < / / Ir — 11| CH0=2P e dry
0 0

S1 S92 p/q
X </ / on(s1—7r1)ey(s2 — rg)drldr2> .
o Jo
14



The above second factor is less than or equal to 1. Making substitutions sy — 71 — {7 and
S9 — 19 — rhn we have

1,1
sup ’J?(Sh s9)P < sup / / |sy — s1+n(r] — ré)]@H‘)_m”drgdré < 0. (3.22)
ne(0,1] ne0,1)Jo Jo

Now we consider J5. Integration by parts yields

J5(s1,52) = / pE(B;1 — w)pg(Bf2 — 2)Vu, V2, q(w, z)dwdz
RZd
d
= [ peBh = (B = ) T Rt 3,2 [V 0] V() o (120
J#i

+ Vo, p(w)p(2) (Hi|zi|2Hi_lsign(zi) — Hilw; — z) i~ tsign(w; — zl))
o+ p(w) V(=) (Hilur P sign (1) — Hilwog — 227 sign(uw; — 21))
+ p(2)p(w) o, |w; — zilei_ﬂ dw;dz;
= J1(s1,82) + J5a(s1, 82) ,
where
d . .
J51(s1,89) : = EXX [H Ry, (BY) +eX;,BY) +eXj)
i#i
x <vmp<B§1 +eX)Va,p(BS, +eX' )Ry, (By)' + X, B + X))
1 2 / |2, 12H;—1 2, /
+ Vap(BL +eX)p(B2 +eX') (HZ|BS2 +eX!2Hi lsign(BY + eX))  (3.23)
— H;|BY +eX; — B3 — eX[|*" 'sign(BL' + eX; — B — EX{))
+ p(By, +eX)Va,p/ (B2, +X') <HZ]B;12 + X2 sign(B2 + e X))
— H;|BY' + eX; — B2 — eX] | 'sign(BY + eX; — B2 — ng>)>]
and
d . .
J5a(s1,82) = g, ENX [H Ry, (By +eX;, BZ 4 X))
j#i
x p(By, +eX)p(B, +eX')|By) +eXi — B —eX] IQHZ“Q}

1

with X = (Xq,---,Xg), X" = (X{,---, X)) being independent standard Gaussian random vari-
ables, which are also independent of B!, B%. From the definition, we can consider J51(s1,82) as a
random variable of B! and B?. From the above expression it is easy to see that

sup [J5y(s1,82)| < C (1+ [BL|™ +|BZ|™) , (3.24)

e€(0,1

for some positive constants C' and m.
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As concerns for J5,(s1,s2), we can find two constants p, ¢ satisfying p < 1/(2 — 2Hp) and
1/p 4 1/q = 1 such that by Holder’s inequality,

1/q
d
J5(s1,82) < o, S BEXN AT (R, (BY + eX;, BE + X)) pU(BY, + e X)p? (B, + X'
J#
’ : . 1/
x BN [|BY 42X - BY - exj|@i-2r)| L
. . 1.4 2.4 (2Hi_2)17
By the Lemma A.1 of [I] the above second expectation is bounded by ‘le’ — Bs) . Thus,
by the assumption on p and by the definition of Ry we have
sup |J55(s1,82)] < C (1 + ]B;llm + \BEQ m) . ‘leii — ng‘@Hi_z)p . (3.25)
€€(0,1]
Moreover, from [B.20), B2I) and [B.23]) we have
. o W : 1 : 2
451 = i B [93o1BE) oo 2)
d
—aylsr — 102 ] Rur, (BY, B2 [Veip(BL,) Ve p(B2,) R, (B, BE)
J#i

+ Vo, p(BL,)p(BE,) (2Hi B2 P sign(BY) — 2H,| B — B P sign (Bl - BY))
(B )V, p(B2,) (2Hi\ B P sign(BE) + 2H| BY — BY/ P sign(BY - BY))
+ anp(BL)p(BE,)|BY — BEPH2

Using the spatial covariance ¢(z,y), we can write

lim Ai’j = gy |so — s1)?H0 2 (3.26)

n,e—0

—Fq\T .
al‘laqu( 7y) =B} y=DB2,

Analogously to (B.20), (3:22)), B24) and (B23), we can show the boundedness of other A%"’s
uniformly w.r.t. €,7. So we can apply the dominated convergence theorem below. In particular,

we have
T [0 0 1
lim AS7 = ay 51— w72 | —g(z,y +—q(z,y du .
7,e—0 2, 0 t | | _al‘i ( ’ ) x:B§1 ,y=DB2 Ox; ( ’ ) :(::Bgl =Bl |
T [0 0 |
lim AY7 = ag 59 — u|*Ho=2 q(x + —q(x du .
77,8—)0 3’Z 0 t ’ ‘ _axi ( ’ y) :B:Bgl 7y:B,ﬁ 8:1;2 ( ’ y) :E:B‘zl 7y:B,,lL_

As for A7, we have by definition of Y
T [T
AT = EW [ / / (Wen(u, BL) + We(u, B) ) (W0, BL) + Wm(v,Bg))dudv}
t Ji
= A

i=1
16



where

T pT

A" =EY [/t /t Wep(u, B;)Wg,n(v,Bi)dudv] ;
T T )

A =2EW u /t Wen(u, B?L)Wam(v,B}})dudv] ,

T T
Ay =EY [ /t /t We,n<u,Bi)We,n(v,Bf,)dudv].

Similar to the proof of Proposition 2] we can show that AZ?, 1 = 1,2,3 can be bounded by a
bound analogous to (ZI0). Thus, we have

lim A5 = / / il — o252 [q(BL, BY) + 2(BL, B2) + q(B2, BY)] dudv.  (3.27)

n,e—0

Combining the above with ([B.22)-([B.27) enables us to apply the dominated convergence theorem
to obtain

e 2 2Ho—2(7. . 1 p2
dim 1t =, [ BB - P00 (B B2) .
2
Y(t,T,B" BQ)\}'B P i g pdsidsa,
where 0; ;q(z,y) = amaay q(z,y) and
= exp{/ / ap,|u — v|2H° 2[ ( )+2q(B;,B§) —I—q(Bg,Bg)]dudv}. (3.29)

In a similar way we can show the existence of the limits of I;’?t, I§’Z b and we can further identity

these limits.

T

Thus, we can easily deduce that E / ‘Zf ’"|2dt exists. In order to take the limit, it would
0

be sufficient to show that, along a subsequence, Z%" converges to some Z € M?F(O,T;Rd). But

T
this is guaranteed by the fact that E/ |Zf’"‘2dt is bounded w.r.t. €,7 > 0. Indeed, as before
0

we can also show that Z%" is a Cauchy sequence in M%(O,T;Rd), whose limit is denoted by
Z ={Z;,t€[0,T]}. We can also write Z as (3.13]) and ([B.I4]) (whose justification is given through
our above approximation). O

After we have found the limit Y (Theorem [B.5]) and the limit Z (Theorem B.6]), we want to
show that they are the solution to (L2]). To this end we shall take limit in equation ([BI). Since we
have shown the convergence of Y, and Z;" as in Theorems and Theorems [3.6] we only need
to discuss the limit of ftT Yf’"We,n(s, Bg)ds. Before discussing this limit we give the definition of a
(Stratonovich) stochastic integral with respect to fg F,W (ds, Bs).

Definition 3.8. Let be given a random field F = {F;,t > 0} such that fOT |Fslds < oo almost
surely, for all T > 0. Then the Stratonovich integral ftT F,W (ds, Bs) is defined as the following
limit in probability if it exists (compared this with Proposition [21] when Fs =1):

T
/ FWe (s, By)ds.
¢
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Theorem 3.9. Suppose Z?Zl(ZHZ- —Bi) < 2 and § € LYQ) for ¢ >
min{Hy, ..., Hg}. Then for any t € [0,T], we have

2
H —
57 1 where H

T T
/ Y "We (s, Bs)ds — / Y W (ds, Bs)
t t

in L? sense, as e,n | 0.

Proof. By B1)), Lemma [BI] and Theorem B.6] we know

T T
YW, (s, Bs)ds = YT — €+ / Z>"d By
t
T
converges in L? sense to the random field 4; :=Y; — £ + / ZsdBg as ,n tend to zero. Hence, if
t
T .
B = / (Yf’77 — Ys)Wa,n(S, Bs)ds — 0 (3.30)
t

T T
in L?(€2), then we have / Y We (s, Bs)ds = / YW (s, Bs)ds — By will converge to A in
t t

L?(€2). Previously, we have proved A is well-defined, and then Y, will be Stratonovich integrable.
Thus, by Definition B8, we directly have

T T
/ YW (ds, Bs) = lim Y We (s, Bs)ds = A,
t &m0 J¢

i.e., the equation (L.2)) is satisfied.
In the remaining part of the proof, we shall show ([B30). First we note that, recalling the
definition of W, , in ([Z3) we have

/ W (s, By) ds—/ /R/ (s — 1)po(By — ) W (dr, y)dyds (3.31)
Recall F- W (¢) = 8(F) + (D F, ¢)3. Then, we obtaion
(VE7 = Yo Weans, ) = (Vi = Y2) [ [ (s = pBe = )Wy
-/ /R (YET = Ya)pnls — pe(B, — ) Wor,9)dy
D

YT = Yo), 0n(s = Ipe(Bs = )y

Hence, by stochastic Fubini’s Theorem, B;" can be written as

BEJZ /Rd / / YE’TI (pn(s - T)pE(B y)ds W(6T7 y)dy

/ <DW Yo —Y), n(s — - )p=(Bs — ')>Hd3 (3.32)

— Bte7777 + Bte7777 X
18



For the term BS™! | we define

T
= [0 Yoenls - (B s,
and with the help of L? estimate for Skorokhod type stochastic integral, it yields:

E[(B™)] < E[[|¢="|[7,] + EIDY ¢ |[300]. (3.33)

The above first term can be estimated as follows:

B[l = B[ | (=% 07 v

WAL

)

(3.34)
X (ipn(s = Ipe(Bs = ), pq(r = Ipe(Br = ) dsdr .

Recalling the definition in (2:2)), and combining with the proof in Proposition 2] (refer to (2.8)
and (2.10)) we deduce that

(pn(s —- = )sipn(r = Wpe(Br =)y

—om [ /RMS—W“ V(B — y)pe(B, )

3.35
X | — v]Ho %(y)p(z)HRnyi,zi)dudvdydz (3.35)
=1
<C|r—sl*M0=2p HRHZ (B, By).

Substituting this into ([B.34]) and with the help of (2.9]) we have

E[||¢*7|[5,] SCE[/ (VE = Y,) (V2 = Y, |r — 5|02 HRHl B, B) dsdr}
(72

)

<CE| sup (vs"-Y,)"]
s€[0,T

d
; : 271/2
X E[(/ |7‘ _ S|2HO_2 H [(1 + |B;|)2Hi_6i(1 + |B;|)2Hi_ﬁid8d7") ] ‘
[t 772 i=1
(3.36)
Thanks to Theorem B.5 Proposition and the dominated convergence theorem, we see that

E[qua"H?_l] converges to zero as €, 7 tend to zero.

Secondly, we have to deal with E[HDW&WH?{ ®?—L]’ the second term in ([3.33]). By Malliavin
calculus and (B31]) we have

DWY;EJ] - E[E DY exp (/T Wa,n(s, Bs)ds) ‘.7-}]
r . (3.37)
=E[¢ exp (/t We (s, Bs)ds) /t @n(s — )pe(Bs — -)ds|F] .
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We denote };il’Bz = o(BL,B20 <u <t 0<wv<s;W(taz),t >0,z € RY the o-algebra
generated by B!, B? and W Recalling the definition (2.3]) we know that, for random variable W
(namely for fixed B) ft (8, Bs)ds is Gaussians. Then Proposition 2 and ([3.33]) tell us

BV (DVYE, DV Y g

T T,
—EVE|¢(B)<(B?) exp ( /t We (s, Bl)ds + /t Werp (s, B)ds)

1 B2
X /[T]2<§077(3 — )pE(Esl — ')7 QOTI’ (T — )pal(Bg — ')>HdeT‘ftB ,B :|
t

Bl=B2=B
T . T .
< amE s<Bl>s<B2>EW[exp( [ et [, 5| (3.38)
t
x/ s — r[210=2p(B1)p(B2) HR (BY B?’i)dsdr‘.EBl’BQ
[t17° Bl=B2=B
d
:aHOE[aB ¢(B?) exp Z / / — 2o <Bz>p<B,’?>HRHng*%Bf*')dsdr)
jk=1 i=1
x/ |s — r|*10=2p(BL)p(B2) HR (BLi Bf’i)dsdr‘}}Bl’BQ]
(&7 Bl=B2=B

We have to prove the integrability of (3.38]). Put a, b be two positive constants such that 1/a+1/b =
1 and 2a < ¢. With the help of Proposition and Holder’s inequality,

E[i(B (B?) exp Z / / — p[*Ho= 2HR (B2, BE) p(BI) p(BF)dsdr)

d

<[ s PRt (8) [] R (B B2 dsir
[t,7]2 i=1

d 1/2b
<||£H2< o (Y A r|2H°-2HRHsz’aBf’%(Bzvi)p(vai>dsdr)]) (339)

7,k=1 i=1

d ' ‘ o 1/2b
X (EH /[tT]2 ’S — 7"2H0_2,0(B51)/)(BE) HRHi(BsLZaBg’Z)deT‘ ]
’ i=1

<0o0.

That is, we get E <DWYtE’77,DWYfI’"/>H is integrable. Hence, in a similar idea as that shown in
([3:38]), we obtain Y, also converges to Y; in ]D)‘l,[’,2 as €, 1} 0. Then putting e =¢', n =1/,

sup sup E|D"VY"|3, < oo.
e,m€(0,1] t€[0,T)

Hence, combining ([3.35]), (3:37) and (3:38]) we have

E|([IDY ¢
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— Wiyen _ Wiyen _
=E[[ (PO 0V e v,

X <(1077(S - ')pa(Bs - ')7 (,077(7’ - ')pa(Br - )>Hd8d7’}

—amB[ [ (DY - Y, DY (Y - Vo (3.40)
[t.T]
d . .
x |s =20 =20(B,)p(B,) [ | R, (BL, Bl)dsdr|
i=1

<CE[ [ (DV(E - ¥, DY (YT - Vo
[t,T]?

d
x |5 —r[2H0 2 TT [(1+ | B (1 + | B~ dsdr .
i=1
In a similar method as in the proof of Theorem there are two positive constants p’,¢', 1/p’ +

1/q' = 1 such that 1 < p’ <

and 2¢' < ¢ for which we can deduce

2 —2H,
E[ID" 6]
W W , 1/q
< &n _ emn _ q
< (/UT]ZE[](D (Y2 — V), DV (Y — V)] }dsdr> 1)
4 . , , 1/’
([ Bl ot T 1B 25 Jasar )
[t.T]> i=1
where
d . . /
[ B[l =i [T B2 1 (B2 dsar
[t,T)2 i1 (3.42)
<C |s — r|CHo=2F dsdr < oo,

[t.T]?
Now we only need to study the integrability of the first term on the right side of (3:41]). Pick two
constants a,b > 1, 1/a+1/b = 1 such that a is sufficiently small to satisfy 2aq’ < q. With the help
of proof in Proposition and ([3:39), we have that

1/¢

d
< HSH?(/@T} [ exp (bq' Z/ / v|2H°_2p(Bi)p(Bf)HRHi(Bi”,Bf’Z)dudv)
) S i=1
1/b /¢
/ / _ yH0=2(Bl), (BE)HR (BY, B2 dudv) ‘fBl Bz} BQZB] dsdr>
i=1
< . (3.43)

It yields that E[HDW&’"H%Q@H} is integrable. Since we have deduced that Y= — Y in ]D)‘l,[’,2 ,

e,n — 0, therefore E[HDW&’"HHQ@H} converges to zero as ¢, 1 tend to zero. Thus, we get BS™!
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defined in ([332)) converges to zero in L? as ¢, 1 tend to zero.
Now we are going to bound By M2 We have
T
D"y, = DVE [{exp(/ W (dr, Br))|fs]

= D"E[€exp /R ) — Y)W (dr,y)dy)|Fs] (3.44)

— Ef¢exp ( / W (dr, B,))8(B. — )| %]
Thus, by (337) and ([3.44]) we have

T
B = / (DY (YET — Y2), pp(s — Jpe(Bs — ), ds

= [ Bl ([ gt B

T
3.45
< [ alr = pelBe = onls = el B = )| s (3.45)
T
—/ fexp / W (dr, B;) )<(5 ), on(s — )pe(Bs — -)>H\.7-"s]ds
t
=B — got,
Note that,
<5(B- =) n(s — )pe(Bs — )>7.[
d
= [ e e (s (B o)) ] R (0
S, =1
d . .
= [ s pe(Ba —2)p(B)o(o) [T A (3,4t
s, i=1
Thus, by Fubini’s Theorem and previous estimates, we have
T T T
|Bt€’"’3| §/ E[é exp(/ We,n(r,Br)dr)/ |s — r[*H0=2) HRH (B!, BY) dr|]:s]d8
t s s
(3.46)
and
T T
|Bf”7’4| = / E[éexp (/ W (dr, BT)) / lu — ’U|2HO_2<,0,7(8 — )
t s [s,7]2 JR?
d .
% pe(Bs = y)p(Bu)p(y) [ [ Rer,(Bi, yi)dudvdy| Fy] ds (3.47)
i=1
T T T
g/ E[¢ exp(/ W(dr,Br))/ s — v[H=2) HRH Bl Bl)dv|F,]ds
t s s
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Proposition and dominated convergence theorem guarantee the integrability of these two ex-
pressions. Now, with the help of dominated convergence theorem we get By 3 and By A converge
in L? to

T T T
/ E[¢ exp(/ W(dr,B,,))/ s — r[20=2) HRHl Bi, Bl)dr|Fs)ds
t S s

7777

as &, 1 tend to zero which also mean that By’ converges in L? to zero as €, 7 tend to zero. [

4 Holder continuity of Y and Z

Let the Assumption (2) in Theorem [[.T] be satisfied. Now we can prove the Holder continuity of
Y and Z.

Proof. First we prove the Holder continuity of Y. Recall ¢ > where H = min{H,, ..., Hy}.

2
2H — 1’
Thus for all a € (1, ¢q), we have

E|Y; - Yi|* =E ‘E[&exp(%)‘}}] —E[¢exp(Va)|A]["

< 2<E‘E[£exp(Vt)|]:t] — EP [¢exp(V4) | F] ‘a
+E\E[& exp(Vs) | 7] — E[€ exp(Vi)| F] > Y
= 2(11 + I2>-

For I, one can use Jensen’s inequality and the exponential integrability of Proposition to get,

for two positive constants p/, ¢’ satisfying 1/p’ +1/¢' =1 and aq’ < ¢,
I = E[E[¢ exp(Vi)| 7] — E[¢ exp(V3)| 7] |

<E|E [¢(|Vi — Vil exp (max{V;, V.})) | 73] | (4.2)

|

e

< | (8 [¢ exolq max(i,vi| =] )" (EIIV - vip|7))’

e

<o(ev-v)”

By (23], (26) and the equivalence between the L?-norm and the LP-norm for a Gaussian random
variable, it yields that

o)< frea ) s fer)

1
/ 2 -
< / / oyl — v 2) HRHl (B!, B! dudv) '/ >p (4.3)

/

ap.
0< //|u @H0=2m gy o // HRH By, B}))" dudv) 2")

1
7

e

Y e



< C ‘t _ S‘aH()—E 7
where ¢ is an arbitrary positive constant, n,m > 1 such that % + % = 1.

For Iy, denote by 1)y = exp (fg’ W(ds,BS)). Proposition tells us that, &Y is L9(Q)-
2

int ble f
integrable for ¢ > SH

T Moreover, Clark-Ocone formula implies that,

T
ey = EPleyr] + / f,dB,,
0

where
fr = E[DP(&4r)|FP] = E[prDP (€)|F] + E[ED) (4r)| F]. (4.4)
Thus, from the Burkholder-Davis-Gundy inequality and the fact that a > 2 we deduce that

a

Irh=E

vt (Blevr|F) - Elevr| 7))

1/2

o [ ran| < @) (6] [ 10w ) (15)

co el )"

Taking (@) into above formula yields that
E [/t |fr|2dr}a
<C (E /: |E [ DB (€)|F] \2dr>a +C <IE /: |E [¢DE (¢r)|F] |2dr> "
<C ( / 'E (DBg)* dr> " < / 'E ()2 dr> a/,,/
e ( / t E[Squ]dr> " < / B (DB ) dr> v
< Ot — sfold (( / B (EY (6r)?)” dr> " < / B (EY (DFer)?)” dr) W) |

where C' is a constant only depends on p/, ¢/, ||DB¢ H%q and ||& H%q We recall 1, and DP1p, are

=E

2
centralized Gaussian processes given B. Moreover, EW (D,{B 1/1T)2 =EY (D exp ( fg W (ds, Bs))>
can be treated in a similar way as we did in the proof of Theorem By Proposition 2] and

Theorem [3.6] we can directly obtain the boundedness of E (EW (¢T)2>p and E (EW (DfnB wT)2>p

Thus, we deduce
1/2

I < (E Ut \fr|2dr]a> <Clt—s|¥?,

1 1
Because we assume that H > 5 the Holder continuous coefficient can only be —.
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Next we have to consider the Holder continuity of Z. Recall (8I4]) for the expression of Z:

|

where we recall the definition of (23] for V; and where we denote V,V; = ft V.W(ds, By). Z' is
easy to deal with. In fact, similar to the way to treating (4.1l), (4.3)), (£5]), and by the assumption
that DB¢ € L9(Q) and E|Di& — Dy£|? < Ot — 5|%9/? for some £ > 0, we see

T T
Z; = DPY, =E [eftT WdrBrydr pBe 4+ ¢ exp ( / W (du, By,)du) / V. W (ds, B)
t t

—E["DP¢+ ¢ exp (V)W Vi| B = 20 + 22,

E|Z} - Z}|° < CJt — s
We shall focus on Z2.

E|Z - 2|’

=E (E [£exp(V)VaVi | Fi] — E [€exp(Vi) V.. Vs | F])?

< 2E (E [¢exp(V)) V. Vs | Fi] — E [€exp(Vi) V. Vs | Fi])°
+2E (E [€exp(Vi) V.V | Fi] — E [€exp(Vo) V. Vi | Fi])®

= 2(11 + I).

(4.6)

For I, with the help of Jensen’s inequality we have
I < B [[€exp(Vi)V.V; — Eexp(Va) V. V]
< 28 [|€ (exp(Vi) — exp(Va)) VaVil? + € exp(Vi) (VaVi — VaVa)
< 28 [I¢ exp(max{Vi, ;D V. Vi(Vi = V)P + 2E [|€ exp (Vo) (Vo Vi = VaVi)P?]
=211+ L1 2).

We can find two constant a,b such that 1/a+1/b=1,1<a < ﬁ and 2b < gq. Then we have

L < (E [(Vﬂ/})za} ) 1/a (E £2b (V; — VS)2b> 1/b
=C <E §2b (Ve - VS)Zb) " (4.7)
d T T a\ 1/a
(ZEB (/ / u — v[2Ho=2|pi _ pi|2H; 2HRHJ ~ Bl (Bi)p(B,{)dudv) )
i=1 t o Jt poy

< Ot — s|*Ho~=,
As for Iy 2, we deduce similarly that

Iy <E [|g|2b eXp(Qth)} v (E V.V — vmvs]%)l/a

< B [ emnp)]” ( [EW {/ / (VoW (du, B,))" (VxW(dv,Bv))Ha> .

a 1/a
E(Z/ / |u U|2HO 2|Bz B’l|2Hz 2HRH B] B] )p(BZL)d’LLdU )]

J#i

<C

(4.8)
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d t ot 1/a
< CZ </ / ”U, . U’(2H0—2)a+(H¢—l)adud,U>
i=1 S

< C|t — sHotH=1=¢

As I, the Clark-Ocone formula yields

T
€ exp(Vy)V, Vs = EB [ exp(V,)V,Vi] + /SE[DB(gexp( VLV ]dB,,. (4.9)
Thus we have
IgzIE/:E[DB(geXp( VLV r]dBrzzE/st<E[DB(5exp( V)V V)}'D2dr
2

— [ (B [ev.vn? o) |7]) a8 [ (5 [coa0ip? (7.1)

)

(4.10)

+ E/t (E [eXp(Vs)Vsz DB¢ f,}f dr

t
=: 1271 + / IQ’QdT‘ + 12’3.
s

The integrability inside the integral of I5 3 is obvious due to (£1). For I; we have

B [ (&[0 ot evavifz]) ar =k [ (& [ceowt) 2 |7]) ar

< / t (E[gb eXp(sz)]> (E(V.Va)2) " ds < CJt — s|.

2/b

Finally, we deal with I 5. We shall use the technique as in (3.15]). Notice that,
T T
DP (V,V,) = DF (/ V. W (du, Bu)l[o,u](r)> = [ ViW(du,B,).
S sVr

We have analogously to (B3]

12,2:13(1@[5(3 exp< QHo / / —|2Ho=2 Ry (BJ, BF)p (Bg),o(B,’j)dudv)
7,k=1

(4.11)
T T T 1 B2
X </ / Tr[(v§W(du,B;)) V§W(dv,33)] dudv) FB ’B] .
sVr JsVr Bl—B2—R
Using the Holder inequality, we have
Ipo = E(EH{(Bl) (B?) exp< O‘HO / o
§k=1 sVr JsVr
1/b
P (5L, BBt By |72 )] (112)
B'=B2=B
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X

1/a
BlzB2:B>

W (dv, B?) (denote the

@ 1 2
BB
T

T T
/ / Tr[ (V2W (du, BL))" V2W (dv, Bg)] dudv
sVr JsVr

E<E

<Cnby,

where

Isoq = < [

a

T

/ / W (du, B ))TV?CW(dU,Bg)} dudv
sVr JsVr

}-31,31

2 2

0
We shall consider the term that contains J = / W (du, B}L)—2
sVr JsVr al‘Z 8:172

corresponding term by J;) since the other terms can be treated in similar way. When r > s, we

Bl=B2=B >
2) a/2

B! B2
F! }

have for any a > 1,
=E (IE
<C.E <E <EW

T T ' '
<C.E E|:</ / |u _ U|2Ho—2|BL1L,z _ Bg7z|2Hi_4

Bl=R2= B>
. _ a/2
Lp(BY) H |RHj(B;»J,B§7J)|dudv> ) +C,,
-77&7' BIZBQZB

where in the above first inequality, we used the hypercontractivity for EY and in the above last

2

aiuB)8

e 2I/V(dv,B?,)

a
1 2
7B ,B]

Bl)—2
“ox2

i

W (dv, B2) FB.B

inequality, there are terms such as the derivatives with respect to 82 p and 9, p0,, Ry, which are
easy to be bounded. By using Hélder’s inequality again, the above expectation is bounded by a

Bl=B2= B)
Bl=B2= B)
) )

B'=B2=B

where X and Y are two independent standard Gaussians. The above expectation in X and Y are
bounded by (denoting Z = B+ — B2" and choosing aa’/2 < 1)

aa’ /2
EXY [/ / — o2 —rX — Vo —7Y + Z;2H0—4dudv}
27

multiple of 1/a’ power of (for any a’ > 1)

aa /2
( </ / 1)’2H0_2‘BL1L72' . Bg’i‘2Hi_4d’U,d'U>
T T . . . .
—(B|| [ [ ooy B - (5 - B2

aa’ /2

B! B2
7 ]

+ Brl’i — Bf’i\2Hi_4dudv

Bl B2
F! ]

T rT
E(EXYU / lu — o072\ Ju =X — o —7rY

' ' aa’ /2
+ Bb — BEv’\2H0—4dudv]




IN

:|aa’/2

T T
1 2 1 2
2Ho—2 —z2/2 —y2/2 2H;—4
U —v —e€ —e U—1rr—\o—ry+ 2 drdydudv
|:/r /r | | /R2 V2T V27 v v Y | 4

= [/T /TT u— o s :)(v )

aa /2

1 1

[/2 %\/—276_932/2\/—276_92/2\\/11 —re—\v—ry+ Z\2Hi_2da:dy} dudv]
R

= [/T /rT fu— o (= :)(u =

aa’ /2
1 1
[/RQ \/—2_7Te_m2/4\/—2_we_y2/4|\/u —rr— Vv —ry+ Z|2Hi_2d:ndy} dudv]

- aa’ /2
T T
1
=C / / |u — v|*o=2 EXY |Vu—7X — Vo —rY + ZPHi 2 dudv
|/ T (U - T‘)(U — 7")

- T T aa’ /2
<C / / ]u—v\2H0_2\u—7‘]—1/2\11—r\_l/z\u—r—kv—T]zHi_2dudv}
LS T T

r pT pT aa’ /2
<C / / |u—v|2H°_2|u—7‘|_1/2|v—r|_1/2|u—r|Hi_1|v—7‘|H"_1dudv]
LJ T T

< 00,

where the third last inequality follows from Lemma A.1 of [I] and the last inequality holds true
since H; > 1/2. This proves that I35 is bounded and hence Iy < C|t — s|. Hence, Combing (7)),

(@8] and (EI0]), we have

E|Z} - 72| < Ot — 5o~ 1+,
and finally we deduce

E|Z; — ZS|2 < Ot — s|GHOTIFE=AR for all £ > 0.

5 Uniqueness of solution

We have proved parts (1) and (2) of Theorem [Tl In this section, we are going to prove part (3),
the uniqueness of BSDEs (I.2]). We need the following proposition.

Proposition 5.1. Suppose that the conditions in Theorem[I1 are satisfied. Let (Y, Z) € S(0,T;R)x
MZ(0,T;R?) be the solution of BSDEs ([[L2) so that Y, DBY are DY2. Then the solution has the
explicit expression (L)) and hence the BSDEs (L2) has a unique solution.

Before we prove Proposition b1l we first need the following lemma.
Lemma 5.2. Recall the notation

ol :exp{/:W(dr, Br)} . (5.1)
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Then o', satisfies the following equation.
¢
ol = af + / ag W(dr, B;). (5.2)
0

Proof. Define K; = fo (dr, B,.). Consider a sequence of partitions 7, = {0 =ty < t; < ... <
t, = t} such that |m,| = maXOSZSH_l(ti_i_l —t;) — 0 when n — oo (the t;’s depend on n and we
omit this explicit dependence to simplify notation). Since H € (1/2,1) and since W satisfies (LT]),
by Markov’s inequality, Proposition [21] and the estimate (2.I1), it is easy to obtain

tit1

W (dr, B;)

lim
n—00 €

ti

. 2 I E (| W dr, B,
Jm PA 2 2o =
Oy [tigr — 1?10

< lim
n—00 5
=0, (5.3)
for any € > 0. On the other hand, we have
aé —1= Z |:6Kti+1 — e ] Z a KtlJrl Ktz) + R?, (54)

=0

where
n

1
R’? - Z (KtiJrl - Kti) /0 [eKtiJ’_(KtiH_Kti)u _ erz} du.
=0

Combining (5.3)) with (312]) yields

|R?| < C sup & Z‘Ktwl Kti]2i>0, n — oo.
0<r<t

This proves that of, satisfies (5.2)). O

Lemma 5.3. Let (Y, Z) satisfy (L2)) and let oy be given as above. Suppose the conditions of
Proposition [ are satisfied. Then

T
ade —aly, = / ayZsdBs . (5.5)
t

Proof. Let (Y, Z) satisfy (L2 and we use partition 7, = {t = to < t1 < ... < t, = T'}. Taking
(52) into account we have

n n
oonﬁ — aéy; = Z <046”1Yti+1 _ 0462Yt1> _ Z < lLit1 (Ytlﬂ ~Y.)+ Y, ( Livi agz))

i=1 i=1
tiv1 tit1
—Z< bt _/ Y,,W(dr,BT,)—k/ ZrdBr)>
ti t;
n tit1
3 / LW (dr, B,) (5.6)
i=1 ti
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n tit1 tit1
= (—aéiy;i/ W (dr, B;) +046iZti/ dBT,)>
1 t; t;

tl 1 .
+2Yt W (dr, B,) + R?

t

tz+1 -
—Za th/ dB, + R},

n n

~ . ti+1 ; ti+1
Rr = Z <aéz+1 /t Y, — Yi,] W (dr, Br)> + Z <a62+1 aé’) Yy, W (dr, By)

i=1 i i=1 ti

+) af / o (Z, — Z,) dB, +Z( bt —agi) / o Z,dB,
t; t;

i=1

41
+2Yt/+ ag—ao]W(drB)

= Z Rl,i + Rgﬂ' + Rg,i + R47Z' + R57,'.
i=1

For Ry ;, using (1)) we get
2

tit1
maPsE| [ - v wn)
ti

=K

/[t fia] (}/7“ - }/tz)(Y:? - }/tz)|s - T|2HO_2Q(BT7BS)drdS]
1yli41

[ [ phm v Dl )
[titiy1)? J [rtiga] J[ts,s] JR2D

X |u — v|HH0=2|s — p|2H0=2¢(B,,, w)q(Bs, y)dwdydvdudrds] .

+E

Recalling ([2.9) that covariance q(z,y) satisfies

d
la(a, ) < O T + a5 (1 4 Jyal)> 5, (5.9)
i=1

where 8; > 2H; + 1,1 =1,...,d, it yields

tiv1 [ty 1/2 12
|R11* < / / E ]YT, - Y;ZP] E[\Ys _ 5/;1’2] s — #[2H0=2 qup

W, S,

/M/M/M/ 1D}, (Y, = Y3,)| } /E{Dm(m—iﬁi)ﬂm (5.10)

X |u — v|2Ho2|s — p2Ho=2  gyp ‘q(Bu, w)q(Bs, y)‘dvdudsdr.
w7u7s7w7y

Q(B87 BT’)
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If Y satisfies condition (3) in Theorem [[T] that is, the continuity coefficient of Y is %, then we can
directly obtain

[Riif? S O (Itign = 6720 4 Jtigy — ) (5.11)

If Y satisfies condition (4) in Theorem [[T], then from (2], we have
ti t;
Y, — v = / YW (ds, Bs) — / ZudB,, 7€ [t te]. (5.12)
T T

With the help of (ZI]) again and the fact that (Y, Z) € S2(0,T;R) x M2(0,T;R?) as well as that
Y also belongs to D2, it holds

E|Y, — Y, |* <2E / Y,Y,|s — u|?H02¢(B,, Bu)dsdu]
[tivr]2

/ / / DY Y. D}, Y,
[tsr)2 Ju,r] J[ts,s] JR2d '

X |u — v|2Ho=2|s — & [PHo=2¢(B,, w)q(Bs, y)dwdydudvds’ ds

t;
/ ZsdB,

S2/ E |V, 2] 2 E Va2 2 |s — uf?Ho=2 sup la(Bs, Bu)|dsdu (5.13)

1/2 971/2 _
+2/ / / / (DY Y] 2B (DY, V2] 2 u — o[22
[ti,r]2 J[u,r] J[ti,s] JR2d

x |s — §')?H0=2  sup |q(Bu,w)q Bs,y)‘dwdydvdudslds.

wis7u7w7y
t;
+ / E|Z)? ds
T

< Cllr = 4210 4| = 6170 + |y — 1),

+2E

2
+E

Taking this result back to (5.I0) we get

i+1 'L+1
[Ril* 5 C </ / — il /2[5 — ;' /2|5 — r|PHO2dsdr
it1 it1 i+l il
+ / / / / lu — ’U!2H°_2]s — r\2H°_2dudvdsdr> .
t; t; r s
tiv1 [ty S
¢ <|ti+1 - ti|/ / |s — r|*"0 " *dsdr (5.14)
ti ti

tiv1  ftit1 il pliva
+ / / / / lu — o025 — r|2H0_2dudvd8dr> .
t; t; r S
C’<|ti+1 — ;"2 -t — ti|4H0).

Hence we have

— n—1 n—1
1 2+H 1/2+Hp—1
E |R1i| < g (tiv1 — /2+Ho < O<max (tig1 —t;) /2+Ho— E tiy1 —t;)) =0, n— oc.
i<n
=0 =0 =0

31



Using (1)) again, we get
Lit1 2
IRs,;)> SE </ (af — af )W (ds, B ))
t
tiv1  ftiv1
—E [/ / (af — ag)(ap — ag)|s — r|*°"2¢(By, B,)dsdr

+E[/M/M/M/ /de W (g —afs) - DY, (af — afi) (5.15)

X |u — v|2Ho=2|s — ¢ |2H0=2¢(B,, w)q(Bs, y)dwdydvdudrds

= Rs51,i+ R52,.
For Rs 5 ;, recalling (B.I) we have

tiv1 ptivr ptiyr s £ t
R = E[ [t ab o -0 a5 - af) o5, - w)
ti ti r t; JR2d

x |u — v|2H0=2|s — ¢ |2H0=2¢(B,, w)q(Bs, y)dwdydvdudrds}

ti+1  ptit1 ftie1 s . .
[ s -l g -l
t; t; T t;

U‘2H0_2‘S . T’2HO_2Q(Bu7 Bv)q(B87 Br)dvdudrds] .

(5.16)

X |u
Taking this result back to (G.I5]), and with the help of ([@.2]), (£3]), we obtain

tit1  ftita . . °
|R5* < / / E [(af — of) (af — ag) |s — r[*"°"2q(B,, By)] dsdr
141 7+1 1+1 R "
/ / / / —af) - (o — af)
x |u — v|2H02|s — r|2H0=2¢(B,, B,) q(B,, Bs)] dudvdsdr

tit1 t”l VAR o7 1/4 _ 1/2
/ |a0 a ] / [|oz0 ozo ] / |T’—S|2HO 2E[|q(Br,Bs)|2] /dsdr

L

t1+1 tz+1 t1+1

1/4 1/4
/ / / / \aoa]/[lao 040]/
t t t

X |r — s[2H0=2 |y — o|*0=2E[|q(B,, B,)a(By, Bs)|?]*dudvdsdr  (5.17)
tit1  ftil " " _—
e A A L O L e e
ti ti
tiv1  ptis1 ptic1 s
+C/ R R e A
tit1 t1+1
tz—i—l_t 2H0/ / 2HO 2dsdr

Y Al At L 2Hy—2 2Hy—2
+ C(tiy1 — t;) 0/ / / |r — s|“7"07%|u — v|*"° " *dudvdsdr.
ti t; r ti



< O((tig1 — ti) "0 + (tig1 — t)°70).

Thus

— n—1

Z ’R57i’ 5 Z i+1 —t 2Ho < O<max (tz—i-l — t 2Ho— IZ i1 — —) O n — oQ.
i<n

=0 =0

For Rs;, from the orthogonality of the increments of standard Brownian motion and the fact that
ao = exp {fo (dr, By } is Fy,-adapted, we have

n tiv1 tit1 2
E > af / (Z, — Z,) dB, E ' / [Z, — 7, dB,
=1 R ; (5.18)
tiv1
<C’Z/ E|Z, — Z,|* dr.
If Z satisfies condition (3) in Theorem [[I] we have easily
2
SO i — " (5.19)
=0
Denote Y; = DPY;, Z, = DFZ; (we fix r), and from (LZ) we obtain
~ T ~
DPYi =Y =DPe+ | YaW(dsB.)
¢ (5.20)

T T
+/ Y,V W (ds, Bs) — / ZydBs, 0<t<r<T.
T t

Therefore, we first need to verify the square integrability of ftT YV, W(ds, Bs), and then we can
treat (5.20) in a similar way to that for (L.2]). We can write

T 2 T 2
E‘/ Y,V W (ds, By) :E‘/ Y,V.(Bs — 2)W (ds, x)dx (5.21)
t t

From (7)) and by integration by parts, for all 0 <t < T,

T 2
IE‘ / Y,V W (ds, Bs)

/ Y, Ys|s — r|*#°72V, ,q(B,, B )dydrds]

2 o o o PRt
[a,b]2 JRL J[rb] J[s,b] JRE

x |u—v[*H072|s — p[2H072y 4(B,, w)V.q(Bs,y)dwdudvdydrds (5.22)

g/ E||v:[*] 1/215[\1@\2] Vs~ e PH up [V, ya(By, By)|dydrds
[t,T]2 w,r,s
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+E

1/2 1/2
E(|DYY,*| T E||DV, Y|
/[thP /Rd /[T,T} /[s,T] /Rd U Y ‘] U v H

X |u — v|2Ho=2|g — ¢|2Ho=2  gqup ‘qu(Bu, w)Vq(Bs, y)‘dwdudvdydrds]

w7uis7w7y

<C(IT — t[?Ho 4 |7 — ¢[*Ho) < cT*Ho,

T

Thus we have (Y, Z;) of BSDE (5.20]) is well-defined, i.e., E[/ IV;% + |Zt|2dt} < 00. Using the
0

classical conclusion that Z; = DPY;, Vt € [0,7] (see e.g. [13]), we can treat Z, — Z;, as

ti
Ly — Zy; = (DB¢ — ijf) +/ DBY,W (ds, By)

T

t; t;
+/ Y, V. W (ds, B) —/ DPZdB,, 0<t;<r<T

T

(5.23)
2214-224-234-24.

For the above first term Z; we can use the assumption E|DF¢ — DEE? < Clr—t;]" for some k > 0.
We can deal with the second term Z, in (5.23)) in the similar way as in (5.8]). In fact, with the help
of (1) again, it has

E(Zg

tiv1 pliv1 1/2 1/2
< [ [ E[Ev] e[ IpEvep] s - /2 sup
T T

w,s,s’

tiv1 ptivr plivr s 1/2 1/2
A A B N A R e aTy

X |u — v|?H02|s — §[2H0=2  qup ‘q(Bu,w)q(Bs,y)D dudvdsds’ .

w7u787w7y

‘ 2

q(Bs, B.)|dsds’

(5.24)

Since Y, DBY € D2, we have the estimate
2 tit1 tiv1
E ‘22‘ < C/ / |s — &'|2H0~2dsds’
T T

tit1  ftiv1 pliv1 s
+ C’/ / / / lu — v[2H072|s — §'|2H0 "2 duduvdsds’ (5.25)

< O ([tisr — P70 + [tigq — r[M0)

From (522]) we have

~ 12
E(zg( < C (tigr — ]P0 + |ty — r|*H0) | (5.26)
Finally it is easy to obtain
E|Zy)* < sup E|DPZ|*|t; —r| < Ct; — 7). (5.27)
s€E[r,t;]
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Taking those estimates back to (5.I8]) we have

1/2
n tivt n
<§ / E|Z, — Zti|2dr> <C <§ ([tier — 2O [t — g M0t
i=1 7t i=1

(5.28)
1/2
+ [tigr — ™+ i — tz’\2> )
which implies
n
SCY (torr =t 4 ftigr — g H10F!
i=1
+ltipr — "+ [t — ti]?) (5.29)
< _ _
< ogl?garf(—l(t“rl t;) Z; |tiv1 — ti] — 0, n — oc.
1=
For Ry; and R4, it is easy to deduce that
2 t 1/2 tit1 a7 1/2
R s € (B[] o - ot T E || [ W)
ti (5.30)
< Cltigr — tif 0,
and
. 1/2 tit1 2
IRy < CE Ua(;“ ol ] E / Z,dB,
ti (5.31)
< O tigy — ti o+t
Thus we have
— n—1
Z]Rg,] Z tiv1 — t; 2H°<O<max (tig1 — t;) 2o~ IZ it1 —t;) = 0, n— oco.
=0 =0 isn
and
n—1 n—1 n—1
DRl St =)™ < max (tipn — )7 (i — 1) 0, oo
i=0 i=0 - i=0

Hence, letting the mesh size |m,| goes to zero yields R — 0, P-a.s., and the right side of (5.0)
T
converges to / apZydB,. This concludes the proof of the lemma. O
t
Proof of Proposition [5.. In equation (5.5 we take the conditional expectation with respect to 72
we see to obtain
apY; = E [ag €| F] -
Thus,

T
Y: = (ab) ' EP [af ¢| FP] = BP [a] €| FP] = EP [gexp (/ W(dr,B,)) | FP| . (5.32)
t
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From the general relationship between Z and Y (e.g. [13]) we have
T
Z; = DPY, = DPEP [{ exp (/ W (dr, B,)) !.FtB . (5.33)
t
This concludes the proof of the proposition. O

6 BSDEs and semilinear SPDEs

In this section we obtain the regularity of the solution to the BSDE, and then establish the rela-
tionship between the SPDE

1
—du(t,x) = §Au(t,:17)dt +u(t,x)W(dt,z), w(T,x) = ¢(x). (6.1)
and our BSDE
T t
vhT = ¢(BET ) + / YEEW (dr, BY",) — / ZMdB,., s € [t,T). (6.2)

Theorem 6.1. Suppose ¢ € C*(R?). Let {u(t,z) :t € [0,T],z € R} be a random field such that
u(t, z) is Fy-measurable for each (t,z), u € C([0,T] x R R) a.s. and let u(t,x) satisfy ©1). Then
u(t, ) = Y, Vu(t,z) = Z", where (Y"", Z}'") is the solution of ([2).

Proof. Tt suffices to show that (u(s,Xﬁ’m),Vu(s,Xﬁ’x))se[t,T] solves BSDE (6.2). Since W(t,z) is
not differentiable in ¢ and x, one could not apply It6’s formula to (s, Xﬁm) Let us consider

—du®"(t,z) = %Aue’"(t,:n)dt +uS N (t, ) Wey(dt, 2), w(T,x) = ¢(x). (6.3)
Recall ([23) we have
Wentsi) = [ [ onls = ripeta =W drdy.

We see that u(t, z) is differentiable with respect to z. Now we can use Itd’s formula to u"(s, X™)
to deduce

T T
uS(t, X)) = p(X3") +/ u®"(r, XPP YW, (r, X7 )dr —/ Vus(r, XE*)dB,.. (6.4)

Note that X;* = z + B, — B; = B? ,, and by the uniqueness of BSDE we know ;%" =
us(s, XET), ZE5ON = Vusn(s, XUT) satisfy

T t
yhoen = (b(Béfit) + / Y LSS (7, Bf,’ft)dr — / ZL5ENdB, | s € [t,T). (6.5)
S S
Theorem [I.] yields
Y, = lim u™(s, X}*) = lim Y557, Zs = lim Vu®(s, X0") = lim ZL%5"
e,n—0 e,n—0 e,n—0 e,n—0
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is a solution pair of BSDE (62]). It remains to show SPDE (G3]) converges to (GI). From the
classical Feynman-Kac formula it follows

us(t, z) = EP [qﬁ(Xl}m) exp { /tT Wen(r, Xf,’x)dr}} =E5 [(b(B%_t) exp { /tT Wen(r, (Brf_t))dr}} .

(6.6)
Define
T
utt0) = o5 Jexw { [ wian(55)}] (6.7
Similar to the proof of Lemma B.I], we can deduce
lim EW|u Mt @) —u(t,x)[” =0 forall p>2. (6.8)
e,n—0
Since u®" satisfies ([6.3]) for any C*° function ¢ with compact support, we have
1 T
/ us"(t, x)(x)dx :/ o(x)(x)dx + —/ / us"(s, ) Ap(x)dxds
Rd Rd 2 t Rd
T
+ / / ™" (s, x)h(x)We (s, x)dsdx. (6.9)
t JRd

Letting €, — 0 will yield

/]Rd u(t, x)y(x)de :/ o(z)(x)dx + 1 /T /Rd (s, z) A (z)dzds
/ /Rd u(s, ) ()W (ds, z)dz, (6.10)

since
T
lim / / us (s, 2)(x)We (s, x)dsdx —/ / u(s,x)(x)W(ds, z)dx. (6.11)
en—0 Jy Rd R4
In fact, (GI1]) can be deduced in a similar way to that of Theorem 391 This proves the conclusion.
U

Theorem 6.2. Suppose the same conditions as in Theorem [ and let (Yst’x, Zﬁx) be the solution
pair of BSDE ©2). Then u(t,z) := Y,"",t € [0,T),2 € R% is in C([0,T] x RLR) and is the
solution of SPDE (G.]).

t+h, X5

Proof. Notice that u (t+ h, X"% ) =Y, th— Yt We still use the approximated BSDE
t+h t+h t+h

@3). Define us(t,z) := Y™ t € [0,T],2 € R%. We want to show that u®"(t, ) satisfies ([G.1).
An application of It6’s formula yields that for h > 0

t+h 1
WS (b b XPT) (R X ) = - / S AW (¢4, X7 ds
t

o (6.12)

— Vus (t+ h, X;") dBs.
t
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Combining this with the backward SDE satisfied by u"(t, z) := Y% t € [0,T], 2 € R? we have
us"M(t + h,z)—u™"(t, x) = u™" (t + h, Xfm> (t +h Xt+h> + u™" (t +h Xt+h> —uS"(t, x)

t+h 1 t+h
_ / SAUET (14, XL ds - / VU (¢ 4+ b, X'%) dB,
t t

t+h ) t+h
- YEPRTW, (s, X7 ds + / Z2"M By,
t t

(6.13)

Thus, let 7, be a partition t =ty < t; < --- < t,, = T. By (G&I3]), we have

7+1

n—1 tive )
o(x) — u®"(t, x) Z/ Au & tZ,Xt“x ds — Z/ u="(s, XYW, (s,Xﬁi’x) ds
i=0 /ti
n—1

t;
Y / " [zemtr _ e (1, X4%)] dB,. .
i=0 Vi

(6.14)

On the other hand, it is elementary to show that random field {Z§ ’"’t’x, t < s < T} has a continuous
version (e.g., [7, Proposition 5.2]) such that

Z;’n’t’x _ DSBYse,n,t,x _ VY;E’n’t’x(VX;’x)_l, (6.15)

and in particular, Z;™"* = VY;"™"  Thus, if we let mesh sizes of the partitions m, go to zero,
then it yields

o(x) —u"(t,x) / —Au®" (s,x)ds —/ (s, 2)Wep (s,2) ds, (6.16)

or by Duhamel’s principle we obtain

P(x) —u™(t,x) / / Pi—s(x — y)u="(s,9)We (5, 2) dyds . (6.17)

From Theorem B9, letting £, — 0 we get
o(x) — u(t,x) / / pr—s(x — y)u(s,y)W (ds,y) dy . (6.18)
Rd

The above formula means that u(¢, ) := Y;"* of BSDE ([.2) is a mild solution of SPDE (6.1). [

7 Appendix

Proposition 7.1. Let Y be a process such that its Malliavin derivative exists and assume that
DWY 18 integrable with respect to s. Then

E </a YSW(ds,BS)>2 —E

+E

[a,0]

/ / / DY, DY Ylu — w02 (7.1)
[a,b]2 J [r,b] J[a,s] JR2d

|s — r|?H0=2¢(B,,, w)q(Bs, y)dwdydvdudrds] .

Y, Ysls — 7‘|2H°_2q(BT, Bs)drds]
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Proof. Recalling W (¢) = fﬂthd o(t, x)W (dt, z)dx. We have

E (/abYsW(ds, BS)>2 =E </ab /Rd Y6(Bs — a;)W(ds,x)dx>2. (7.2)

Denote by F' := ff YW (ds, Bs) and we shall use F - W(¢) = §(F¢) + (D" F,¢)3,. From the
definition of spatial covariance (2.1J), it follows

E </abYsW(ds,Bs)>2 —E (F : /ab Y,6(B, )W(ds,x)dx) =E((D"F,Y.6(B.—)),,)

[/[ E /1de DWF Ysd(Bs — 2)[s _T’2HO_2Q(y7Z)dydzdrds]

E [/ DWF Y,|s — r[H0=2¢(y, Bs)dydrds] .
[a,b]

(7.3)
Note that,
DY F =D </ / Y,6(Bs — )W (ds, x)dx>
R (7.4)
/ / DY Y.§(B. — )W (ds, x)dz + Y;6(B, — y).
Rd
Substituting this computation into(7.1]) we have
b 2
E (/ Y, W (ds, Bs)> —h+ 1. (7.5)
For I, it is easy to deduce
L =E [/ Y,6(By —y) - Ye|s — r[*072q(y, Bs)dydrdSI
a.bl2 d
o (7.6)
=K [ YI‘Y:?|S - T|2HO_2Q(BM Bs)dydrd's] .
[a,]?
11 has the following expression
[/ / / DWY §(B,s — z)W (ds, z)dx - Ys|s — r|*H02q(y, Bs)drdsdy]
[a,b]2 JRE Jr JRA
(7.7)

:E/ /[3]3—r\2H°_2q(y,B5)drdsdy
[a,b]2 J R4

where ,
Iy = / D)V Y5(Bs — )W (ds, x)dx - Y.
r JRI
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Using F - W(¢) = 6(F¢) + (D F, ¢)% again we have

I; =EW / /Rd D)V Yi6(Bs — z)W (ds, z)dx - Ys| = V(D)) Y.6(B. — ), DV Y),,
=EY / / D%Yué(B - a:)D Y, |u — v|2H02g(z, w)dzdwdvdu (7.8)
[r,b] /[a,s] JR2d
=EW / / DWY DW Yy |u — v|*H0=2¢(B,, w)dwdvdu | .
[r,b] /[a,s] JRY
Substituting this back to (7)) we obtain
_E[/ / / / D)V Y, DY Yilu — v]?Ho~2
[a,b]2 J [r,b] J[a,s] JR2d (79)
|s — r|2H0=2¢( By, w)q(y, Bs)dwdydudvdrds} :
Inserting the expressions for I; and I into (7.5)) yields the proposition. O
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