
ar
X

iv
:2

21
0.

16
60

3v
1 

 [
m

at
h.

C
O

] 
 2

9 
O

ct
 2

02
2

SYMMETRIC PROPERTY AND EDGE-DISJOINT HAMILTONIAN CYCLES OF THE

SPINED CUBE

DA-WEI YANG∗, ZIHAO XU, YAN-QUAN FENG, AND JAEUN LEE

Abstract. The spined cube SQn is a variant of the hypercube Qn, introduced by Zhou et al. in [Information
Processing Letters 111 (2011) 561-567] as an interconnection network for parallel computing. A graph Γ is an
m-Cayley graph if its automorphism group Aut(Γ) has a semiregular subgroup acting on the vertex set with m
orbits, and is a Caley graph if it is a 1-Cayley graph. It is well-known that Qn is a Cayley graph of an elementary
abelian 2-group Z

n

2 of order 2n. In this paper, we prove that SQn is a 4-Cayley graph of Zn−2

2 when n ≥ 6, and
is a ⌊n/2⌋-Cayley graph when n ≤ 5. This symmetric property shows that an n-dimensional spined cube with
n ≥ 6 can be decomposed to eight vertex-disjoint (n − 3)-dimensional hypercubes, and as an application, it is
proved that there exist two edge-disjoint Hamiltonian cycles in SQn when n ≥ 4. Moreover, we determine the
vertex-transitivity of SQn, and prove that SQn is not vertex-transitive unless n ≤ 3.
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1. Introduction

An interconnection network, say network shortly, is the backbone of a parallel computing system, and connects
the processors of the system. The computational cost of a parallel computing system is heavily dominated by the
communication cost of the underlying network, which decides the overall performance of the system. This fact
clearly emphasizes the significance of network topology and its efficient structural designs [6, 30]. The topological
structure of the underlying network can be modeled as a graph where vertices correspond to processors, memory
modules or switches, and edges correspond to communication links. It has been universally accepted and used
by computer scientists and engineers [1, 30].

1.1. Symmetric property of networks. In the design of a network, it is desirable that the designed network
can provide us with high regularity and symmetry, since it is advantageous to construction and simulation of
some algorithms (see [30]). The class of vertex-transitive graphs possesses high regularity and symmetry, and
thus is an important and ideal class of topological structures of interconnection networks [4, 30, 32]. A number
of networks, including hypercubes [7], varietal hypercubes [29], balanced hypercubes [32], and some of their
generalizations are all vertex-transitive [30].

A graph Γ is vertex-transitive if it looks the same when we take a view from every vertex [26]. The vertex-
transitivity of graphs is usually measured by using group actions. Let V (Γ) and E(Γ) be the vertex set and edge
set of Γ, respectively. An automorphism of Γ is a permutation π on V (Γ) satisfying the adjacency-preserving
condition

(u, v) ∈ E(Γ) if and only if (uπ, vπ) ∈ E(Γ).

The set of all automorphisms of Γ forms a group under the operation of composition, denoted by Aut(Γ), and
it is referred to as the full automorphism group of Γ. A subgroup G of Aut(Γ) is transitive on V (Γ) if for any
pair (u, v) of vertices in Γ there is some π ∈ G such that v = uπ. (For a vertex u, the set {uα | α ∈ G} is an
orbit of G acting on V (Γ). The transitivity of G on V (Γ) means that G has exactly one orbit on V (Γ).) A
graph Γ is vertex-transitive if Aut(Γ) is transitive on V (Γ).

The class of Cayley graphs presents a very useful graph-theoretic model for designing, analyzing, and improv-
ing symmetric networks [4, 14, 32]. In particular, it plays an important role in constructing vertex-transitive
graphs. For a graph Γ, a subgroup G of Aut(Γ) is semiregular on V (Γ) if evey element in G, except the identity,
cannot fix a vertex of Γ, and regular if G is both transitive and semiregular on V (Γ). The graph Γ is a Cayley

graph of a group G if there exists a regular subgroup of Aut(Γ) isomorphic to G (see [10, 30]).
The concept of Cayley graphs can be naturally generalized to m-Cayley graphs, where regular actions are

replaced with semiregular actions. A graph Γ is said to be an m-Cayley graph of a group G if Aut(Γ) admits a
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semiregular subgroup isomorphic to G having m orbits on V (Γ). Of course, 1-Cayley graphs are simply Cayley
graphs. For additional results regarding m-Cayley graphs we refer the reader to [5, 19]. The class of m-Cayley
graphs provides a useful tool to study non-vertex-transitive graphs, see [12] for example. It also has been used
in the research of some networks, see [10, 21] for example.

The hypercube Qn is one of the most popular, versatile and efficient topological structures of networks [30].
Because of its many excellent features, it becomes the first choice for parallel processing and computing systems,
one of which is its small diameter [7, 30]. Communication efficiency is a critical metric in a parallel computing
system, while the diameter of a network is an important metric for communication efficiency [33]. A superior
nature of the hypercube Qn is that its diameter is equal to its dimension n, which is logarithm-level with
respect to the order of Qn. To further improve the performance of the hypercube network in terms of diameter,
numerous variant networks were put forward successively. The n-dimensional spined cube SQn is one variant
of the hypercube, which was proposed by Zhou et al. [33]. The diameter of SQn is only ⌈n3 ⌉ + 3, which is
less than many known variants such as crossed cubes, twisted cubes, Möbius cubes, etc. The spined cube has
attracted the attention of many researchers, and its various properties such as embedability [6], reliability [11],
the shortest-path routing [28] have been investigated.

The symmetric property of the hypercube Qn have been widely investigated. It is a Cayley graph of an
elementary abelian 2-group Z

n
2 , and consequently it is vertex-transitive. The symmetric properties of many

variants of the hypercube have been studied, and however, there are also some variants whose symmetric
properties are not clear. One may see a summary in Table 1. The symmetric property of the spined cube is
first considered in this paper. It is shown that an n-dimensional spined cube STQn is a 4-Cayley graph of
an elementary abelian 2-group Z

n−2
2 when n ≥ 6, and is a ⌊n/2⌋-Cayley graph when n ≤ 5. Moreover, we

determine the vertex-transitivity of SQn, and prove that SQn is vertex-transitive only when n ≤ 3.

Networks Vertex-transitive m-Cayley graph Orb Reference
Hypercube Qn Yes m = 1 1 [13]
Folded hypercube FQn Yes m = 1 1 [13]
Balanced hypercube BHn Yes m = 1 1 [31]
Varietal hypercube V Qn Yes m = 1 1 [29]
Twisted cube TQn No ? ? [2]
Locally twisted cube LTQn (n ≥ 4) No m = 2 2 [10]
Crossed cube CQn (n ≥ 5) No ? ? [20]
Folded crossed cube FCQn (n ≥ 5) No ? ? [26]
Twisted hypercube Hn ? ? ? [34]
Data center network Dk,n (k ≥ 2, n ≥ 2) No ? ? [23]
Spined cube SQn (n ≥ 6) No m = 4 ? This paper

Table 1. Summary of symmetric properties of some networks.

For a network Γ, determining the number Orb(Γ) of orbits of Aut(Γ) acting on vertices is an interesting
problem in the study of symmetry. This has been attracted the attention of some researchers. For example,
Pai et al. [26] put forward an open problem to determine the number of orbits for the crossed cube and the
folded crossed cube. To a certain extent, determining the number Orb(Γ) is related to the m-Cayley property
of networks. There is a famous conjecture that almost all vertex-transitive graphs are Cayley graphs, see [25]
for the detail. Moreover, the m-Cayley property of a network is helpful for us to analyze its internal structure
and other properties in some time. For example, the Cayley property and bi-Cayley property have been used to
analyze the reliability of networks in [32] and [10], respectively. One may also see [21] for other work. What’s
more, the 4-Cayley graphic structure of SQn with n ≥ 6 obtained in this paper will be applied to construct the
edge-disjoint Hamiltonian cycles in SQn in Section 4. These, combined with Table 1, prompt us to consider
the following problem.

Problem 1.1. For some variants of hypercubes, including the crossed cube, the folded crossed cube and the

twisted cube,

(1) determining the numbers of orbits of their automorphism groups acting on vertices;

(2) determining the minimum number m such that the variant network is an m-Cayley graph.
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We note that the answers of Problem 1.1 for the spined cube SQn are both 4 when n ≥ 6. We also determine
the full automorphism group of the spined cube based on its 4-Cayley property. Since the proof involves some
combinatorial group theory, it will be presented in other place.

1.2. Edge-disjoint Hamiltonian cycles in networks. The ring structure is important for distributed com-
puting, and one may see [22] for its benefits. The Hamiltonian cycles can provide an advantage for algorithms
using ring structures [27]. A cycle in a graph Γ is Hamiltonian if it contains every vertex of Γ. Two Hamil-
tonian cycles in a graph are edge-disjoint if they have no common edge. For the convenience in writing, an
edge-disjoint Hamiltonian cycle is abbreviated to an EDHC. EDHCs can be applied on the problem of all-to-all
communication algorithm. If a network contains d EDHCs, then the time complexity of the algorithm can be
improved by a factor of d. One may see [17, 27] for the detail. Moreover, EDHCs are also useful in fault-tolerant
routing. A network can tolerate a large number of edge failures if it has more EDHCs. When faults occur to
edges of a Hamiltonian cycle, then vertices can communicate with any other vertices along another Hamiltonian
cycle [17].

How to search for EDHCs in a network is an active and popular filed in the literature. A number of networks
having at least two EDHCs have been investigated, including the transposition network and some hypercube-
like networks [16], the Eisenstein-Jacobi network [17], and the balanced hypercube [24]. For various results and
constructions of EDHCs in networks, we refer the reader to [3, 15, 18] and all the references therein. In the end
of this paper, we aim to apply the symmetric property to the search of EDHCs in the spined cube, and finally,
through using the 4-Cayley graphic structure of the spine cube and EDHCs in hypercubes, we prove that there
exist two EDHCs in SQn when n ≥ 4.

The layout of this paper is as follows: In Section 2, some definitions and notations are introduced. We then
discuss the symmetric property of the spined cube in Section 3, and construct two EDHCs in the spined cube
in Section 4. Section 5 is the conclusion.

2. Preliminaries

All graphs in this paper are finite, simple and undirected.

2.1. Fundamental graph and group terminologies. We follow [8, 10] for some terminology and definitions
related to graphs and groups. Some notations are listed in Table 2.

Notations Meaning
Γ A graph with vertex set V (Γ) and edge set E(Γ)
NΓ(u) The neighborhood of the vertex u in Γ
dΓ(u, v) The distance between the vertices u and v in Γ
Im {1, 2, . . . ,m}
Zn A cyclic group of order n
Z
n
2 An elementary abelian 2-group of order 2n

M ×N The product of groups M and N
M ⋊N A semi-product of groups M and N
1H The identity of a group H
〈a1, . . . , an〉 The group generated by {a1, . . . , an}
G ∼= H The groups G and H are isomorphic

Table 2. Some notations.

Let Γ be a graph, and let F be a subset of V (Γ). The subgraph of Γ induced by F is the graph whose vertex
set is F and edge set is {(u, v) ∈ E(Γ) | u, v ∈ F}, denoted by Γ[F ]. The notation Γ−F represents the subgraph
of Γ after deleting all vertices and edges in Γ[F ] from Γ.

Let P1 = (x1, x2, . . . , xm) and P2 = (y1, y2, . . . , yn) be two paths in a graph Γ such that all vertices in
V (P1)∪V (P2) are all distinct except xm = y1. One can use P1+P2 to denote the path-concatenation of P1 and
P2 as the path (x1, x2, . . . , xm, y2, . . . , yt), and use P1 − (x1, x2) to denote the path (x2, x3, . . . , xm).

For two graphs Γ and Σ, an isomorphism from Γ to Σ is a bijection φ : V (Γ) → V (Σ) such that (u, v) ∈ E(Γ)
if and only if (uφ, vφ) ∈ E(Σ). The graphs Γ and Σ are isomorphic, write Γ ∼= Σ, if there is an isomorphism
from Γ to Σ.
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2.2. The m-Cayley graph. Let G be a finite group, and let S be a subset of G such that 1G /∈ S and
S = S−1 = {s−1 | s ∈ S}. The Cayley graph of G with respect to S, write Cay(G,S), is the graph with vertex
set G and edge set

{(g, sg) | g ∈ G, s ∈ S}.

For the definition of m-Cayley graphs, we follow [19].

Definition 2.1. Let H be a group, and let Tij be a subset of H such that T−1
ij = Tji and 1H /∈ Tii, where i, j ∈ Im.

The m-Cayley graph of H relative to the subsets Tijs is the graph having vertex set {hi : h ∈ H, i ∈ Im}, and
the vertex hi is adjacent to gj if and only if there exists an element t ∈ Tij such that gj = (th)j .

Clearly, a 1-Cayley graph is just a Cayley graph, and a 2-Cayley graph is also called a bi-Cayley graphs. A
bi-Cayley graph of a group H relative to the subsets T11, T22, T12 is often denoted by BiCay(H,T11, T22, T12).
For an m-Cayley graph Γ of a group H relative to the subsets Tijs, where Tij ⊂ H and i, j ∈ Im, it follows from
Definition 2.1 that the induced subgraph by Hi in Γ is isomorphic to the Cayley graph Cay(H,Tii).

2.3. The hypercube and the spined cube. Let n be a positive integer. An n-dimensional hypercube Qn is
a graph with 2n vertices. Each vertex is labeled with an n-bit binary string x1x2 · · · xn−1xn, where xi = 0 or 1
for each 1 ≤ i ≤ n, and two vertices are adjacent if they have exactly one bit distinct. The following proposition
about Qn is well-known and can be also checked easily.

Proposition 2.2. Let n ≥ 3 be an integer, and let {a1, . . . , an} be a generating subset of Z
n
2 . Then Qn

∼=
Cay(Zn

2 , {a1, a2, . . . , an}).

The spined cube were defined by Zhou et al. [33] in the following way.

Definition 2.3. Let n be a positive integer. An n-dimensional spined cube, denoted by SQn, is defined recur-

sively as follows:

(1) SQ1 is a complete graph on two vertices 0 and 1.
(2) For n ≥ 2, SQn consists of two copies of SQn−1, denoted by 0SQn−1 and 1SQn−1. Each vertex

x = 0x2 · · · xn in 0SQn−1 connects exactly one vertex x′ in 1SQn−1, where

(2.1) x′ = 1x2 for n = 2;
(2.2) x′ = 1((x2 + xn) ( mod 2))x3 · · · xn for n = 3 or 4;
(2.3) x′ = 1((x2 + xn−1) ( mod 2))((x3 + xn) ( mod 2))x4 · · · xn for n ≥ 5.

By Definition 2.3, SQ2 is a 4-cycle, that is, a cycle of length 4. For notation convenience, “(mod 2)” will not
appear in similar expressions in the rest of the paper.

An equivalent definition of the spined cube can be obtained easily from Definition 2.3, as follows.

Definition 2.4. An n-dimensional spined cube SQn is an undirected graph with 2n vertices with addresses

x1 · · · xn, where xi = 0 or 1 for each 1 ≤ i ≤ n. Two vertices x = x1 · · · xn and y are adjacent if and only if one

of the following conditions is satisfied:

(1) y = (1 + x1) with n = 1;
(2) y = (1 + x1)x2 or x1(1 + x2) with n = 2;
(3) y ∈ {(1 + x1)(x2 + x3)x3, x1(1 + x2)x3, x1x2(1 + x3)} with n = 3;
(4) y ∈ {(1 + x1)(x2 + x4)x3x4, x1(1 + x2)(x3 + x4)x4, x1x2(1 + x3)x4, x1x2x3(1 + x4)} with n = 4;
(5) y ∈ {(1 + x1)(x2 + x4)(x3 + x5)x4x5, x1(1 + x2)(x3 + x5)x4x5, x1x2(1 + x3)(x4 + x5)x5, x1x2x3(1 +

x4)x5, x1x2x3x4(1 + x5)} with n = 5;
(6) y ∈ {x1 · · · xn−1(1 + xn), x1 · · · xn−2(1 + xn−1)xn, x1 · · · xn−3(1 + xn−2)(xn−1 + xn)xn, x1 · · · xn−4(1 +

xn−3)(xn−2+xn)xn−1xn, x1 · · · xk−1(1+xk)(xk+1+xn−1)(xk+2+xn)xk+3 · · · xn, (1+x1)(x2+xn−1)(x3+
xn)x4 · · · xn | 2 ≤ k ≤ n− 4} with n ≥ 6.

3. Symmetric property of the spined cube

This section is divided into two parts, in which the m-Cayley property and the vertex-transitivity of the
spined cube SQn are considered, respectively. Since SQ2 is a 4-cycle and this case is trivial, we always assume
n ≥ 3 in this section.
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3.1. m-Cayley property of SQn. For the case of n ≤ 5, we first introduce a Cayley graph and two bi-Cayley
graphs.

Definition 3.1. Let H = 〈a1〉 × 〈a2〉 × 〈a3〉 ∼= Z
3
2, G = 〈a〉 ∼= Z8, and K = 〈b1, b2, b3, b4 | b21 = b22 = b23 = b24 =

[b1, b2] = [b1, b3] = [b2, b3] = [b2, b4] = [b3, b4] = 1K , b4b1 = b1b3b4〉 ∼= Z
3
2 ⋊ Z2 a non-abelian group of order 16.

Define a Cayley graph Γ3 and two bi-Cayley graphs Γ4, Γ5 as follows:

Γ3 = Cay(G, {a, a−1, a4});
Γ4 = BiCay(H, {a1, a2, a3}, {a1a2, a2a3, a3}, {1H});
Γ5 = BiCay(K, {b1, b2, b3, b4}, {b1b2, b2b3, b2b4, b4}, {1K}).

Clearly, Γ3 is vertex-transitive, as it is a Cayley graph. It can be checked easily that SQ3
∼= Γ3. Note that a

3-dimensional spined cube SQ3 is also called a 3-dimensional locally twisted cube (see [10, Figure 2]). For Γ4

and Γ5, it can be easily checked by using the software Magma [9] that SQ4
∼= Γ4 and SQ5

∼= Γ5. Moreover,
neither of them is vertex-transitive.

Lemma 3.2. The following hold.

(1) SQ3 is vertex-transitive and is a Cayley graph of a cyclic group Z8.

(2) SQ4 is a bi-Cayley graph of an elementary abelian group Z
3
2, and is not vertex-transitive.

(3) SQ5 is a bi-Cayley graph of a non-abelian group Z
3
2 ⋊ Z2, and is not vertex-transitive.

Now, we turn to the case n ≥ 6, and we describe a family of 4-Cayley graphs of the elementary abelian
2-groups.

Definition 3.3. Let n ≥ 6 be an integer, and let H = 〈a1〉 × 〈a2〉 × · · · × 〈an−2〉 ∼= Z
n−2
2 . Set

T11 = {a1, a2, . . . , an−2}; T22 = {a1a3, a2a4, . . . , an−4an−2, an−3an−2};
T33 = {a1a2a3, a2a3a4, . . . , an−4an−3an−2, an−3an−2};
T44 = {a1a2, a2a3, . . . , an−4an−3, an−3, an−2};
T12 = T14 = T34 = {1H}; T23 = {1H , an−2}; T13 = T24 = ∅.

Define a 4-Cayley graph of H relative to Tijs, and denote it by Γn.

By Definition 2.1, the 4-Cayley graph Γn has order 2n and valency n. The vertex set V (Γn) is
⋃4

i=1 Hi, where
Hi = {hi | h ∈ H} for each i ∈ I4. The neighborhood of a vertex hi in Γn for each h ∈ H and i ∈ I4 are

NΓn
(h1) = {h2, h4, (akh)1 | 1 ≤ k ≤ n− 2};(3.1)

NΓn
(h2) = {h1, h3, (an−2h)3, (an−3an−2h)2, (akak+2h)2 | 1 ≤ k ≤ n− 4};(3.2)

NΓn
(h3) = {h4, h2, (an−2h)2, (an−3an−2h)3, (akak+1ak+2h)3 | 1 ≤ k ≤ n− 4};(3.3)

NΓn
(h4) = {h1, h3, (an−2h)4, (an−3h)4, (akak+1h)4 | 1 ≤ k ≤ n− 4}.(3.4)

We note that the induced subgraphs by H1 and H4 in Γn are Cayley graphs of H ∼= Z
n−2
2 with respect to

T11 and T44, respectively (see Definition 2.1). Since H = 〈T11〉 = 〈T44〉, the Proposition 2.2 implies that the
two induced subgraphs are isomorphic to Qn−2. For i = 2 or 3, the induced subgraph by Hi in Γn consists of
two components, and each of them is isomorphic to Qn−3. Therefore, there are eight vertex-disjoint (n − 3)-
dimensional hypercubes in Γn. This observation will be also put in the end of Section 3.1 and used in Section
4.

In the following, we will prove that a spined cube SQn with n ≥ 6 is isomorphic to Γn. The following
well-known fact relative to elementary abelian groups will be frequently used in the later proof.

Fact For any 1 ≤ i, j ≤ n − 2, a0i = a2i = 1H and aiaj = ajai. Every element in H can be uniquely written as

ax1

1 ax2

2 · · · a
xn−2

n−2 , where xi ∈ {0, 1} for 1 ≤ i ≤ n− 2.

Lemma 3.4. For n ≥ 6, we have SQn
∼= Γn.

Proof. Define a map from V (SQn) to V (Γn) as following:

φ : x1 · · · xn−200 7→ (ax1

1 · · · a
xn−2

n−2 )1,
x1 · · · xn−201 7→ (ax1

1 · · · a
xn−2

n−2 )2,
x1 · · · xn−211 7→ (ax1

1 · · · a
xn−2

n−2 )3,
x1 · · · xn−210 7→ (ax1

1 · · · a
xn−2

n−2 )4.
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where xi ∈ {0, 1} for 1 ≤ i ≤ n− 2. By the Fact above, it can be checked easily that φ is a bijection. To show
that φ is an isomorphism from SQn to Γn, we need to show that (x, y) ∈ E(SQn) if and only if (xφ, yφ) ∈ E(Γn).
Since SQn and Γn have some valency, they have the same number of edges, and since φ is a bijection, to finish
the proof, it suffices to show that [NSQn

(x)]φ = NΓn
(xφ) for any x = x1 · · · xn ∈ V (SQn). We consider the

following four cases depending on xn−1xn = 00, 01, 11 or 10.

Case 1: xn−1xn = 00, that is, x = x1 · · · xn−200.
By Definition 2.4, the neighborhood of x in SQn is

NSQn
(x) = {x1 · · · xn−201, x1 · · · xn−210, x1 · · · xk−1(1+xk)xk+1 · · · xn−200, (1+x1)x2 · · · xn−200 | 2 ≤ k ≤ n−2}.

Since xφ = (ax1

1 · · · a
xn−2

n−2 )1, Eq. (3.1) implies that the neighborhood of xφ in Γn is

NΓn
(xφ) = {(ax1

1 · · · a
xn−2

n−2 )2, (ax1

1 · · · a
xn−2

n−2 )4, (ak · a
x1

1 · · · a
xn−1

n−1 )1 | 1 ≤ k ≤ n− 2}

= {(ax1

1 · · · a
xn−2

n−2 )2, (ax1

1 · · · a
xn−2

n−2 )4, (ax1

1 · · · a
xk−1

k−1 a1+xk

k a
xk+1

k+1 · · · a
xn−2

n−2 )1,

(ax1+1
1 ax2

2 · · · a
xn−2

n−2 )1 | 2 ≤ k ≤ n− 2}.

An easy checking yields that [NSQn
(x)]φ = NΓn

(xφ), as required.

Case 2: xn−1xn = 01, that is, x = x1 · · · xn−201.
In this case, the neighborhood of x in SQn is

NSQn
(x) = { x1 · · · xn−200, x1 · · · xn−211, x1 · · · xn−3(1 + xn−2)11,

x1 · · · xn−4(1 + xn−3)(1 + xn−2)01, (1 + x1)x2(1 + x3)x4 · · · xn−201,
x1 · · · xk−1(1 + xk)xk+1(1 + xk+2)xk+3 · · · xn−201 | 2 ≤ k ≤ n− 4},

and from Eq. (3.2), the neighborhood of xφ = (ax1

1 · · · a
xn−2

n−2 )2 in Γn is

NΓn
(xφ) = { (ax1

1 · · · a
xn−2

n−2 )1, (ax1

1 · · · a
xn−2

n−2 )3, (ax1

1 · · · a
xn−3

n−3 a
1+xn−2

n−2 )3,

(ax1

1 · · · a
xn−4

n−4 a
1+xn−3

n−3 a
1+xn−2

n−2 )2, (a1+x1

1 ax2

2 a1+x3

3 ax4

4 · · · a
xn−2

n )2,

(ax1

1 · · · a
xk−1

k−1 a1+xk

k a
xk+1

k+1 a
1+xk+2

k+2 a
xk+3

k+3 · · · a
xn−2

n−2 )2 | 2 ≤ k ≤ n− 4}.

Again, by an easy checking, we have [NSQn
(x)]φ = NΓn

(xφ), as required.

Case 3: xn−1xn = 11, that is, x = x1 · · · xn−211.
In this case, the neighborhood of x in SQn is

NSQn
(x) = { x1 · · · xn−210, x1 · · · xn−201, x1 · · · xn−3(1 + xn−2)01,

x1 · · · xn−4(1 + xn−3)(1 + xn−2)11, (1 + x1)(1 + x2)(1 + x3)x4 · · · xn−211,
x1 · · · xk−1(1 + xk)(1 + xk+1)(1 + xk+2)xk+3 · · · xn−201 | 2 ≤ k ≤ n− 4},

and from Eq. (3.3), the neighborhood of xφ = (ax1

1 · · · a
xn−2

n−2 )3 in Γn is

NΓn
(xφ) = { (ax1

1 · · · a
xn−2

n−2 )4, (ax1

1 · · · a
xn−2

n−2 )2, (ax1

1 · · · a
xn−3

n−3 a
1+xn−2

n−2 )2,

(ax1

1 · · · a
xn−4

n−4 a
1+xn−3

n−3 a
1+xn−2

n−2 )3, (a1+x1

1 a1+x2

2 a1+x3

3 ax4

4 · · · a
xn−2

n )3,

(ax1

1 · · · a
xk−1

k−1 a1+xk

k a
1+xk+1

k+1 a
1+xk+2

k+2 a
xk+3

k+3 · · · a
xn−2

n−2 )3 | 2 ≤ k ≤ n− 4}.

Hence [NSQn
(x)]φ = NΓn

(xφ), as required.

Case 4: xn−1xn = 10, that is, x = x1 · · · xn−210.
In this case, the neighborhood of x in SQn is

NSQn
(x) = { x1 · · · xn−211, x1 · · · xn−200, x1 · · · xn−3(1 + xn−2)10, x1 · · · xn−4(1 + xn−3)xn−210,

(1 + x1)(1 + x2)x3 · · · xn−210, x1 · · · xk−1(1 + xk)(1 + xk+1)xk+2 · · · xn−210 | 2 ≤ k ≤ n− 4},

and from Eq. (3.2), the neighborhood of xφ = (ax1

1 · · · a
xn−2

n−2 )4 in Γn is

NΓn
(xφ) = { (ax1

1 · · · a
xn−2

n−2 )1, (ax1

1 · · · a
xn−2

n−2 )3, (ax1

1 · · · a
xn−3

n−3 a
1+xn−2

n−2 )4, (a
x1

1 · · · a
xn−4

n−4 a
1+xn−3

n−3 a
xn−2

n−2 )4,

(a1+x1

1 a1+x2

2 ax3

3 · · · a
xn−2
n )4, (a

x1

1 · · · a
xk−1

k−1 a1+xk

k a
1+xk+1

k+1 a
xk+2

k+2 · · · a
xn−2

n−2 )4 | 2 ≤ k ≤ n− 4}.

Hence [NSQn
(x)]φ = NΓn

(xφ), as required. �

In SQn with n ≥ 6, a vertex x = x1 . . . xn−2xn−1xn is said to be of xn−2xn−1xn-type. In view of the proof of
Lemma 3.4, we have the following corollary.
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Corollary 3.5. Let n ≥ 6. An n-dimensional spined cube SQn can be decomposed to eight hypercubes Qn−3s

of dimension n− 3 and three perfect matchings. Furthermore,

(1) the subgraph induced by the vertices of type 000 and 100 (or 010 and 110) is isomorphic to Qn−2;

(2) the subgraphs induced by the vertices of type 000, 100, 001, 101, 011, 111, 010, and 110 are all isomorphic

to Qn−3.

3.2. Vertex-transitivity of SQn. In this subsection, we derive in two lemmas that the spined cube SQn is
not vertex-transitive when n ≥ 6.

Lemma 3.6. Let n ≥ 6. There are exactly n2−5n+12
2 4-cycles going through the vertex (1H)1 in Γn, which are

listed in Table 3. In particular, the following hold.

(1) There is only one 4-cycle going through the edge ((1H)1, (1H)2) in Γn.

(2) There are exactly three 4-cycles going through the edge ((1H)1, (1H)4) in Γn.

(3) The number of 4-cycles going through the edge ((1H)1, (ai)1) in Γn is n− 2 for n− 3 ≤ i ≤ n− 2, and
n− 3 for 1 ≤ i ≤ n− 4.

Row 4-cycles

1 ((1H )1, (1H)2, (1H)3, (1H)4, (1H )1)

2 ((1H )1, (1H)4, (an−3)4, (an−3)1, (1H )1)

3 ((1H )1, (1H)4, (an−2)4, (an−2)1, (1H )1)

4 ((1H )1, (ai)1, (aiaj)1, (aj)1, (1H)1), 1 ≤ j < i ≤ n− 2

Table 3. All 4-cycles going through (1H )1 in Γn

Proof. Let C = ((1H)1, w, u, v, (1H )1) be a 4-cycle going through (1H)1. We have w ∈ NΓn
((1H )1), and since

NΓn
((1H)1) = {(1H )2, (1H)4, (ai)1 | 1 ≤ i ≤ n− 2}(3.5)

by Eq. (3.1), we have w = (1H)2, (1H)4 or (ai)1. Clearly, w 6= v and u 6= (1H )1.
(1). Assume w = (1H)2, that is, C = ((1H )1, (1H)2, u, v, (1H )1). It follows that v ∈ NΓn

((1H)1)\{(1H )2} and
u ∈ (NΓn

((1H)2) ∩NΓn
(v)) \ {(1H )1}. By Eq. (3.5), v = (1H)4 or (ai)1 with 1 ≤ i ≤ n− 2. Suppose v = (ai)1.

By Eqs. (3.2) and (3.1), we have

NΓn
((1H)2) = {(1H )1, (1H)3, (an−2)3, (an−3an−2)2, (akak+2)2 | 1 ≤ k ≤ n− 4};(3.6)

NΓn
((ai)1) = {(ai)2, (ai)4, (akai)1 | 1 ≤ k ≤ n− 2},(3.7)

implying that (NΓn
((1H )2) ∩NΓn

(v)) \ {(1H )1} = ∅. A contradiction occurs. Hence v = (1H)4. Since Eq. (3.4)
implies that

NΓn
((1H )4) = {(1H)1, (1H)3, (an−2)4, (an−3)4, (akak+1)4 | 1 ≤ k ≤ n− 4},(3.8)

we have (NΓn
((1H)2) ∩NΓn

(v)) \ {(1H )1} = {(1H )3}. We conclude that u = (1H)3. The (1) holds.
(2). Assume w = (1H)4. Now, v ∈ NΓn

((1H )1) \ {(1H)4} and u ∈ (NΓn
((1H)4) ∩ NΓn

(v)) \ {(1H )1}. By
Eq. (3.5), either v = (1H)2 or v = (ai)1 with 1 ≤ i ≤ n − 2. For the former case, the (1) implies that
C = ((1H)1, (1H)4, (1H )3, (1H )2, (1H)1). For the latter case, we have u ∈ (NΓn

((ai)1) ∩NΓn
((1H )4)) \ {(1H)1}.

Since NΓn
((ai)1)∩NΓn

((1H)4) = {(1H )1} for 1 ≤ i ≤ n−4 and {(1H)1, (ai)4} for i = n−3 or n−2 by Eqs. (3.7)
and (3.8), we have i = n − 3 or n − 2 and u = (ai)4. In this case, there are three 4-cycles going through
((1H )1, (1H)4) in Γn, which are ((1H )1, (1H)4, (1H)3, (1H)2, (1H )1), ((1H)1, (1H)4, (an−3)4, (an−3)1, (1H)1) and
((1H )1, (1H)4, (an−2)4, (an−2)1, (1H )1). The (2) holds.

(3). Assume w = (ai)1 with 1 ≤ i ≤ n − 2, that is, C = ((1H)1, (ai)1, u, v, (1H )1). Now, v ∈ NΓn
((1H)1) \

{(ai)1} and u ∈ (NΓn
((ai)1) ∩NΓn

(v)) \ {(1H)1}. It follows from Eq. (3.5) that v = (1H)2, (1H)4 or (aj)1 with
1 ≤ j 6= i ≤ n− 2.

By (1), we have v 6= (1H)2. If v = (1H)4, then the (2) implies that C = ((1H )1, (an−3)1, (an−3)4, (1H)4, (1H )1)
or ((1H )1, (an−2)1, (an−2)4, (1H)4, (1H )1). Finally, let v = (aj)1 with 1 ≤ j 6= i ≤ n− 2. Now, u ∈ (NΓn

((ai)1)∩
NΓn

((aj)1))\{(1H )1}, and then by Eq. (3.7), we have that u = (aiaj)1 and C = ((1H)1, (ai)1, (aiaj)1, (aj)1, (1H )1).
Hence the number of 4-cycles going through ((1H )1, (ai)1) is n − 2 when i = n − 3 or n − 2, and n − 3 when
1 ≤ i ≤ n− 4. The (3) holds.
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Summing up, there are 3+ (n−3)(n−2)
2 = n2−5n+12

2 4-cycles going through (1H)1 in Γn in total, and all of them
are listed in Table 3. �

Lemma 3.7. Let n ≥ 6. There are exactly n2−7n+20
2 4-cycles going through the vertex (1H)2 in Γn, which are

listed in Table 4.

Row 4-cycles

1 ((1H)1, (1H)2, (1H )3, (1H )4, (1H)1)

2 ((1H)2, (1H)3, (an−2)2, (an−2)3, (1H)2)

3 ((1H)2, (1H)3, (an−3an−2)3, (an−3an−2)2, (1H )2))

4 (1H)2, (an−2)3, (an−3)3, (an−3an−2)2, (1H )2))

5 ((1H)2, (an−3an−2)2, (an−3an−2aiai+2)2, (aiai+2)2, (1H)2)), 1 ≤ i ≤ n− 4

6 ((1H)2, (aiai+2)2, (ajaj+2aiai+2)2, (ajaj+2)2, (1H)2)), 1 ≤ j < i ≤ n− 4.

Table 4. All 4-cycles going through (1H )2 in Γn

Proof. Let C = ((1H)2, w, u, v, (1H )2) be a 4-cycle going through (1H)2 in Γn. Now, w, v ∈ NΓn
((1H)2) =

{(1H )1, (1H)3, (an−2)3, (an−3an−2)2, (akak+2)2 | 1 ≤ k ≤ n − 4} (see Eq. (3.6)), w 6= v and u 6= (1H)2. If
w = (1H)1 or v = (1H)1, then Lemma 3.6 (1) implies that C = ((1H )2, (1H )1, (1H)4, (1H)3, (1H )2).

Assume w, v ∈ {(1H )3, (an−2)3, (an−3an−2)2, (aiai+2)2} for some 1 ≤ i ≤ n − 4. Note that u ∈ (NΓn
(w) ∩

NΓn
(v)) \ {(1H )2}. For all possible w and v, we list their neighborhoods. By Eq. (3.2) we have

NΓn
((1H)3) = {(1H)4, (1H)2, (an−2)2, (an−3an−2)3, (akak+1ak+2)3 | 1 ≤ k ≤ n− 4};(3.9)

NΓn
((an−2)3) = {(an−2)4, (an−2)2, (1H)2, (an−3)3, (akak+1ak+2an−2)3 | 1 ≤ k ≤ n− 4};(3.10)

and by Eq. (3.3) we have

NΓn
((an−3an−2)2) = {(an−3an−2)1, (an−3an−2)3, (an−3)3, (1H)2, (akak+2an−3an−2)2| 1 ≤ k ≤ n− 4};

NΓn
((aiai+2)2) = {(aiai+2)1, (aiai+2)3, (an−2aiai+2)3, (an−3an−2aiai+2)2, (akak+2aiai+2)2 | 1 ≤ k ≤ n− 4},

where 1 ≤ i ≤ n− 4. By an easy check, we have

NΓn
((1H)3) ∩NΓn

((an−2)3) = {(1H)2, (an−2)2};

NΓn
((1H)3) ∩NΓn

((an−3an−2)2) = {(1H)2, (an−3an−2)3},

NΓn
((1H)3) ∩NΓn

((aiai+2)2) = {(1H )2},

NΓn
((an−2)3) ∩NΓn

((an−3an−2)2) = {(1H )2, (an−3)3},

NΓn
((an−2)3) ∩NΓn

((aiai+2)2) = {(1H)2},

NΓn
((an−3an−2)2) ∩NΓn

((aiai+2)2) = {(1H)2, (an−3an−2aiai+2)2},

NΓn
((aiai+2)2) ∩NΓn

((ajaj+2)2) = {(1H)2, (ajaj+2aiai+2)2} with 1 ≤ i 6= j ≤ n− 4.

Hence when w, v 6= (1H)1, the 4-cycles going through (1H)2 are:

((1H )2, (1H)3, (an−2)2, (an−2)3, (1H )2));

((1H )2, (1H)3, (an−3an−2)3, (an−3an−2)2, (1H)2));

((1H )2, (an−2)3, (an−3)3, (an−3an−2)2, (1H )2));

((1H )2, (an−3an−2)2, (an−3an−2aiai+2)2, (aiai+2)2, (1H )2)), 1 ≤ i ≤ n− 4;

((1H )2, (aiai+2)2, (ajaj+2aiai+2)2, (ajaj+2)2, (1H )2)), 1 ≤ j < i ≤ n− 4.

Summing up, there are exactly n2−7n+20
2 4-cycles passing through (1H)2. �

Clearly, n2
−5n+12

2 6= n2
−7n+20

2 when n ≥ 6. It follows from Lemmas 3.6 and 3.7 that there are different
number of 4-cycles going through the vertices (1H)1 and (1H)2 in Γn, and so Γn is not vertex-transitive when
n ≥ 6. Combined with Lemmas 3.2 and 3.4, we have the following theorem.

Theorem 3.8. The n-dimensional spined cube SQn is not vertex-transitive unless n ≤ 3.
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4. Edge-disjoint Hamiltonian cycles in SQn

In this section, we aim to prove that there exist two EDHCs in the spined cube SQn with n ≥ 4.

Theorem 4.1. There exist two EDHCs in SQn when 4 ≤ n ≤ 6.

Proof. By Definition 2.3, it can be easily checked that the C
(1)
n and C

(2)
n listed below are two EDHCs in SQn

for 4 ≤ n ≤ 6. �

C
(1)
4 = (0000, 0010, 1010, 1011, 1101, 1111, 0011, 0001, 0111, 0110, 1110, 1100, 0100, 0101, 1001, 1000, 0000);

C
(2)
4 = (0000, 0100, 0110, 0010, 0011, 0101, 0111, 1011, 1001, 1111, 1110, 1010, 1000, 1100, 1101, 0001, 0000);

C
(1)
5 = (00000, 00001, 00011, 00010, 00110, 00100, 00101, 00111, 01011, 01001, 01000, 01010,

01110, 01100, 01101, 01111, 10011, 10001, 10111, 10101, 10100, 10110, 10010, 11010,

11011, 11101, 11100, 11110, 11111, 11001, 11000, 10000, 00000);

C
(2)
5 = (00000, 00010, 01010, 01011, 01101, 00001, 00111, 00110, 01110, 01111, 00011, 11111,

11101, 01001, 00101, 10001, 10000, 10010, 10011, 10101, 11001, 11011, 10111, 10110,

11110, 11010, 11000, 01000, 01100, 11100, 10100, 00100, 00000);

C
(1)
6 = (000000, 100000, 110000, 111000, 111010, 111011, 111101, 111100, 111110, 111111, 111001,

110101, 110100, 100100, 100110, 100111, 101011, 101101, 101111, 110011, 110001, 110111,

110110, 110010, 101010, 101110, 101100, 001100, 001101, 100101, 101001, 101000, 001000,

011000, 011100, 011101, 011111, 011110, 011010, 000010, 000110, 001110, 001010, 001011,

001001, 100001, 100011, 100010, 010010, 010011, 001111, 000011, 000001, 000111, 011011,

011001, 010101, 010111, 010110, 010100, 010000, 010001, 000101, 000100, 000000);

C
(2)
6 = (000000, 010000, 110000, 110100, 111100, 111000, 111001, 111011, 110111, 110101, 110011,

111111, 111101, 101000, 100101, 100111, 100001, 101101, 101100, 101000, 101010, 101011,

101001, 101111, 100011, 011011, 011101, 010001, 010111, 001011, 001101, 011001, 011000,

011010, 010010, 010110, 100110, 100010, 100000, 100100, 000100, 010100, 011100, 001100,

001110, 001111, 001001, 001000, 001010, 000010, 110010, 111010, 111110, 110110, 101110,

011110, 000110, 000111, 000101, 000011, 011111, 010011, 010101, 000001, 000000).

Next, we begin to consider the Hamiltonian cycles in SQn when n ≥ 7. Since an n-dimensional spined
cube SQn can be decomposed to eight vertex-disjoint (n − 3)-dimensional hypercubes Qn−3s when n ≥ 7 by
Corollary 3.5, our main strategy to construct EDHCs in SQn consists of the following three steps:

• Step 1: Find two EDHCs in some Qn−3s;
• Step 2: Find EDHCs in the other Qn−3s under graph isomorphisms;
• Step 3: Concatenate the cycles.

In the first step, we have the following lemma about hypercubes. For notation convenience, we use the elements
of the group Z

n
2 to denote the vertices of the hypercube Qn (see Proposition 2.2) and the spined cube SQn (see

Lemma 3.4).

Lemma 4.2. Let n ≥ 4, and let {a1, . . . , an} be a generating subset of H = Z
n
2 . In an n-dimensional hypercube

Qn = Cay(H, {a1, . . . , an}), there exist two EDHCs containing the edges (1H , an) and (an, an−1an), respectively.

Proof. We proceed by induction on n. It can be easily checked that the following two cycles C1 and C2 are
EDHCs in Q4 containing the edges (1H , a4) and (a4, a3a4), respectively, and so the lemma is true when n = 4.

C1 = (1H , a3, a2a3, a1a2a3, a1a3, a1, a1a2a2, a2a4, a1a2a4, a1a2a3a4, a2a3a4, a3a4, a1a3a4, a1a4, a4, 1H);

C2 = (1H , a1, a1a4, a1a2a4, a1a2, a1a2a3, a1a2a3a4, a1a3a4, a1a3, a3, a3a4, a4, a2a4, a2a3a4, a2a3, a2, 1H).

Assume that the lemma is true for some k ≥ 4, and let n = k + 1. Let H1 = 〈a1, . . . , ak〉, the subgroup of

Z
k+1
2 generated by a1, . . . , ak, and denote H2 = {gak+1 | g ∈ H1}, the coset of H1 in Z

k+1
2 . Clearly, H1

∼= Z
k
2,

and Qk+1[H1] ∼= Qk+1[H2] ∼= Qk (see Proposition 2.2). The map g 7→ gak+1, ∀g ∈ H1, induces an isomorphism
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from Qk+1[H1] to Qk+1[H1], say α. Moreover, for each vertex g in Qk+1[H1], g
α = gak+1 is the unique neighbor

of g in Qk+1[H2].
By the induction hypothesis, there exist two EDHCs C1 and C2, containing the edges (1H , ak) and (ak, ak−1ak),

respectively. Since α is an isomorphism from Qk+1[H1] to Qk+1[H1], C
α
1 and Cα

2 are two EDHCs in Qk+1[H2].
Moreover, the cycles Cα

1 contains the edge (1H , ak)
α = (ak+1, akak+1). Let

Ĉ1 = C1 − (1H , ak) + (1H , ak+1) + Cα
1 − (ak+1, akak+1) + (akak+1, ak).

Now, Ĉ1 is an Hamiltonian cycle in Qk+1, and the edge (1H , ak+1) belongs to Ĉ1.
Since C1 and C2 are edge-disjoint and (1H , ak) ∈ E(C1), the edge (1H , ak) /∈ E(C2), that is, dC2

(1, ak) ≥
2. Noting that C2 is a Hamiltonian cycle in Qn[H1] with length 2k ≥ 24, we may assume that C2 =
(1H , u, . . . , ak, v, . . . , 1H), where u and v are neighbors of 1H and ak in C2, respectively. Clearly, {u, v} ∩
{ak+1, ak, 1H} = ∅. Denote P1 be the subpath from u to ak in C2, and P2 the subpath from 1 to v. Let

Ĉ2 = P1 + (ak, 1H) + P2 + (v, vα) + Pα
2 + (1αH , aαk ) + Pα

1 + (uα, u)

= P1 + (ak, 1H) + P2 + (v, vak+1) + Pα
2 + (ak+1, ak+1ak) + Pα

1 + (uak+1, u).

The Ĉ2 is an Hamiltonian cycle in Qn, containing the edge (ak+1, ak+1ak). Since v /∈ {1H , ak}, we have
{(1H , ak+1), (akak+1, ak)} ∩ {(v, vak+1), (ak+1, ak+1ak)} = ∅, and since E(C1) ∩ [E(P1) ∩ E(P2)] ⊆ E(C1) ∩

E(C2) = ∅, we conclude that Ĉ1 and Ĉ2 are edge-disjoint. The proof is complete. �

Next, we aim to find some graph isomorphisms (see Step 2), and we need some symbols. Let H = 〈a1〉 ×
· · · × 〈an−2〉 ∼= Z

n−2
2 with n ≥ 7, and let

H11 = 〈a1, a2, . . . , an−3〉;

H21 = 〈a1a3, a2a4, . . . , an−4an−2, an−3an−2〉;

H31 = 〈a1a2a3, a2a3a4, . . . , an−4an−3an−2, an−3an−2〉;

H41 = 〈a1a2, a2a3, . . . , an−4an−3, an−3〉;

H i2 = {han−2 | h ∈ H i1}, 1 ≤ i ≤ 4;

H ij
i = {hi | h ∈ H ij}, 1 ≤ i ≤ 4, 1 ≤ j ≤ 2.

By some primary knowledge in group theory, one can observe that H i1 is a subgroup of H isomorphic to Z
n−3
2 ,

H i2 is a coset of H i1 in H, and H = H i1 ∪H i2, where 1 ≤ i ≤ 4. In view of Lemma 3.4, SQn is a 4-Cayley
graph of H, and by Definition 3.1, we have V (SQn) =

⋃4
i=1Hi =

⋃4
i=1(H

i1
i ∪ H i2

i ). Moreover, the induced

subgraph SQn[H
ij
i ] is isomorphic to Qn−3 (see Corollary 3.5), where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2. Define the map

from H i1
i to H i2

i with 1 ≤ i ≤ 4 as follows:

R(an−2) : hi 7→ (han−2)i, ∀hi ∈ H i1
i .

It can be checked easily that R(an−2) is an isomorphism from SQn[H
i1
i ] to SQn[H

i2
i ].

Now, we are ready to construct EDHCs in the spined cube SQn with n ≥ 7.

Theorem 4.3. There exist two EDHCs in SQn when n ≥ 7.

Proof. Since the induced subgraphs

SQn[H
11
1 ] ∼= Cay(H11, {a1, a2, . . . , an−3}) ∼= Qn−3;

SQn[H
21
2 ] ∼= Cay(H21, {a1a3, a2a4, . . . , an−4an−2, an−3an−2}) ∼= Qn−3;

SQn[H
31
3 ] ∼= Cay(H31, {a1a2a3, a2a3a4, . . . , an−4an−3an−2, an−3an−2}) ∼= Qn−3;

SQn[H
41
4 ] ∼= Cay(H41, {a1a2, a2a3, . . . , an−4an−3, an−3}) ∼= Qn−3,

each of them admits two EDHCs by Lemma 4.2. Assume that Ci1 and Ci2 are two EDHCs in SQn[H
i1
i ], and

by Lemma 4.2 we may further assume that

((1H )1, (an−3)1) ∈ E(C11), ((an−3)1, (an−4an−3)1) ∈ E(C12);

((1H )2, (an−3an−2)2) ∈ E(C21), ((an−3an−2)2, (an−4an−3)2) ∈ E(C22);

((1H )3, (an−3an−2)3) ∈ E(C31), ((an−3an−2)3, (an−4)3) ∈ E(C32);

((1H )4, (an−3)4) ∈ E(C41), ((an−3)4, (an−4)4) ∈ E(C42).
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Let C ′

i1 = C
R(an−2)
i1 and C ′

i2 = C
R(an−2)
i2 for 1 ≤ i ≤ 4. Since R(an−2) is an isomorphism from SQn[H

i1
i ] to

SQn[H
i2
i ], C ′

i1 and C ′

i2 are two EDHCs of SQn[H
i2
i ]. Since ((1H)1, (an−3)1) ∈ E(C11) and ((an−3)1, (an−4an−3)1) ∈

E(C12), we have

((1H )1, (an−3)1)
R(an−2) = ((an−2)1, (an−3an−2)1) ∈ E(C ′

11),

((an−3)1, (an−4an−3)1)
R(an−2) = ((an−3an−2)1, (an−4an−3an−2)1) ∈ E(C12)

′.

Similarly, we have

((an−2)2, (an−3)2) ∈ E(C ′

21), ((an−3)2, (an−4an−3an−2)2) ∈ E(C ′

22);

((an−2)3, (an−3)3) ∈ E(C ′

31), ((an−3)3, (an−4an−2)3) ∈ E(C ′

32);

((an−2)4, (an−3an−2)4) ∈ E(C ′

41), ((an−3an−2)4, (an−4an−2)4) ∈ E(C42′).

Now, we have 16 cycles in SQn, and clearly, they are edge-disjoint. Finally, we concatenate the cycles. Let

C1 = C11 − ((1H )1, (an−3)1) + ((an−3)1, (an−3an−2)1) + C ′

11 − ((an−3an−2)1, (an−2)1)

+((an−2)1, (an−2)2) + C ′

21 − ((an−2)2, (an−3)2) + ((an−3)2, (an−3an−2)3) + C31

−((an−3an−2)3, (1H )3) + ((1H)3, (1H )2) + C21 − ((1H)2, (an−3an−2)2)

+((an−3an−2)2, (an−3)3) +C ′

31 − ((an−3)3, (an−2)3) + ((an−2)3, (an−2)4)

+C ′

41 − ((an−2)4, (an−3an−2)4) + ((an−3an−2)4, (an−3)4) + C41

−((an−3)4, (1H )4) + ((1H)4, (1H)1),

and let

C2 = C12 − ((an−3)1, (an−4an−3)1) + ((an−4an−3)1, (an−4an−3)2) + C22

−((an−3an−2)2, (an−4an−3)2) + ((an−3an−2)2, (an−3an−2)1) + C ′

12

−((an−3an−2)1, (an−4an−3an−2)1) + ((an−4an−3an−2)1, (an−4an−3an−2)2) + C ′

22

−((an−4an−3an−2)2, (an−3)2) + ((an−3)2, (an−3)3) + C ′

32 − ((an−3)3, (an−4an−2)3)

+((an−4an−2)3, (an−4an−2)4) + C ′

42 − ((an−3an−2)4, (an−4an−2)4)

+((an−3an−2)4, (an−3an−2)3) + C32 − ((an−3an−2)3, (an−4)3)

+((an−4)3, (an−4)4) +C42 − ((an−4)4, (an−3)4) + ((an−3)4, (an−3)1).

We conclude that C1 and C2 are EDHCs of SQn. The proof is complete. �

5. Conclusion

Graph symmetry is an important factor in the design of a network. The spined cube SQn was introduced
by Zhou et al. [33] in 2011 as a variant of the hypercube Qn, whose diameter is less than most known variants
of hypercubes. The hypercube have been well-studied in the literature. A natural problem is how to use the
numerous works about hypercubes to study the variants, that is, how to establish the connection between
hypercube and its variants. This is also a reason why we consider the symmetric property of the spined cube
in this paper. We first prove that SQn is a 4-Cayley graph of an elementary abelian 2-group Z

n−2
2 when n ≥ 6,

and then have that it is not vertex-transitive unless n ≤ 3. The symmetric property of SQn shows that it can
be decomposed to eight vertex-disjoint (n − 3)-dimensional hypercubes when n ≥ 6. By using the existence of
EDHCs in hypercubes, we show that there exists two EDHCs in SQn when n ≥ 4.
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