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Abstract

A (d, h)-decomposition of a graph G is an order pair (D,H) such that H is a subgraph

of G where H has the maximum degree at most h and D is an acyclic orientation of G −

E(H) of maximum out-degree at most d. A graph G is (d, h)-decomposable if G has a (d, h)-

decomposition. Let G be a graph embeddable in a surface of nonnegative characteristic. In

this paper, we prove the following results. (1) If G has no chord 5-cycles or no chord 6-cycles

or no chord 7-cycles and no adjacent 4-cycles, then G is (3, 1)-decomposable, which generalizes

the results of Chen, Zhu and Wang [Comput. Math. Appl, 56 (2008) 2073–2078] and the

results of Zhang [Comment. Math. Univ. Carolin, 54(3) (2013) 339–344]. (2) If G has no

i-cycles nor j-cycles for any subset {i, j} ⊆ {3, 4, 6} is (2, 1)-decomposable, which generalizes

the results of Dong and Xu [Discrete Math. Alg. and Appl., 1(2) (2009), 291–297].

1 Introduction

Graphs considered here are finite and simple. A graph is d-generate if every subgraph has a vertex

of degree at most d. For two integers d, h ∈ N, a (d, h)-decomposition of G is a pair (H1,H2) such

that H2 is a subgraph of G of maximum degree at most h and H1 is d-degenerate. A graph G

is (d, h)-decomposable if G has a (d, h)-decomposition. Decomposing a graph into subgraphs with

simple structure is a fundamental problem in graph theory. The classical Theorem of Tutte
Tu
[18]

and, independent by, Nash-Williams
NW
[15] provides a necessary and sufficient condition for which

a graph can be decomposed into forests. A proper coloring of G is a decomposition of G into

independent sets. The problems of decomposing a graph G into start forests, linear forests and

some others are studied widely in the literature.

A proper k-coloring is a mapping ϕ : V (G) → {1, 2, . . . , k} such that ϕ(u) 6= ϕ(v) where

uv ∈ E(G). The chromatic number, denoted by χ(G), of G is the minimum k such that G is

k-colorable. A d-defective k-coloring of G is a mapping ϕ : V (G) → {1, 2, . . . , k} such that for

each vertex v ∈ V (G), v has at most d neighbors of the same color as itself. A k-list assignment

of G is a function L that assigns a list L(v) of colors to each vertex v ∈ V (G) where |L(v)| = k.

A d-defective L-coloring is a mapping ϕ that assigns a color ϕ(v) ∈ L(v) to each vertex v ∈ V (G)

such that v has at most d neighbors of the same color as itself. A graph G is d-defective k-choosable
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if there exists an (L, d)-coloring for every list assignment L with |L(v)| = k for all v ∈ V (G). A

graph is 0-defective k-choosable if and only if it is k-choosabe. The choosable number, denoted by

ch(G), of G is the minimum k such that G is k-choosable.

The Alon-Tarsi number of G, denoted by AT (G), was defined by Jensen and Toft
Jen
[11]. It

follows from the Alon-Tarsi Theorem
Alo1
[1] that ch(G) ≤ AT (G) for any graph G. It is proved that

the difference AT (G) − ch(G) can be arbitrarily large. DP-coloring was introduced by Dvořák

and Postle
DP
[7] as a generation of list coloring. Clearly, ch(G) ≤ χDP (G), where χDP (G) is the

DP-chromatic number of a graph G. A painting coloring was introduced by Schauz
US14
[16] and it is

proved that ch(G) ≤ χP (G) for any graph G, where χP (G) is the paint number of G.

It is well-known that a graph H1 has an acyclic orientation D with ∆+
D ≤ d if and only if H1 is

d-degenerate, where ∆+
D is the maximum degree D. If G is d-degenerate, then each of choosable

number ch(G), Alon-Tarsi number AT (G), paint number χP (G) and DP-chromatic number χDP

is at most d + 1. This implies that if G is (d, h)-decomposable, then there is a subgraph H of

G where ∆H ≤ h such that G− E(H) is h-defective-(d + 1)-choosable, (d+ 1)-DP-colorable and

AT (G− E(H)) ≤ d+ 1.

Defective coloring of graphs was considered by Cowen, Cowen and Woodall
Cow
[3] who proved

that every planar graph is 2-defective 3-colorable, which was improved by Eaton and Hull
EH
[8],

independently, Škrekovski
S
[17], who proved that every planar graph is 2-defective 3-choosable.

Cushing and Kierstead
Cush
[4] proved that every planar graph is 1-defective 4-choosable. Grytczuk

and Zhu
Gry
[10] strengthen the result and proved that every planar graph G has a matching M such

that AT (G−M) ≤ 4. Lih, Song, Wang and Zhang
L
[12] proved that every planar graph G without

4-cycles and l-cycles for some l ∈ {5, 6, 7} is 1-defective 3-choosable. Dong and Xu
Xu
[6] showed

that such result is also true for some l ∈ {8, 9}. Lu and Zhu
LZ20
[14] proved that every planar graph

without 4- and l-cycles G, where l = 5, 6, 7, has a matching M such that G−M is AT (G−M) ≤ 3.

Gonçalves
Go09
[9] proved that every planar graph is (3, 4)-decomposable. Zhu

Zhu00
[20] proved that every

planar graph is (2, 8)-decomposable. Recently, Li, Lu, Wang and Zhu
Zhu
[13] improve this result and

prove that for l ∈ {5, 6, 7, 8, 9}, every planar graph without 4- and l-cycles is (2, 1)-decomposable.

Cho, Choi, Kim, Park, Shan and Zhu
Zhu21
[5] prove that every planar graph is (4, 1)-, (3, 2)-, (2, 6)-

decomposable and that there are planar graphs which are not (2, 3)-decomposable and there are

also planar graphs which are not (1, h)-decomposable.

We are interested in decompositions of graphs of nonnegative characteristic in this paper. The

characteristic of a surface Σ is defined to be |V (G)| − |E(G)| + |F (G)| for any graph G which is

2-cell embedded in Σ. All the surfaces of nonnegative characteristic are the Euclidean plane, the

projective plane, the torus and the Klein bottle. A graph of nonnegative characteristic means that

it can be embedded on a surface of nonnegative characteristic. Throughout this paper, a graph of

nonnegative characteristic is called a NC-graph. In this paper, we prove the following results.

th0 Theorem 1.1 A NC-graph G is (3, 1)-decomposable if one of the following hold:

(1) G has no chord 5-cycles.

(2) G has no chord 6-cycles.

(3) G has no chord 7- nor adjacent 4-cycles.

For simplicity, we define a family G of NC-graphs such that G ∈ G if and only if G has neither
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chord 5-cycles nor chord 6-cycles nor chord 7- and adjacent 4-cycles. From Theorem
th0
1.1, next

corollary follows immediately.

Corollary 1.2 Every graph G ∈ G has a matching M such that each of choice number, paint

number, DP-number and Alon-Tarsi number of G−M is at most 4.

A graph G is toroidal if G can be drawn on the torus so that the edges meet only at the vertices

of the graph.

Corollary 1.3 (1) (Chen, Zhu and Wang,
Chen
[2]) Every graph of nonnegative characteristic without

either chord 5-cycles or chord 6-cycles is 1-defective 4-choosable.

(2) (Zhang,
Zhang
[19]) Every toroidal graph G without chord 7-cycles and adjacent 4-cycles is 1-

defective 4-choosable.

th1 Theorem 1.4 A NC-graph G is (2, 1)-decomposable if one of the following hold:

(1) G has neither 3- nor 4-cycles.

(2) G has neither 3- nor 6-cycles.

(3) G has neither 4- nor 6-cycles.

Similarly, we define a family H of NC-graphs such that G ∈ H if and only if G has no i-cycles

nor j-cycles for any {i, j} ⊆ {3, 4, 6}. We obtain the following corollary from Theorem
th1
1.4.

Corollary 1.5 Every graph G ∈ H has a matching M such that each of choice number, paint

number, DP-number and Alon-Tarsi number of G−M is at most 3.

cor1 Corollary 1.6 (Dong and Xu
Xu
[6]) Every toroidal graph G which contains neither i-cycles nor

j-cycles for any subset {i, j} ⊆ {3, 4, 6} is 1-defective 3-colorable.

In the end of this section, we introduce some terminology and notation. Let G be a graph

and denote by V (G), E(G), F (G) (or V,E, F for short) the sets of vertices, edges and faces of G,

respectively. Let G be a (di)graph. For a vertex v, denote by d(v) (d+(v) or d−(v) in digraph)

the degree (out-degree or in-degree in digraph) of v. Denote by NG(v) (or N(v) for short) the set

of neighbors of a vertex v in G. A k-vertex (k+-vertex or k−-vertex) is a vertex of degree k ( at

least k or at most k). Similarly, a k-face (k+-face or k−-face) is a face of degree k (at least k or

at most k). For f ∈ F (G), denote by d(f) the degree of face f in G which is the number of edges

incident with f and b(f) the boundary walk of f and write f = [u1u2 . . . ul] when u1, u2, . . . , ul are

the boundary vertices of f in clockwise order. A l-face [u1u2 . . . ul] is called an (a1, a2, . . . , al)-face

if d(ui) = ai for i = 1, 2, . . . , l. Two faces are adjacent if they share at least one common edge. For

v ∈ V (G) and i ≥ 3, denote by ni(v) (ni+(v) or (ni−(v)) the number of all i- (i+- or (i−-) faces

incident to v. A cycle is a k-cycle if it contains k vertices. For a cycle C, an edge xy ∈ E(G)\E(C)

is called a chord of C if x, y ∈ V (C). Let C be a k-cycle. Then C is called chord k-cycle.
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2 Reducible configurations

Suppose otherwise that Theorems
th0
1.1 and

th1
1.4 are both false. Assume that

G ∈ G is a counterexample to Theorem
th0
1.1 with |V (G)| minimized. (1) e1

In this case, G has no chord 5-cycles nor chord 6-cycles nor chord 7-cycles and adjacent 4-cycles.

Clearly, G has no (3, 1)-decomposition but any subgraph of G does. Similarly, assume that

H ∈ H is a counterexample to Theorem
th1
1.4 with |V (H)| minimized. (2) e2

In this case, H has neither i-cycle nor j-cycle, where {i, j} ⊂ {3, 4, 6}. Clearly, H has no (2, 1)-

decomposition but any subgraph of H does. In this section, we establish several lemmas. The

following lemma is straightforward.

lem0 Lemma 2.1 Assume that G is a NC-graph and d(v) ≥ 3 for all v ∈ V (G). If G has no 6-cycles,

then two 4-faces are not adjacent.

Recall that a graph H is d-degenerate if and only if H has an acyclic orientation D with

∆+
D ≤ d. Thus, to prove that a graph G is (d, h)-decomposable, it is sufficient to show that G can

be decomposed into H1 and H2 such that H1 has an acyclic orientation with ∆+
D ≤ d and H2 has

the maximum degree at most k. From Lemma
lem1
2.2 to

lem4
2.5, we assume that G satisfies Assumption

(
e1
1).

lem1 Lemma 2.2 (1) d(v) ≥ 4 for all v ∈ V (G);

(2) G does not contain two adjacent 4-vertices.

Proof. (1) Suppose otherwise that v is a 3-vertex and N(v) = {v1, v2, v3}. By the minimality of

G, there is a (3, 1)-decomposition (D∗,M∗) of G−{v}. Let M = M∗ and D = D∗∪{−→vv1,
−→vv2,

−→vv3}.

Then (D,M) is a (3, 1)-decomposition of G, a contradiction.

(2) Suppose otherwise that u is a 4-vertex adjacent to a 4-vertex v. Let N(u) = {u1, u2, u3, v}

and N(v) = {v1, v2, v3, u}. By the minimality of G, there is a (3, 1)-decomposition (D∗,M∗) of

G − {u, v}. Let M = M∗ ∪ {uv} and D = D∗ ∪ {−→vv1,
−→vv2,

−→vv3,
−−→uu1,

−−→uu2,
−−→uu3}. Then (D,M) is a

(3, 1)-decomposition of G, a contradiction.

lem2 Lemma 2.3 (1) A 5-vertex v is incident with at most one (4, 5, 5)-face.

(2) A 5-vertex v is not incident with three consecutively adjacent 3-faces, one of which is

(4, 5, 5)-face and other two of which are (4, 5, 6)-faces.

Proof. Let v1, v2, . . . , v5 be the neighbors of v in clockwise order, and f1, f2, . . . , f5 be the incident

faces of v with vvi, vvi+1 ∈ b(fi) for i = 1, 2, . . . , 5 where indices are taken modulo 5.

(1) Suppose otherwise that v is incident with two (4, 5, 5)-faces. There are two cases.

Case 1. f1 and f2 are (4, 5, 5)-faces.

We first assume that d(v1) = d(v3) = 5 and d(v2) = 4. LetN(v1) = {v11, v12, v13, v, v2}, N(v2) =

{v21, v, v1, v3} and N(v3) = {v31, v32, v33, v, v2}.
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By the minimally of G, there is a (3, 1)-decomposition (D∗,M∗) of G−{v, v1, v2, v3}. Let M =

M∗∪{vv1, v2v3} andD = D∗∪{−−−→v1v11,
−−−→v1v12,

−−−→v1v13,
−−−→v2v21,

−−−→v3v31,
−−−→v3v32,

−−−→v3v33,
−→vv3,

−→vv4,
−→vv5,

−→v2v,
−−→v2v1}.

Then (D,M) is a (3, 1)-decomposition of G, a contradiction.

We further assume that d(v1) = d(v3) = 4 and d(v2) = 5. LetN(v1) = {v11, v12, v, v2}, N(v2) =

{v21, v22, v, v1, v3} and N(v3) = {v31, v32, v, v2}.

By the minimality of G, there is a (3, 1)-decomposition (D∗,M∗) of G − {v, v1, v2, v3}. Let

M = M∗∪{v1v2, vv3} andD = D∗∪{−−−→v1v11,
−−−→v1v12,

−−−→v2v21,
−−−→v2v22,

−−−→v3v31,
−−−→v3v32,

−→vv2,
−→vv4,

−→vv5,
−→v1v,

−−→v3v2}.

Then (D,M) is a (3, 1)-decomposition of G, a contradiction.

Case 2. f1 and f3 are (4, 5, 5)-faces.

We assume, without loss of generality, that d(v1) = d(v3) = 4, d(v2) = d(v4) = 5 and N(v1) =

{v11, v12, v, v2}, N(v2) = {v21, v22, v23, v, v1}, N(v3) = {v31, v32, v, v4}, N(v4) = {v41, v42, v43, v, v3}.

By the minimality of G, there is a (3, 1)-decomposition (D∗,M∗) of G−{v, v1, v2, v3, v4}. Let

M = M∗ ∪ {v1v2, v3v4} and D = D∗ ∪ {−−−→v1v11,
−−−→v1v12,

−−−→v2v21,
−−−→v2v22,

−−−→v2v23,
−−−→v3v31,

−−−→v3v32,
−−−→v4v41,

−−−→v4v42,
−−−→v4v43,

−→vv2,
−→vv4,

−→vv5,
−→v1v,

−→v3v}. Then (D,M) is a (3, 1)-decomposition of G, a contradiction.

(2) By (1) and by symmetry, suppose otherwise that f1 is a (4, 5, 5)-face and f2, f3 are

two (4, 5, 6)-faces. In this case, d(v1) = 5, d(v2) = d(v4) = 4 and d(v3) = 6. Let N(v1) =

{v11, v12, v13, v, v2}, N(v2) = {v21, v, v1, v3}, N(v3) = {v31, v32, v33, v, v2, v4} andN(v4) = {v41, v42,

v, v3}. By the minimality of G, there is a (3, 1)-decomposition (D∗,M∗) of G− {v, v1, v2, v3, v4}.

LetM = M∗∪{v1v2, v3v4} andD = D∗∪{−−−→v1v11,
−−−→v1v12,

−−−→v1v13,
−−−→v2v21,

−−−→v3v31,
−−−→v3v32,

−−−→v3v33,
−−−→v4v41,

−−−→v4v42,
−→vv1,

−→vv3,
−→vv5,

−→v2v,
−−→v2v3,

−→v4v}. Then (D,M) is a (3, 1)-decomposition of G, a contradiction.

lem3 Lemma 2.4 If G is a NC-graph without either chord 5-cycles or chord 7- and adjacent 4-cycles,

then every 4+-vertex v is incident with at most two consecutively adjacent 3-faces. Moreover, v is

incident with at most ⌊2d(v)3 ⌋ 3-faces.

Proof. Suppose otherwise that v is a 4+-vertex incident with three consecutively adjacent 3-

faces [v1vv2], [v2vv3] and [v3vv4]. In this case, G has a 5-cycle [v1v2v3v4v] with a chord vv3, a

contradiction. Observe that two adjacent 4-faces f1 = [v1v2v3v], f2 = [v2v3v4v] have one common

edge v2v3. Thus, G has adjacent 4-cycles, a contradiction. Therefore, v is incident with at most

⌊2d(v)3 ⌋ 3-faces.

lem4 Lemma 2.5 Let G be a NC-graph without chord 6-cycles. Then every 5+-vertex v is incident to

at most three consecutively adjacent 3-faces. Thus, v is incident to at most (d(v)− 2) 3-faces.

Proof. Suppose otherwise that v is a 5+-vertex incident to four consecutively adjacent 3-faces

[v1vv2], [v2vv3], [v3vv4], [v4vv5]. Then [v1v2v3v4v5v] is a 6-cycle with a chord vv3, a contradiction.

Thus, v is incident to at most (d(v)− 2) 3-faces.

From Lemma
lem5
2.6 to

lem6
2.8, we assume that G satisfies Assumption (

e2
2).

lem5 Lemma 2.6 (1) d(v) ≥ 3 for all v ∈ V (G);

(2) G does not contain two adjacent 3-vertices.

Proof. (1) Suppose otherwise that v is a 2-vertex and N(v) = {v1, v2}. By the minimality of

G, there is a (2, 1)-decomposition (D∗,M∗) of G − {v}. Let M = M∗ and D = D∗ ∪ {−→vv1,
−→vv2}.

Then (D,M) is a (2, 1)-decomposition of G, a contradiction.
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(2) Suppose otherwise that u is a 3-vertex adjacent to a 3-vertex v. Let N(u) = {u1, u2, v} and

N(v) = {v1, v2, u}. By the minimally of G, there is a (2, 1)-decomposition (D∗,M∗) of G−{u, v}.

Let M = M∗ ∪{uv} and D = D∗ ∪{−→vv1,
−→vv2,

−−→uu1,
−−→uu2}. Then (D,M) is a (2, 1)-decomposition of

G, a contradiction.

lem7 Lemma 2.7 If A NC-graph G has has no 3-cycle nor 6-cycle, then it has no any underlying

subgraph of G in Fig.1.

Proof. Suppose otherwise that G contains one of the figures in Fig.1. Let X be all the labeled

vertices of each figure. By the minimality of G, G∗ = G−X has a (2, 1)-decomposition (D∗,M∗).

In Fig.1 (1), X = {v1, . . . , v11}. Let M
′ = {v1v5, v2v3, v6v7, v8v9, v10v11} and D′ = {−−→v1v2,

−−→v1v7,
−−→v2v9,

−−→v3v4,
−−→v3v8,

−−→v4v5,
−−→v5v6,

−−−→v8v10,
−−−→v11v4}. In Fig.1 (2), X = {v1, . . . , v11}. LetM

′ = {v1v5, v2v3, v6v7,

v8v9, v4v11} and D′ = {−−→v1v2,
−−→v1v7,

−−→v2v9,
−−→v3v4,

−−→v3v8,
−−→v4v5,

−−→v5v6,
−−−→v8v10,

−−−→v10v11}. In Fig.1 (3), X =

{v1, . . . , v11}. Let M
′ = {v1v5, v6v7, v2v11, v4v8, v9v10} and D′ = {−−→v1v2,

−−→v1v7,
−−→v2v3,

−−→v3v4,
−−→v3v9,

−−→v4v5,
−−→v5v6,

−−→v9v8,
−−−→v11v10}. In Fig.1 (4), X = {v1, . . . , v11}. Let M ′ = {v1v5, v6v7, v2v11, v4v8, v9v10} and

D′ = {−−→v1v2,
−−→v1v7,

−−→v2v3,
−−→v3v4,

−−→v3v9,
−−→v4v5,

−−→v5v6,
−−→v9v8,

−−−→v10v11}. In Fig.1 (5), X = {v1, v2, . . . , v7, v9}.

Let M ′ = {v1v2, v4v5, v6v7} and D′ = {−−→v1v5,
−−→v1v7,

−−→v2v6,
−−→v2v9,

−−→v3v2,
−−→v3v4,

−−→v7v3,
−−→v7v9}. In Fig.1 (6),

X = {v1, . . . , v9}. LetM
′ = {v1v5, v3v4, v6v7, v8v9} andD′ = {−−→v1v2,

−−→v1v7,
−−→v2v6,

−−→v3v2,
−−→v3v9,

−−→v4v8,
−−→v5v4,

−−→v5v9,
−−→v6v5}. In Fig.1 (7), X = {v1, . . . , v11}. Let M ′ = {v2v3, v4v5, v6v7, v8v9, v10v11} and D′ =

{−−→v1v5,
−−→v1v7,

−−→v2v1,
−−→v2v6,

−−→v3v4,
−−→v3v9,

−−→v4v8,
−−−→v9v10,

−−−→v11v2}.

Let M = M∗ ∪ M ′ and D be the orientation of G − M obtained by adding arcs in D′ and

all the edges between X and V \ X oriented from X to V \ X. Then ∆(M) ≤ 1 and ∆+
D ≤ 2.

Moreover, D is an acyclic orientation of G −M . Thus (D,M) is a (2, 1)-decomposition of G, a

contradiction.
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Fig. 1: Reducible configurations
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lem6 Lemma 2.8 A NC-graph G ∈ H has no a (3, 4, 3, 4)-face,

Proof. Suppose otherwise that G has a (3, 4, 3, 4)-face [v1v2v3v4]. Let N(v1) = {v11, v2, v4}, N(v2)

= {v21, v22, v1, v3}, N(v3) = {v31, v2, v4} and N(v4) = {v41, v42, v1, v3}. By the minimality of G,

there is a (2, 1)-decomposition (D∗,M∗) of G − {v1, v2, v3, v4}. Let M = M∗ ∪ {v1v2, v3v4} and

D = D∗∪{−−−→v1v11,
−−−→v2v21,

−−−→v2v22,
−−−→v3v31,

−−−→v4v41,
−−−→v4v42,

−−→v1v4,
−−→v3v2}. Then (D,M) is a (2, 1)-decomposition

of G, a contradiction.

3 Proofs of Theorem
th0

1.1 and
th1

1.4

We are now ready to complete the proof of Theorem
th0
1.1 and

th1
1.4. We define initial charge µ(x) =

d(x)− 4 for each x ∈ V ∪ F . By Euler’s Formula |V (G)| + |F (G)| − |E(G)| ≥ 0,

∑

v∈V (G)

(d(v) − 4) +
∑

f∈F (G)

(d(f)− 4) ≤ 0.

Let µ′(x) be the charge of x ∈ V (G) ∪ F (G) after the discharge procedure. In order to prove the

Theorems
th0
1.1 and

th1
1.4, we shall design some discharging rules so that after discharging. Since the

total sum of weights is kept unchanged, the new weight function µ′ satisfies

(I) µ′(x) ≥ 0 for all x ∈ V (G) ∪ F (G);

(II) There exists some x∗ ∈ V (G) ∪ F (G) such that µ′(x∗) > 0.

Thus

0 <
∑

x∈V (G)∪F (G)

µ′(x) =
∑

x∈V (G)∪F (G)

µ(x) = 0.

This contradiction completes our proofs.

3.1 Proofs of Theorem
th0

1.1(1) and (3).

In this section, we prove Theorem
th0
1.1(1) and (3). Now we define the discharge rules as follows.

(R1) Every 5-vertex sends 1
3 to each incident (5+, 5+, 5+)-face, 1

2 to each incident (4, 5, 5)-face

and 5
12 to each incident (4, 5, 6+)-face.

(R2) Every 6+-vertex sends 7
12 to each incident 3-face.

(R3) Every 5+-face sends 11
60 to each incident vertex.

It suffices to show that the new weight function µ′ satisfies Properties (I) and (II).

We first check µ′(v) ≥ 0 for all v ∈ V (G). By Lemma
lem1
2.2 (1), d(v) ≥ 4.

1. d(v) = 4. Since no 4-vertex is involved in the discharge procedure, µ′(v) = µ(v) = 4−4 = 0.

2. d(v) = 5. Then µ(v) = 1. By Lemma
lem3
2.4, n3(v) ≤ 3. If n3(v) ≤ 2, then v is incident with

at most one (4, 5, 5)-face by Lemma
lem2
2.3(1) and is not incident with any (4, 4, 5−)-face by

Lemma
lem1
2.2(2). By (R1), µ′(v) ≥ 1− 1

2−
5
12 = 1

12 > 0. Let n3(v) = 3. Then v is incident with

two 4+-faces. If v is incident with one 4-face, then G has a chord 5-face and so does a chord

7



7-face and adjacent 4-cycles, contrary to our assumption. Thus, n4(v) = 0. This implies

that n5+(v) = 2. By Lemmas
lem2
2.3(1) and

lem1
2.2(2), v is incident with at most one (4, 5, 5)-face

and is not incident with any (4, 4, 5−)-face. Thus µ′(v) ≥ 1− 1
2 − 2× 5

12 + 2× 11
60 = 1

30 > 0

by (R1) and (R3).

3. d(v) = 6. Then µ(v) = 2. By Lemma
lem3
2.4, n3(v) ≤ 4. If n3(v) ≤ 3, then µ′(v) ≥ 2− 3× 7

12 =
1
4 > 0 by (R2). Thus, assume that n3(v) = 4. In this case, v is incident with two 4+-faces.

If v is indeed incident one 4-face, then G has a chord 5-cycle and so does a chord 7-cycle

and adjacent 4-cycles, contrary to our assumption. Thus, n4(v) = 0. This implies that

n5+(v) = 2. Thus µ′(v) ≥ 2− 4× 7
12 + 2× 11

60 = 1
30 > 0 by (R2) and (R3).

4. d(v) ≥ 7. By Lemma
lem3
2.4, n3(v) ≤ ⌊2d(v)3 ⌋. Thus µ′(v) ≥ d(v) − 4 − 7

12 × ⌊2d(v)3 ⌋ ≥

d(v) − 4− 7
12 × 2d(v)

3 = 11
18d(v)− 4 ≥ 5

18 > 0 by (R2).

Then we check µ′(f) ≥ 0 for all f ∈ F (G).

1. d(f) = 3. Then µ(f) = −1. By Lemma
lem1
2.2(2), v is not incident with any (4, 4, 5−)-

face. If f is a (4, 5, 5)-face, then µ′(f) ≥ −1 + 2 × 1
2 = 0 by (R1). If f is a (4, 5+, 6+)-

face, then µ′(f) ≥ −1 + 5
12 + 7

12 = 0 by (R1) and (R2). If f is a (5+, 5+, 5+)-face, then

µ′(f) ≥ −1 + 3× 1
3 = 0 by (R1) and (R2).

2. d(f) = 4. Since no 4-face is involved in the discharge procedure, µ(f) = µ′(f) = 4− 4 = 0.

3. d(f) ≥ 5. Then µ′(f) ≥ d(f)− 4− 11
60d(f) =

49
60d(f)− 4 ≥ 1

12 > 0 by (R3).

So far, we have proved Property (I). Assume that Property (II) does not hold. This implies that

µ′(x) = 0 for all x ∈ V (G) ∪ F (G). We observe the above proof and have each of the following

holds.

(a) For each vertex v ∈ V (G), d(v) = 4;

(b) For each face f ∈ F (G), 3 ≤ d(f) ≤ 4.

By (a), G has no 5+-vertices. Thus G is 4-regular, which is contrary to Lemma
lem1
2.2 (2). This

completes the proofs of Theorem
th0
1.1 (1) and (3).

3.2 Proof of Theorem
th0

1.1(2)

In this section, we prove Theorem
th0
1.1(2). Now we define the discharge rules as follows.

(R1) Every 5-vertex sends 1
3 to each incident (5+, 5+, 5+)-face, 1

2 to each incident (4, 5, 5)-face,
5
12 to each incident (4, 5, 6)-face and 61

150 to each incident (4, 5, 7+)-face.

(R2) Every 6-vertex sends 7
12 to each incident 3-face.

(R3) Every 7+-vertex sends 89
150 to each incident 3-face.

(R4) Every 5-face sends 11
60 to each incident vertex.

(R5) Every 6+-face sends 49
150 to each incident vertex.
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It suffices to show that the new weight function µ′ satisfies Properties (I) and (II). Note that

each 3-face is not adjacent to 5-face since G has no chord 6-cycles.

We first check µ′(v) ≥ 0 for all v ∈ V (G). By Lemma
lem1
2.2 (1), d(v) ≥ 4.

1. d(v) = 4. Since no 4-vertex is involved in the discharge procedure, µ′(v) = µ(v) = 4−4 = 0.

2. d(v) = 5. By Lemma
lem4
2.5, n3(v) ≤ 3. If n3(v) ≤ 2, then v is incident with at most one

(4, 5, 5)-face by Lemma
lem2
2.3(1) and is not incident with any (4, 4, 5−)-face by Lemma

lem1
2.2(2).

By (R1), µ′(v) ≥ 1− 1
2 − 5

12 = 1
12 > 0 by (R1). Thus, assume that n3(v) = 3.

Suppose that v1, v2, . . . , v5 are the neighbors of v in clockwise order, and f1, f2, . . . , f5 are the

incident faces of v with vvi, vvi+1 ∈ b(fi) for i = 1, 2, . . . , 5 where indices are taken modulo

5. By symmetry, there are two cases: either f1, f2 and f3 or f1, f2 and f4 are 3-faces.

In the former case, since G has no chord 6-cycles, each of f4 and f5 is not a 5-face. Thus,

n5(v) = 0. We claim that at most one of f4 and f5 is a 4-face. Suppose otherwise. Let

f4 = [vv4xv5] and f5 = [v1vv5y]. Since G has no chord 6-cycle, x, y ∈ {v, v1, v2, v3, v4, v5}.

Since G is a simple graph, x /∈ {v, v2, v3}. Since n3(v) = 3, x /∈ {v1, v4, v5}. Similarly,

y /∈ {v, v5, v2, v4, v1}. Thus, x = v2 and y = v3. In this case, G has a chord 6-cycle

vv4v3v1v2v5v, a contradiction. Thus n4(v) ≤ 1. This implies that 1 ≤ n6+(v) ≤ 2. By

Lemma
lem2
2.3(1), v is incident with at most one (4, 5, 5)-face. If v is not incident with (4, 5, 5)-

face, then µ′(v) ≥ 1−3× 5
12+

49
150 = 23

300 > 0 by (R1) and (R5). Thus, assume that v is incident

with one (4, 5, 5)-face. By Lemma
lem2
2.3(2), v is incident with at most one (4, 5, 6)-faces. By

(R1) and (R5), µ′(v) ≥ 1− 1
2 −

5
12 − 61

150 + 49
150 = 1

300 > 0.

In the latter case, since G has no chord 6-cycles, none of f3 and f5 is a 5-face. Thus

n5(v) = 0. If f3 = [vv3xv4] is a 4-face, then x /∈ {v, v2, v3, v4, v5} since G is a simple

graph and by Lemma
lem1
2.2(1). If x 6= v1, then vv2v3xv4v5v is a 6-cycle with a chord vv3, a

contradiction. If x = v1, then v1v4v5vv3v2v1 is a 6-cycle with a chord vv4, a contradiction.

By symmetry, f5 is not a 4-face. Thus, n4(v) = 0. This implies that n6+(v) = 2. Thus

µ′(v) ≥ 1− 3× 1
2 + 2× 49

150 = 23
150 > 0 by (R1) and (R5).

3. d(v) = 6. Then µ(v) = 2. By Lemma
lem4
2.5, n3(v) ≤ 4. If n3(v) ≤ 3, then µ′(v) ≥ 2− 3× 7

12 =
1
4 > 0 by (R2). Thus, assume that n3(v) = 4.

We now prove n4(v) = n5(v) = 0. Assume that v1, v2, . . . , v6 are the neighbors of v in

clockwise order, and f1, f2, . . . , f6 are the incident faces of v with vvi, vvi+1 ∈ b(fi) for

i = 1, 2, . . . , 6 where indices are taken modulo 6. Since G has no chord 6-cycles, n5(v) = 0

by Lemma
lem4
2.5. By Lemma

lem4
2.5 and symmetry, we consider two cases: either f1, f2, f3, f5 or

f1, f2, f4, f5 are four 3-faces.

In the former case, assume that f4 = [vv4xv5] is a 4-face. Since G is a simple graph,

x /∈ {v, v3, v4, v5, v6} by Lemma
lem1
2.2(1). If x = v2, then v2v4v3vv6v5v2 is a 6-cycle with a

chord vv4, a contradiction. If x = v1, then v1v2v3v4vv5v1 is a 6-cycle with a chord vv3,

a contradiction. If x 6= v1 and x 6= v2, then xv5vv2v3v4x is a 6-cycle with a chord vv4, a

contradiction. Thus f4 is not a 4-face. By symmetry, f6 is not a 4-face. Thus n4(v) = 0.
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In the latter case, assume that f3 = [vv3xv4] is a 4-face. Since G is a simple graph, x /∈

{v, v2, v3, v4, v5} by Lemma
lem1
2.2(1). If x = v1, then v1v2vv6v5v4v1 is a 6-cycle with a chord

vv4, a contradiction. By symmetry, x 6= v6. If x 6= v1 and x 6= v6, then v1v2v3xv4v5v1 is a

6-cycle with a chord vv5, a contradiction. Thus f3 is not a 4-face. By symmetry, f6 is not a

4-face. Thus, n4(v) = 0.

So far, we have proved that n4(v) = n5(v) = 0. This implies that n6+(v) = 2. Thus

µ′(v) ≥ 2− 4× 7
12 + 2× 49

150 = 8
25 > 0 by (R2) and (R5).

4. d(v) ≥ 7, then by Lemma
lem4
2.5, v is incident with at most (d(v) − 2) 3-faces. Thus µ′(v) ≥

d(v) − 4− 89
150 (d(v) − 2) = 61

150d(v)−
422
150 ≥ 1

30 > 0 by (R3).

Then we check µ′(f) ≥ 0 for all f ∈ F (G).

1. d(f) = 3. By Lemma
lem1
2.2(2), v is not incident with any (4, 4, 4+)-face. If f is a (5+, 5+, 5+)-

face, then µ′(f) ≥ −1 + 3 × 1
3 = 0 by (R1)–(R3). If f is a (4, 5, 5)-face, then µ′(f) ≥

−1+2× 1
2 = 0 by (R1). If f is a (4, 5+, 6)-face, then µ′(f) ≥ −1+ 5

12 +
7
12 = 0 by (R1)–(R3).

If f is a (4, 5+, 7+)-face, then µ′(f) ≥ −1 + 61
150 + 89

150 = 0 by (R1)–(R3).

2. d(f) = 4. Since 4-faces are not involved in discharge procedure, µ(f) = µ′(f) = 0.

3. d(f) = 5. Then µ(f) = 1. By (R4), µ′(f) ≥ 1− 5× 11
60 = 5

60 > 0.

4. d(f) ≥ 6. By (R5), µ′(f) ≥ d(f)− 4− 49
150d(f) =

101
150d(f)− 4 ≥ 6

150 > 0.

We have proved Property (I). Assume that Property (II) does not hold. This implies that µ′(x) = 0

for all x ∈ V (G) ∪ F (G). We check above proof and obtain the following assertions.

(a) For each vertex v ∈ V (G), d(v) = 4;

(b) For each face f ∈ F (G), 3 ≤ d(f) ≤ 4.

By (a), G has no 5+-vertices. Thus G is 4-regular, which is contrary to Lemma
lem1
2.2 (2). This

completes the proof of Theorem
th0
1.1 (2).

3.3 Proof of Theorem
th1

1.4(1)

In this section, we prove Theorem
th1
1.4(1). Now we define the discharge rules as follows.

(R1) Every 5+-face sends 1
3 to each incident 3-vertex.

It suffices to show that the new weight function µ′ satisfies Properties (I) and (II).

We first check µ′(v) ≥ 0 for all v ∈ V (G). By Lemma
lem5
2.6 (1), d(v) ≥ 3.

1. d(v) = 3. Then µ(v) = 3− 4 = −1. Since G has no 3- and 4-cycles, v is incident with three

5+-faces. Thus µ′(v) ≥ −1 + 3× 1
3 = 0 by (R1).

2. d(v) = 4. Then µ′(v) = µ(v) = 4− 4 = 0.

3. d(v) = 5. Then µ′(v) = µ(v) = d(v)− 4 ≥ 1 > 0.

10



We further check µ′(f) ≥ 0 for all f ∈ F (G). Note that d(f) ≥ 5.

By Lemma
lem5
2.6 (2), f is incident with at most ⌊d(f)2 ⌋ 3-vertices. Thus µ′(f) ≥ d(f)− 4− 1

3 ×

⌊d(f)2 ⌋ ≥ 5
6d(f)− 4 ≥ 1

6 > 0.

We have proved Property (I). Assume that Property (II) does not hold. This implies that

µ′(x) = 0 for all x ∈ V (G)∪F (G). Considering above proof, we obtain that G has no 5+-face and

hence every face of G is a 4−-face, contrary to our assumption that G has no 3-cycle nor 4-cycle.

This completes the proof of Theorem
th1
1.4(1).

3.4 Proof of Theorem
th1

1.4(2)

In this section, we prove Theorem
th1
1.4(2). Since G has no 6-cycle, each 3-vertex is incident with

at most one 4-face by Lemma
lem0
2.1. A 3-vertex v is bad if v is incident with one 4-face and good

otherwise.

Now we define the discharge rules as follows.

(R1) Every 5+-face sends 1
3 to each incident good 3-vertex and 1

2 to each incident bad 3-vertex.

It suffices to show that the new weight function µ′ satisfies Properties (I) and (II). Note that

each 4-face is not adjacent to 4-face by Lemma
lem0
2.1 and

lem5
2.6 (1).

We first check µ′(v) ≥ 0 for all v ∈ V (G). By Lemma
lem5
2.6(1), d(v) ≥ 3.

1. d(v) = 3. If v is good, then v is incident with three 5+-faces. Thus µ′(v) ≥ −1 + 3× 1
3 = 0

by (R1). If v is bad, then v is incident with two 5+-faces. Thus µ′(v) ≥ −1 + 2× 1
2 = 0 by

(R1).

2. d(v) = 4. Since any 4-vertex does not involved in discharge procedure, µ′(v) = µ(v) =

4− 4 = 0.

3. d(v) ≥ 5. Then µ(v) = d(v)−4. Since any 5-vertex does not involved in discharge procedure,

µ′(v) = µ(v) ≥ 1 > 0.

We further check µ′(f) ≥ 0 for all f ∈ F (G). Note that d(f) ≥ 4 and d(f) 6= 6.

1. d(f) = 4. Since any 4-face does not involved in discharge procedure, µ′(f) = µ(f) = 4−4 =

0.

2. d(f) = 5. Then µ(f) = 5 − 4 = 1. By Lemma
lem5
2.6(2), f is incident with at most two

3-vertices. If v is incident with at most one 3-vertex, then µ′(f) ≥ 1 − 1
2 = 1

2 > 0 by (R1).

Let v be incident with two 3-vertices v1 and v2. If one of v1 and v2 is bad and the other is

good, then µ′(v) ≥ 1 − 1
2 − 1

3 = 1
6 > 0 by (R1). If both v1 and v2 are bad 3-vertices, then

µ′(v) ≥ 1− 2× 1
2 = 0 by (R1).

3. d(f) ≥ 7. By Lemma
lem5
2.6(2), f is incident with at most ⌊d(f)2 ⌋ 3-vertices. Thus µ′(v) ≥

d(f)− 4− 1
2 × ⌊d(f)2 ⌋ ≥ 3

4d(f)− 4 ≥ 5
4 > 0.
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We have proved Property (I). Assume that Property (II) does not hold. This implies that µ′(x) = 0

for all x ∈ V (G) ∪ F (G). Considering above proof, we establish the following claims.

Claim 1. Each of the following holds.

(1) For each vertex v ∈ V (G), 3 ≤ d(v) ≤ 4.

(2) For each face f ∈ F (G), f is either a 5-face incident with two bad 3-vertices or a 4-face.

Claim 2. Let f be a 5-face. Then each of the following holds.

(1) f is not incident with three consecutively adjacent 4-vertices.

(2) If f is adjacent to a 4-face g, then g is a (3, 4, 4, 4)-face.

Proof of Claim 2. (1) By Claim 1(2), f is incident two bad 3-vertices. By Lemma
lem5
2.6(2), f is

a (4, 3, 4, 3, 4)-face and hence f is not incident with three consecutively adjacent 4-vertices.

(2) it follows by Lemma
lem6
2.8. �

Claim 3. G has a 5-face.

Proof of Claim 3. Suppose otherwise that G has no 5-face. By Claim 1(2), G has only 4-faces.

If G has more than one 4-face, then G contains two adjacent 4-faces, contrary to Lemma
lem0
2.1. �

By Claims 1(2) and 3, we assume that G has a 5-face f = [v1v2v3v4v5] incident with two bad

3-vertices. By Claim 2(1) and by symmetry, assume that v1 and v3 are two 3-vertices. Thus, v1

and v3 are incident with one 4-face and two 5-faces. Assume that v1 is incident with f, f1, f2 and

v3 is incident with f, f3, f4 where f1, f3 are two 4-faces and f2, f4 are two 5-faces. By Lemma
lem6
2.8,

f1 and f3 are two (3, 4, 4, 4)-faces. We observe f1 and consider two following cases.

Case 1. v1v2 ∈ b(f1).

Let f1 = [v1v2v6v7]. We first claim that v6, v7 /∈ {v1, . . . , v5}. Note that v6 /∈ {v1, v2, v3} and

v7 /∈ {v1, v2, v5}. Since G has no 3-cycle, v6 /∈ {v4, v5} and v7 /∈ {v3, v4}. In this case, we consider

two cases for f3: either v2v3 ∈ b(f3) or v3v4 ∈ b(f3).

In the former case, let f3 = [v2v3v8v9]. We claim that v8, v9 /∈ {v1, . . . , v7}. Since d(v1) = 3,

v8 6= v1 and v9 6= v1. Clearly, v8 /∈ {v2, v3, v4} and v9 /∈ {v2, v3, v6} . Since G has no 3-cycle,

v8 /∈ {v5, v6} and v9 /∈ {v4, v5, v7}. If v8 = v7, then G contains Configuration (5) in Fig.1, contrary

to Lemma
lem7
2.7. Thus, v8, v9 /∈ {v1, . . . , v7}.

Let v2 be incident with f, f1, f5, f3 in clockwise order. By Lemma
lem0
2.1, f5 is a 5-face. By

Claim 2(2), d(v2) = d(v6) = d(v9) = 4. Therefore, f5 is incident with three consecutively adjacent

4-vertices which is contrary to Claim 2(1).

In the latter case, let f3 = [v4v3v9v8]. We first claim that v8, v9 /∈ {v1, . . . , v7}. Recall that

v1 is a 3-vertex, v8 6= v1 and v9 6= v1. Obviously, v8 /∈ {v3, v4, v5} and v9 /∈ {v2, v3, v4} since G

is simple. Since G has no 3-cycle, v8 6= v2 and v9 /∈ {v5, v6}. If v8 = v6, then v4v3v2v1v7v6v4

is a 6-cycle, a contradiction. Thus v8, v9 /∈ {v1, . . . , v6}. If v8 = v7, then v9 /∈ {v1, . . . , v7} and

v7v1v5v4v3v9v7 is a 6-cycle, a contradiction. If v9 = v7, then v8 /∈ {v1, . . . , v7} and v7v6v2v3v4v8v7

is a 6-cycle, a contradiction. Thus, v8, v9 /∈ {v1, . . . , v7}.

Let v2 be incident with f, f1, f5, f4 in clockwise order. By Lemma
lem0
2.1, f4 is a 5-face. Let

f4 = [v2v3v9v10v11]. We first assume that v10, v11 /∈ {v1, . . . , v9}. In this case, d(v2) = d(v9) = 4

and d(v3) = 4. By Claim 1(2), only one vertex in {v10, v11} is a 3-vertex. Since G does not contain

Configuration (7) of Fig.1 in Lemma
lem7
2.7, d(v11) = 4 and d(v10) = 3. By Lemma

lem0
2.1 and Claim 1
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(2), f5 is a 5-face. Moreover, f5 is incident with three consecutively adjacent 4-vertices v6, v2 and

v11, contrary to Claim 2 (1). Thus, assume that v10 ∈ {v1, . . . , v9} or v11 ∈ {v1, . . . , v9}.

Since v1 is a 3-vertex, v10 6= v1 and v11 6= v1. Obviously, v10 /∈ {v2, v3, v8, v9} and v11 /∈

{v2, v3, v6} since G is simple. Since G has no 3-cycle, v10 6= v4 and v11 /∈ {v4, v5, v7, v9}. If

v10 = v6, then v1v2v3v9v6v7v1 is a 6-cycle, a contradiction. If v10 = v7, then v7v9v3v4v5v1v7 is a 6-

cycle, a contradiction. Thus v10 /∈ {v1, . . . , v4, v6, . . . , v9} and v11 /∈ {v1, . . . , v7, v9}. Let v10 = v5.

If v11 = v8, then v5v4v8v5 is a 3-cycle, a contradiction. If v11 /∈ {v1, . . . , v9}, then v1v5v11v2v6v7v1

is a 6-cycle, a contradiction. If v10 /∈ {v1, . . . , v9}, then v11 = v8 and v8v9v10v8 is a 3-cycle, a

contradiction.

Case 2. v1v5 ∈ b(f1).

Let f1 = [v1v5v6v7]. We first claim that v6, v7 /∈ {v1, . . . , v5}. Obviously, v6 /∈ {v1, v4, v5} and

v7 /∈ {v1, v2, v5}. Since G has no 3-cycle, v6 /∈ {v2, v3} and v7 /∈ {v3, v4}. In this case, we consider

two cases of f3: either v2v3 ∈ b(f3) or v3v4 ∈ b(f3).

In the former case, let f3 = [v2v3v8v9]. We claim that v8, v9 /∈ {v1, . . . , v7}. Since v1 is a

3-vertex, v8 6= v1 and v9 6= v1. Obviously, v8 /∈ {v2, v3, v4} and v9 /∈ {v2, v3} since G is simple.

Since G has no 3-cycle, v8 6= v5 and v9 /∈ {v4, v5, v7}. If v8 = v7, then v7v6v5v1v2v3v7 is a 6-cycle, a

contradiction. Thus v8, v9 /∈ {v1, . . . , v5, v7}. If v8 = v6, then v9 6= v6. In this case, v6v5v4v3v2v9v6

is a 6-cycle, a contradiction. If v9 = v6, then v8 6= v6. In this case, v6v5v1v2v3v8v6 is a 6-cycle, a

contradiction. So far, we have proved that v8, v9 /∈ {v1, . . . , v7}.

Assume that v3 is incident with f, f3 and f4 in clockwise order. Since G has no 6-cycle, by

Lemma
lem0
2.1, f4 is a 5-face. Let f4 = [v4v3v8v10v11]. If v10, v11 /∈ {v1, . . . , v9}, then G contains

Configuration (1) or (2) in Fig.1, contrary to Lemma
lem7
2.7. Thus, assume that v10 ∈ {v1, . . . , v9} or

v11 ∈ {v1, . . . , v9}. Since v1 is a 3-vertex, v10 6= v1 and v11 6= v1. Obviously, v10 /∈ {v3, v8, v9} and

v11 /∈ {v3, v4, v5} since G is simple. Since G has no 3-cycle, v10 /∈ {v2, v4} and v11 /∈ {v2, v6, v8}.

If v10 = v5, then v8v5v4v3v2v9v8 is a 6-cycle, a contradiction. If v10 = v6, then v6v7v1v2v9v8v6 is

a 6-cycle, a contradiction. If v10 = v7, then v8v7v1v5v4v3v8 is a 6-cycle, a contradiction. Thus

v10 /∈ {v1, . . . , v9}. If v11 = v7, then v7v1v2v9v8v10v7 is a 6-cycle, a contradiction. If v11 = v9, then

v8v9v10v8 is a 3-cycle, a contradiction.

In the latter case, let f3 = [v3v4v8v9]. We claim that v8, v9 /∈ {v1, . . . , v7}. Since v1 is a

3-vertex, v9 6= v1 and v8 6= v1. Since G is simple, v9 /∈ {v2, v3, v4} and v8 /∈ {v3, v4, v5} by

Lemma
lem5
2.6(1). Since G has no 3-cycle, v9 6= v5 and v8 /∈ {v2, v6}. If v9 = v6, then v6v7v1v5v4v3v6

is a 6-cycle, a contradiction. If v9 = v7, then v5v6v7v3v2v1v5 is a 6-cycle, a contradiction. Thus

v9 /∈ {v1, . . . , v7}. If v8 = v7, then v7v6v5v4v3v9v7 is a 6-cycle, a contradiction.

Since G has no 6-cycle, by Lemma
lem0
2.1, f4 is a 5-face. Let f4 = [v2v3v9v10v11]. If v10, v11 /∈

{v1, . . . , v9}, then G contains Configuration (3) or (4) of Fig.1, contrary to Lemma
lem7
2.7. Thus,

assume that either v10 ∈ {v1, . . . , v9} or v11 ∈ {v1, . . . , v9}. Since v1 is a 3-vertex, v10 6= v1.

Since G is simple and by Lemma
lem5
2.6(1), v10 /∈ {v3, v8, v9} and v11 /∈ {v1, v2, v3} . Since G

has no 3-cycles, v10 /∈ {v2, v4} and v11 /∈ {v4, v5, v7, v9}. If v10 = v6, then v6v7v1v2v3v9v6 is a

6-cycle, a contradiction. If v10 = v7, then v9v8v4v5v6v7v9 is a 6-cycle, a contradiction. Thus

v10 /∈ {v1, . . . , v4, v6, . . . , v9} and v11 /∈ {v1, . . . , v5, v7, v9}. Assume that v11 = v6. If v10 =

v5, then G contains Configuration (6) of Fig.1, contrary to Lemma
lem7
2.7. Thus, v10 6= v5. So,

v10 /∈ {v1, . . . , v9}. In this case, v10v6v5v4v8v9v10 is a 6-cycle, a contradiction. Thus, assume that
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v11 = v8. If v10 /∈ {v1, . . . , v9}, then v8v9v10v8 is a 3-cycle, a contradiction. If v10 = v5, then

v5v4v8v5 is a 3-cycle, a contradiction. Thus v11 /∈ {v1, . . . , v9}. If v10 = v5, then v5v6v7v1v2v11v5

is a 6-cycle, a contradiction. ✷

This implies that G is not existence. We have proved Property (II). This completes the proof

of Theorem
th1
1.4(2).

3.5 Proof of Theorem
th1

1.4(3)

In this section, we prove Theorem
th1
1.4(3). A 3-vertex v is bad if v is incident with one 3-face and

good otherwise.

Now we define the discharge rules as follows.

(R1) Every 5+-face sends 1
3 to each incident good 3-vertex, 1

2 to each incident bad 3-vertex and
1
3 to each incident 3-face.

It suffices to show that the new weight function µ′ satisfies Properties (I) and (II). We first

check µ′(v) ≥ 0 for all v ∈ V (G). By Lemma
lem5
2.6 (1), d(v) ≥ 3.

1. d(v) = 3. If v is bad, then v is incident with two 7+-faces. By (R1), µ′(v) ≥ −1+2× 1
2 = 0.

If v is good, then v is incident with three 5+-faces. By (R1), µ′(v) ≥ −1 + 3× 1
3 = 0.

2. d(v) = 4. Since no 4-vertex is involved in discharge procedure, µ′(v) = µ(v) = 4− 4 = 0.

3. d(v) ≥ 5. By (R1), µ′(v) = µ(v) = d(v)− 4 ≥ 1 > 0.

Further we check µ′(f) ≥ 0 for all f ∈ F (G).

1. d(f) = 3. Then µ(f) = −1. Since G has no 4-cycle, each face adjacent to f is a 5+-face. By

(R1), µ′(v) ≥ −1 + 3× 1
3 = 0.

2. d(f) = 5. Then µ(f) = 1. Since G has no 6-cycle, f is not adjacent to 3-face. By

Lemma
lem5
2.6(2), f is adjacent to at most two 3-vertices. Since G has no 6-cycles, no 3-cycle

is not adjacent to any 5-cycle. Thus, f is adjacent to at most two good 3-vertices. By (R1),

µ′(f) ≥ 1− 2× 1
3 = 1

3 > 0.

3. d(f) ≥ 7. Let f be incident with m 3-vertices. Since G has no 4-cycles, no 3-face is

adjacent to any 3-face. Then v is incident with at most d(f)−m 3-faces. By Lemma
lem5
2.6 (2),

m ≤ ⌊d(f)2 ⌋. Thus µ′(f) ≥ d(f)−4−m
2 −

1
3(d(f)−m) = 2

3d(f)−
1
6m−4 ≥ 7

12d(f)−4 ≥ 1
12 > 0

by (R1).

So far, we have proved Property (I). Assume that Property (II) does not hold. This implies that

µ′(x) = 0 for all x ∈ V (G) ∪ F (G). Observing above proof, we obtain the following statements.

(a) For each vertex v ∈ V (G), 3 ≤ d(v) ≤ 4;

(b) For each face f ∈ F (G), d(f) = 3.

By (b), G is one 3-cycle [uvw]. Clearly, G has a matching M = {uv} such that G −M is (2, 1)

decomposable, a contradiction. This completes the proof of Theorem
th1
1.4(3).
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