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Abstract

The Iterated Prisoner’s Dilemma (IPD) is a well studied framework for understanding direct
reciprocity and cooperation in pairwise encounters. However, measuring the morality of various IPD
strategies is still largely lacking. Here, we partially address this issue by proposing a suit of plausible
morality metrics to quantify four aspects of justice. We focus our closed-form calculation on the
class of reactive strategies because of their mathematical tractability and expressive power. We
define reactive means as a tool for studying how actors in the IPD and Iterated Snowdrift Game
(ISG) behave under typical circumstances. We compute reactive means for four functions intended to
capture human intuitions about “goodness” and “fair play”. Two of these functions are strongly
anticorrelated with success in the IPD and ISG, and the other two are weakly anticorrelated with
success. Our results will aid in evaluating and comparing powerful IPD strategies based on machine
learning algorithms, using simple and intuitive morality metrics.

1 Introduction

Iterated 2× 2 games, most notably the Iterated Prisoner’s Dilemma (IPD), have been the objects of
intensive study at least since Axelrod’s classical experiments [5]. Much research has been devoted to
determining which strategies perform well under various circumstances [23,26] [28]; the IPD has
been studied in the presence of noise [23], social dynamics [1], and with other
variations [1, 8, 18, 22, 33]. The framework of IPD and evolutionary game theory more generally have
offered profound insights into understanding the evolution of cooperation [6, 11,14,24,25,32].

In particular, the discovery of zero-determinant (ZD) strategies by Press and Dyson has greatly
reinvigorated the field with brand new perspectives [9, 10,19,26,29]. ZD strategies are able to
unilaterally enforce a linear relationship between their own average payoff and that of their co-player.
An extortionate ZD player can thus take advantage of deliberately prescribed ZD strategies to
demand an unfair share from their mutual interactions. Motivated by this fact, researchers have
attempted to classify IPD strategies, for example, into partners versus rivals, by their capacity of
fostering mutual cooperation or securing unilateral winning [2, 3, 17]. This dichotomic classification
has a natural extension to the idea of morality. Human behavior is not solely guided by the desire to
win, but also by moral values and judgments [30]. While such a classification of ZD strategies might
be enlightening, there is also a strong need for studying the morality of IPD strategies more broadly.

In [28], Singer-Clark investigates the question of which IPD strategies are the “most moral” using
a different methodology. Under this framework, a player in an IPD treats their competitor well if
they cooperate a large proportion of the time. Singer-Clark uses eigenvalues on a population of such
strategies to define two measures, EigenJesus and EigenMoses, for which strategy was “most moral”.
This is a fascinating approach, but it has some serious drawbacks. One is that it does not incorporate
noise or error, making it less applicable to real-world scenarios. It is also unclear how to generalize
Singer-Clark’s methodology from 2× 2 games whose choices have a clear social valence, like the
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Prisoner’s Dilemma and Snowdrift, to other more complicated or nuanced games. A third drawback
is the atemporality of these metrics: they do not pay attention to which player defected first, only
which one defected more. Most seriously from our perspective, Singer-Clark’s eigenvalue-based
morality is socially contingent. That is, for Singer-Clark, an actor’s morality depends on who they
are playing against. It is natural to ask: is there some way of determining how a player behaves
without relying on these variable social contingencies? We pursue this line of inquiry by introducing
another set of metrics to assess the morality of IPD and Iterated Snowdrift Game (ISG) strategies.

For the rest of Section 1, we will introduce the mechanics of the games and strategies analyzed in
this paper along with defining the reactive mean. An analysis of our results is included. Section 2
defines the player-oriented functions that will be analyzed. Section 3 provides some statistics about
the reactive means for our functions of interest. The final section, Section 4, discusses further
applications of reactive means. The explicit calculations for the reactive means are provided in the
Appendix.

1.1 Games of Interest

The Prisoner’s Dilemma is a simple 2× 2 game. Fix a tuple of real numbers
~R = (RCC , RCD, RDC , RDD) such that

RDC > RCC > RDD > RCD and 2RCC > RCD +RDC .

Each player chooses to cooperate (C) or defect (D). If both players cooperate, they each receive a
reward RCC . If one player cooperates and the other player defects, then the cooperating player
receives reward RDC , and the defecting player receives reward RCD. If both players defect, they each
receive reward RDD. By construction, players are collectively best off when they both cooperate, but
are individually better off when they individually defect. Axelrod chose ~R = (3, 0, 5, 1) for his
famous tournaments [5], and so these values are standard in much of the literature, but any 2× 2
game with payoffs satisfying the inequalities above qualifies as a Prisoner’s Dilemma. An IPD is
simply a Prisoner’s Dilemma played repeatedly between the same two individuals.

The Snowdrift Game is formally almost identical to the Prisoner’s Dilemma but with a different
payoff structure [31]. As above, we fix a tuple of real numbers ~R = (RCC , RCD, RDC , RDD), and
each player can choose to cooperate (C) or defect (D), with commensurate payoffs. However, we
now ask that

RDC > RCC > RCD > RDD and 2RCC = RCD +RDC .

Therefore, no value is destroyed when a player defects against a cooperative adversary, and a player
is better of cooperating than defecting against a defector. In accordance with [31] and [5], it is

common to use ~R = (3, 1, 5, 0) for the Snowdrift game. The following scenario provides one
interpretation of this game: two individuals are driving up an icy road when they discover a
snowdrift cutting the avenue off. As long as at least one of them digs, the snowdrift will be removed
and both can keep driving. However, neither individual enjoys the process of digging. The game of
“Chicken” provides another interpretation of the Snowdrift Game. From this perspective, the players
are car drivers heading towards each other to prove their courage. If either one pulls out early, then
both survive, and the player who didn’t flinch also accrues accolades and honor. If both pull out
simultaneously, the honor is split evenly between them. If neither pulls out, they both die.
Comparably to an IPD, an ISG is a Snowdrift Game played repeatedly between the same two
opponents.

1.2 Strategies of Interest

To investigate this idea, we analyze the behavior of a specific category of strategies. A reactive
memory one strategy A is a triple A = (p0, pC , pD) ∈ [0, 1]3, where p0 is the probability that A
cooperates on the first round of the game, and px is the probability that A cooperates if their
opponent made move x in the previous round.
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Let A = (p0, pC , pD) and A′ = (p′0, p
′
C , p

′
C) be reactive memory one strategies. We define

pC(A,A′) := pC , and we define pD(A,A′) := pD.
If f(A,A′) is a function depending on A and A′, we write f ′(A,A′) := f(A′, A) for the function

that interchanges the roles of A and A′. For instance, pC(A,A′) = pC , and
p′C(A,A′) = pC(A′, A) = p′C .

We write
~πN = ~πN (A,A′) =

(
πCC,N πCD,N πDC,N πDD,N

)
for the probability distribution of cooperation and defection for A and A′ after N rounds, and
observe

~π0 = ~π0(A,A′) =
(
p0p
′
0 p0(1− p′0) (1− p0)p′0 (1− p0)(1− p′0)

)
.

We also write

P (A,A′) =


pCp

′
C pC(1− p′C) (1− pC)p′C (1− pC)(1− p′C)

pDp
′
C pD(1− p′C) (1− pD)p′C (1− pD)(1− p′C)

pCp
′
D pC(1− p′D) (1− pC)p′D (1− pC)(1− p′D)

pDp
′
D pD(1− p′D) (1− pD)p′D (1− pD)(1− p′D)


for the transition matrix of the Markov process indicated above. Clearly, we have ~πN = ~π0P

N for all
N ≥ 0. If P is mixing, then there is a unique steady-state distribution

~π∞ = ~π∞(A,A′) =
(
πCC πCD πDC πDD

)
for A and A′. Let c = c(A,A′) denote the long-run probability that A cooperates in any given round;
thus, c′ is the probability that A′ cooperates in any given round. In [23], Nowak proved that

π∞ =
(
cc′ c(1− c′) (1− c)c′ (1− c)(1− c′)

)
,

and gave the following formulas for c and c′:

c =
p′Dr + pD

1− rr′
(1)

c′ =
pDr

′ + p′D
1− rr′

. (2)

Here r := pC − pD and r′ := p′C − p′D. The quantity r measures the responsiveness of A; that
is, the degree to which A treats adversaries who cooperate better than adversaries who defects.
Writing c = c(A,A′) as a function of A and A′, we find c′(A,A′) = c(A′, A), as we should expect.

Let f be an integrable function of two strategies A and A′, and write X = [0, 1]3. We define

f(A) :=
1

vol(X)

∫
X

f(A,Q)dQ

to be the reactive mean of f for A. Note that vol(X) = 1, so in fact

f(A) =

∫
X

f(A,Q)dQ

The quantity f(A) measures the expected value of f when an adversary for A is chosen uniformly at
random from the set of reactive memory one strategies. If f is independent of p0, then

f(A) =

1∫
0

1∫
0

f(pC , pD, p
′
C , p

′
D)dp′Cdp′D. (3)
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1.3 Summary of Results

We were able to show that a player’s score in both the IPD and ISG is negatively correlated with all
four of the metrics for justice delineated in Section 2 to different extents. Our methods are especially
exciting because they give objective measures of the behavior of actors. Unlike the EigenMoses and
EigenJesus metrics calculated in [28], the reactive means of asymptotic niceness, long-term
cooperation rate, responsiveness, and reciprocity (see Section 2 below) do not depend on the
behaviors of individual opponents. As a result, players can be assigned a strict level of morality that
does not change with the population of opponents. In addition, the measures of morality obtained in
this paper apply to opponents of every possible reactive memory one strategy, of which there are
infinitely many. As long as the values of pC and pD are known, it is straightforward to evaluate any
of these morality functions. Also, the methodology used in this paper incorporates noise to some
degree since a memory-one strategy with added noise is essentially just another memory one strategy.
Of course, this does not incorporate all forms of noise since it can cause the strategy to shift
dynamically, but it does make the results more realistic.

2 Model and Methods

Metrics of Justice. In modern parlance, “justice” means “retribution”. Historically, however,
justice was equated with social morality writ large, subsuming concepts like fair play, and treating
other people well. We take inspiration from these intuitions to enumerate a few loose criteria for just
actions.

1. A player is just insofar as they treat kind players well.

2. A player is just insofar as they treat other players well.

3. A player is just insofar as they treat other players well when the others treat them well.

4. A player is just insofar as they treat other players as the others treat them.

Inspired by these intuitions, we develop various metrics which correspond to our folk sense of justice.

2.1 Asymptotic Niceness

Axelrod observed that the most successful strategies in his tournament were “nice” in the sense that
they did not defect before their adversaries did [5, p.10]. This is not an especially useful notion for
us, however, because it depends intimately on p0, whereas our focus is on long-run behavior. Thus
we define the (asymptotic) niceness n(A,A′) of A against A′ to be the long-run probability that
if A and A′ cooperate in the same round, A′ subsequently defects before A. Thus if A is a reactive
memory one strategy, and n(A,A′) = 1 for every reactive memory one strategy A′, then pC(A) = 1,
and if n(A,A′) = 0 for every reactive memory one strategy A′, then pC(A) = 0.

2.2 Reciprocity

Let T := (1, 1, 0) denote the strategy that begins by cooperating and then reciprocates the last move
of their adversary; this famous strategy is referred to as “Tit-for-Tat”. Axelrod observed that T fared
better than any other strategy in his tournaments. Extensive research has gone into when and how T
succeeds against other strategies [5, 28], but T also perfectly exemplifies a willingness to reciprocate
the actions of its adversaries. In a sense, T acts with perfect justice. Consider by contrast “the
Bully” B := (0, 0, 1), which begins by defecting and then defects against cooperation and cooperates
against defection. The Bully exploits those who are willing to cooperate with it, while submitting to
and cooperating with those who defect against it. In a sense, B is the opposite of T ; indeed, the
coordinates (0, 0, 1) are maximally distant from the coordinates (1, 1, 0) in the unit square.
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Moreover, B behaves in a way that intuitively parses as “evil”: preying on the kind, and capitulating
to the cruel. We define the reciprocity t(A,A′) of A with A′ to be the long-run probability that
A’s move is the same as A′’s previous move. Thus if A is a reactive memory one strategy, and
t(A,A′) = 1 for every reactive memory one strategy A′, then pC(A) = 1 and pD(A) = 0, and if
t(A,A′) = 0 for every reactive memory one strategy A′, then pC(A) = 0 and pD(A) = 1.

2.3 Functions of Interest

Define spr(A,A
′) as the long-run average score that A earns each round against A′ in the IPD. For

instance, if T is Tit-for-Tat, and B is the Bully, then spr(T, T ) = 3, and spr(B,B) = 2 using the
values from classic literature mentioned in Section 1. Likewise, let ssn(A,A′) denote the long-run
average score that A earns each round against A′ in the ISG. For instance, if T is Tit-for-Tat, and B
is the Bully, then ssn(T, T ) = 3, and ssn(B,B) = 3/2.

Let
F := {pC , pD, n, c, r, t, spr, ssn, πCC , πCD, πDC , πDD} .

The set F comprises our functions of interest for this paper. The functions pC , pD, πCC , πCD, πDC ,
πDD comprise the fundamental building blocks for the behavior of strategy A against strategy A′.
The functions n and c measure the degree to which A is kind to A′, in the sense of not initiating
defection (for n), or cooperating (for c). These functions reflect the metrics of justice defined in 1
and 2, respectively. The functions r and t measure the degree to which A reciprocates the actions of
A′; in other words, the degree to which A asymptotically follows the Tit-for-Tat strategy. These
functions reflect the ideas of 3 and 4. The functions spr and ssn measure the success of A against A′

in the IPD and ISG, respectively.
These quantities are intimately interconnected, and can each be expressed in terms of pC and pD.

For ease of notation, we suppress dependence on A and A′ in the equations below.

n =
pC (1− p′C)

1− pCp′C
= 1− 1− pC

1− pCp′C
,

t = pC · c′ + (1− pD) · (1− c′),
s = RCC · πCC +RCD · πCD +RDC · πDC +RDD · πDD.

For each function of interest f , we have an explicit formula for f ; however, these formulas are
generally ungainly and unedifying, so we have relegated them to the Appendix, where they are used
to produce cleaner data.

3 Results and Analysis

3.1 Heat Maps

For each function of interest f ∈ F , we have a heat map for f pictured below. f is graphed with
white (for low values) and dark purple (for high values) as a function of pC and pD. The scale for
each heat map is given to its right. Heat maps of the complements n′, c′, t′, s′pr, and s′sn are also

included. Neither heat maps nor statistical analyses of p′C , p′D, and r′ are included because these are

constant values. Additionally, π′CC , π′CD, π′DC , and π′DD are not included since π′CC=πCC ,
π′DD=πDD, π′CD=πDC , and π′DC=πCD, making additional analyses of these complements
redundant. In the heat maps for spr and ssn, the different values of R correspond to those used in
classic literature referred to in Section 1.
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(a) pC (b) pD

(c) r

(d) n (e) n′

Fig 1. Heat diagrams for pC , pD, r, n, and n′ (a,b,c,d,e) with respect to pC and pD
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(a) c (b) c′

(c) πCC (d) πCD

(e) πDC (f) πDD

Fig 2. Heat diagrams for c, c′, πCC , πCD, πDC , and πDD (a,b,c,d,e,f) with respect to pC and pD
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(a) t (b) t′

(c) spr (d) s′pr

(e) ssn (f) s′sn

Fig 3. Heat diagrams for t, t′, spr, s′pr, ssn, and s′sn (a,b,c,d,e,f) with respect to pC and pD
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These charts are intriguing, and already suffice to give us some useful information regarding the morality metrics.

1. In order to maximize one’s score in the ISG, a player would always want to defect when their opponent cooperated in the last round.
However, they would not want to defect every time their opponent defected. This suggests that that ssn is more positively correlated with c
than spr is.

2. Each of the reactive means, with the exception of scores, displays one or more symmetries. This is to be expected since there are no weights
given to cooperation or defection until the scores are calculated. The symmetries evident in the stationary distributions are especially subtle
since they do not display symmetry with respect to their own values, but rather with the plots of other stationary distributions.

3. Asymptotic niceness, responsiveness, and reciprocity all have a positive correlation with pC , while a high score is anticorrelated with this
value for both the IPD and ISG.

4. Both responsiveness and reciprocity increase as the chosen strategy becomes more like Tit-for-Tat. As we know from Axelrod’s tournaments,
this suggests that both of these metrics of justice are more likely to equate to victory over the opponent on average, as long as the ambient
population is not excessively hostile.

3.2 Statistics

We now compute means and standard deviations for our functions of interest as well as the naive values for the complements of interest. We
compute these values exactly where convenient, and otherwise using 5,000 sample points distributed equally over the solution space. It can be seen
that these values are concordant with the heatmaps above.

f pC pD n c r t spr ssn πCC πCD πDC πDD

µ(f) 1
2

1
2 2− π2

6
1
2 0 1

2
9
4

9
4

1
4

1
4

1
4

1
4

σ(f)
√
3
6

√
3
6 0.256321 0.206677 0.408248 0.206666 0.312658 0.127046 0.105734 0.105734 0.105734 0.105734

f n′ c′ t′ spr′ ssn′

µ(f) 2− π2

6
1
2

1
2

9
4

9
4

σ(f) 0.118678 0.009767 0.0.03507 0.723847 0.726347

F
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Next, we compute covariances.

cov(•, •) pC pD n n′ c c′ t t′ πCC

pC
1
12 0 −9+π2

12 −0.0326384 −17+3π2−16 log(2)
36 0 −17+3π2−16 log(2)

36
−38+5π2−16 log(2)

36
29−4π2+16 log(2)

24

pD 0 1
12 0 0 −17+3π2−16 log(2)

36 0 17−3π2+16 log(2)
36

38−5π2+16 log(2)
36

−121+18π2−80 log(2)
72

n −9+π2

12 0 0.0657006 −0.0303034 0.0367112 0.000336208 0.0367061 0.00622641 0.0223897

n′ −0.0326384 0 −0.0303034 0.0140846 −0.0165455 −0.000222786 −0.0165413 −0.00280512 −0.0101369

c −17+3π2−16 log(2)
36

−17+3π2−16 log(2)
36 0.0367112 −0.0165455 0.0427154 0 0 0 25π2+24 log(2)−48 log(2)2−198ζ(3)

108

c′ 0 0 0.000336208 −0.000222786 0 849−98π2+864 log(2)+576 log(2)2−630ζ(3)
1080 0 0 0.0000476943

t −17+3π2−16 log(2)
36

17−3π2+16 log(2)
36 0.0367061 −0.0165413 0 0 1849+532π2+5504 log(2)+1536 log(2)2−9630ζ(3)

1800
953+239π2+448 log(2)−768 log(2)2−2700ζ(3)

1080 0.00447272

t′ −38+5π2−16 log(2)
36

38−5π2+16 log(2)
36 0.00622641 −0.00280512 0 0 953+239π2+448 log(2)−768 log(2)2−2700ζ(3)

1080 0.00122994 0.000756751

πCC
29−4π2+16 log(2)

24
−121+18π2−80 log(2)

72 0.0223897 −0.0101369 25π2+24 log(2)−48 log(2)2−198ζ(3)
108 0.0000476943 0.00447272 0.000756751 0.0111797

We computed the mean and covariances of the auxiliary function c′ in order to compute covariances for spr, ssn, πCD, πDC , and πDD. As
covariance is bilinear, the listed covariances suffice to compute covariance of r, spr, ssn, πCD, πDC , and πDD with each of our functions of interest.
We can now calculate the correlations.

cor(•, •) pC pD n n′ c c′ r t t′ spr s′pr ssn s′sn πCC πCD πDC πDD

pC 1 0 0.979369 −0.952681 0.706966 0 0.707107 0.707004 0.706977 −0.749826 0.685406 −0.935592 0.641005 0.835355 0.546542 −0.835355 −0.546542

pD 0 1 0 0 0.706966 0 −0.707107 −0.707004 −0.706977 −0.652156 0.727593 −0.214496 0.767132 0.546542 0.835355 −0.546542 −0.835355

n 0.979369 0 1 −0.993105 0.692982 0.134300 0.692532 0.692923 0.692647 −0.720682 0.668969 −0.883691 0.626942 0.826131 0.528430 −0.813726 −0.540835

n′ −0.952681 0 −0.993105 1 −0.674552 −0.192207 −0.673647 −0.674419 −0.673965 0.695069 −0.649813 0.845596 −0.609493 −0.807838 −0.510712 0.790067 0.528456

c 0.706966 0.706966 0.692982 −0.674552 1 0 0 0 0 −0.991548 0.999340 −0.813397 0.995900 0.977342 0.977342 −0.977342 −0.977342

c′ 0 0 0.134300 −0.192207 0 1 −0.000866735 0 0 0.109332 −0.0202392 0.269065 −0.00672317 0.0461852 −0.0461852 0.0461852 −0.0461852

r 0.707107 −0.707107 0.692532 −0.673647 0 −0.000866735 1 0.999855 0.999817 −0.0691574 −0.0298136 −0.51005 −0.0891795 0.204183 −0.204183 −0.204259 0.204259

t 0.707004 0.707004 0.692923 −0.674419 0 0 0.999855 1 0.999506 −0.0692203 −0.029899 −0.511052 −0.0893882 0.204686 −0.204686 −0.204686 0.204686

t′ 0.706977 −0.706977 0.692647 −0.673965 0 0 0.999817 0.999506 1 −0.0690147 −0.0298102 −0.509534 −0.0891227 0.204078 −0.204078 −0.204078 0.204078

spr −0.749826 −0.652156 −0.720682 0.695069 −0.991548 0.109332 −0.0691574 −0.0692203 −0.0690147 1 −0.990998 0.871966 −0.981916 −0.978462 −0.959701 0.988561 0.949602

s′pr 0.685406 0.727593 0.668969 −0.649813 0.999340 −0.0202392 −0.0298136 −0.029899 −0.0298102 −0.990998 1 −0.802744 0.998101 0.969530 0.983865 −0.971399 −0.981995

ssn −0.935592 −0.214496 −0.883691 0.845596 −0.813397 0.269065 −0.51005 −0.511052 −0.509534 0.871966 −0.802744 1 −0.765347 −0.889074 −0.700860 0.913928 0.676006

s′sn 0.641005 0.767132 0.626942 −0.609493 0.995900 −0.00672317 −0.0891795 −0.0893882 −0.0891227 −0.981916 0.998101 −0.765347 1 0.954391 0.992280 −0.955012 −0.991659

πCC 0.835355 0.546542 0.826131 −0.807838 0.977342 0.0461852 0.204183 0.204686 0.204078 −0.978462 0.969530 −0.889074 0.954391 1 0.910396 −0.995734 −0.914662

πCD 0.546542 0.835355 0.528430 −0.510712 0.977342 −0.0461852 −204183 −0.204686 −0.204686 −0.959701 0.983865 −0.700860 0.992280 0.910396 1 −0.914662 −0.995734

πDC −0.835355 −0.546542 −0.813726 0.790067 −0.977342 0.0461852 −0.0691574 −0.204686 −0.204078 0.988561 −0.971399 0.913928 −0.955012 −0.995734 −0.914662 1 0.910396

πDD −0.546542 −0.835355 −0.540835 0.528456 −0.977342 −0.0461852 0.204259 0.204686 0.204078 0.949602 −0.981995 0.676006 −0.991659 −0.914662 −0.995734 0.910396 1
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From the above chart, it is evident that cooperation rate and asymptotic niceness are strongly
anticorrelated with success, especially the former. Niceness is slightly more beneficial in the IPD
than in the ISG, while the opposite is true with respect to the cooperation rate. It is interesting that
this type of behavior is observed in asymptotic niceness given that the results of Axelrod’s
tournaments suggest nice strategies have the unusually good performance.

Another interesting observation is that the correlation between responsiveness and success in the
IPD, while slightly negative, is almost zero. This same relationship can be seen with reciprocity, as r
and t have virtually the same dynamics and correlations. This suggests that, if one views justice as
treating others how they treat you, a player can play an almost perfectly just game and be victorious
against around half of the reactive memory one strategies. This idea is additionally supported by the
almost identical correlations for t′.

4 Discussions and Conclusion

In this work we have focused on a few simple yet intuitive morality metrics, and it is straightforward
to consider various extensions in this regard. Given the subjective nature of morality, there are
numerous other functions to be investigated under the framework of this paper. For instance, if a
player believes they are just when they treat their opponent as they are treated, a measure of
morality could be the long-run probability of making the same move as their partner in the next
round, or some other variation of this aspect. In other words, there could be a measure of the
probability of a player’s opponent and the player themselves cooperating in the same round or
defecting in the same round. This idea is already partially captured by πCC and πDD, so a linear
combination of these two values could be a good metric for this idea.

Another potential function of interest would be a variation on positive reciprocity that just takes
into account how often a player reciprocates when their opponent cooperates. Additionally, the
different functions could be broken down into different distributions to see exactly how moral one
needs to be to succeed. For instance, one could examine r ≥ 0 against r ≤ 0. This would specifically
convey whether or not it is better to cooperate more with cooperators than defectors or vice versa.
This idea would be especially useful for r and t since their correlations with score were so small in
absolute value.

Beyond this, one could examine an environment where an opponent or a player is more likely to
choose one strategy over another. In other words, instead of assuming the opponent chooses a
strategy with uniform probability, the distribution could be a truncated Gaussian or another
distribution. Similarly, a fine-grained description of their pairwise encounters (who-meets-whom
relationships) can be based on graphs or networks [13]. This incorporation could help reflect the
tendency of certain populations to congregate when they have shared ideals.

While the focus of this paper was on morality, the development of reactive means has more
widespread applications. Any function that measures the behavior between two competing players
can theoretically have its reactive mean computed. This could lead to analyses on other ideas such
as the consistency of a player’s moves [31] or the success of a player past just their average score.

Lastly, we could take averages over families of opponents besides reactive memory one strategies
or players having asymmetrical roles [20]. It would be natural, for instance, to integrate against all
memory one strategies: arguably, this level of generality suffices for a total understanding of the
IPD [26].

If desired, one could of course integrate over finite-memory strategies [16], or any family of
strategies which bears a natural parameterization. In an adaptation of the EigenJesus and
EigenMoses metrics derived in [28], one could determine the scores for a player in an environment of
opponents sampled independently from the pool of all reactive memory one strategies. Under this
framework, as the number of opponents increases, the measured scores will approach their reactive
average values. In addition, the development of simple and intuitive metrics using reactive means
will aid in evaluating and comparing IPD strategies generated in complicated ways, such as those
based on machine learning algorithms, including reinforcement learning [15,27] and particle swarm
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optimization [12].
In sum, we evaluate and compare the moral nature of reactive strategies employed in the Iterated

Prisoner’s Dilemma (IPD) by drawing on human’s intuitive perception of “fair play” and “goodness”.
Using these morality metrics, we demonstrate that two of the metrics are significantly associated
with their success in the IPD, while the other two metrics are weakly related. Our results can help
further conceive new ways, by means of integrating morality concerns, for enhancing fairness and
cooperation among adaptive and learning individuals [7, 21].

Code Availability

The code used in this study is available upon reasonable request.
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25. Matjaž Perc, Jillian J Jordan, David G Rand, Zhen Wang, Stefano Boccaletti, and Attila
Szolnoki. Statistical physics of human cooperation. Physics Reports, 687:1–51, 2017.

26. William H Press and Freeman J Dyson. Iterated prisoner’s dilemma contains strategies that
dominate any evolutionary opponent. Proceedings of the National Academy of Sciences,
109(26):10409–10413, 2012.

27. Tuomas W Sandholm and Robert H Crites. Multiagent reinforcement learning in the iterated
prisoner’s dilemma. Biosystems, 37(1-2):147–166, 1996.

28. Tyler Singer-Clark. Morality metrics on iterated prisoners dilemma players. 2014.

February 28, 2023 13/18



29. Alexander J Stewart and Joshua B Plotkin. From extortion to generosity, evolution in the
iterated prisoner’s dilemma. Proceedings of the National Academy of Sciences,
110(38):15348–15353, 2013.

30. Golnaz Tabibnia and Matthew D Lieberman. Fairness and cooperation are rewarding:
evidence from social cognitive neuroscience. Annals of the New York Academy of Sciences,
1118(1):90–101, 2007.

31. Pieter Van den Berg and Franz J Weissing. The importance of mechanisms for the evolution
of cooperation. Proceedings of the Royal Society B: Biological Sciences, 282(1813):20151382,
2015.

32. Shengxian Wang, Xiaojie Chen, Zhilong Xiao, and Attila Szolnoki. Decentralized incentives
for general well-being in networked public goods game. Applied Mathematics and
Computation, 431:127308, 2022.

33. Jianzhong Wu and Robert Axelrod. How to cope with noise in the iterated prisoner’s
dilemma. Journal of Conflict resolution, 39(1):183–189, 1995.

February 28, 2023 14/18



Appendix

The reactive means of the functions we defined in Section 2 may be computed numerically for fixed
pC and pD, but these computations become much slower as we permit pC and pD to vary. Moreover,
a double integral with both pC and pD in the denominator is difficult (but possible) to integrate
symbolically.

However, if pC 6= pD, we may write r′ = p′C − p′D and perform the change of variables
p′C = r′ + p′D to obtain

f(A) =

0∫
−1

1∫
−r′

f (pC , pD, r
′ + p′D, p

′
D) dp′Ddr′

+

1∫
0

1−r′∫
0

f (pC , pD, r
′ + p′D, p

′
D) dp′Ddr′.

This change of variables renders our integrals much more manageable, and a straightforward but
tedious computation yields

n(A) = 1 +
(1− pC)

pC
log (1− pC)

c(A) =
1

2

+
(1 + r)(−1 + 2pD + r) log (1 + r)

2r2

+
(1− r)(−1 + 2pD + r) log (1− r)

2r2

c′(A) =
1− 2pD

2r

+
(1 + r)(−1 + 2pD + r) log (1 + r)

2r3

+
(1− r)(−1 + 2pD + r) log (1− r)

2r3

t(A) =
3

2
+
−1 + 4pD − 4p2D − 4pDr

2r

+
(1 + r)(−1 + 2pD + r)2 log (1 + r)

2r3

+
(1− r)(−1 + 2pD + r)2 log (1− r)

2r3

πCC(A) =
2− pD

2r

+

[(
−2 + 5pD + 2r − 4p2D − 3pDr − r2

)
+ r

(
−2 + 3pD + r − 2p2D − pDr

)]
log (1 + r)

2r3

+

[(
−2 + 5pD + 2r − 4p2D − 3pDr − r2

)
− r

(
−2 + 3pD + r − 2p2D − pDr

)]
log (1− r)

2r3
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πCD(A) =
1

2
− 2− pD

2r

+

[(
2− 5pD − 3r + 4p2D + 5pDr + 2r2

)
+ r

(
2− 3pD − 2r + 2p2D + 3pDr + r2

)]
log (1 + r)

2r3

+

[(
2− 5pD − 3r + 4p2D + 5pDr + 2r2

)
− r

(
2− 3pD − 2r + 2p2D + 3pDr + r2

)]
log (1− r)

2r3

πDC(A) = −1 + pD
2r

+

[(
1− 3pD − r + 4p2D + 3pDr + r2

)
+ r

(
1− pD + 2p2D + pDr

)]
log (1 + r)

2r3

+

[(
1− 3pD − r + 4p2D + 3pDr + r2

)
− r

(
1− pD + 2p2D + pDr

)]
log (1− r)

2r3

πDD(A) =
1

2
+

1 + pD
2r

+

[(
−1 + 3pD + 2r − 4p2D − 5pDr − 2r2

)
+ r

(
−1 + pD + r − 2p2D − 3pDr − r2

)]
log (1 + r)

2r3

+

[(
−1 + 3pD + 2r − 4p2D − 5pDr − 2r2

)
− r

(
−1 + pD + r − 2p2D − 3pDr − r2

)]
log (1− r)

2r3

Here we have adopted that log x refers to the natural logarithm, rather than log2 x or log10 x.
Of course pC = pC , pD = pD, and r = r. The functions spr and ssn may be computed as linear

combinations of πCC , πCD, πDC , and πDD. These formulas are valid except when r ∈ {−1, 0, 1}.
But r = 0 if and only if pC = pD, and in this case (3) suffices to compute the reactive mean of each
function in our set above. Indeed, the denominators in (1) and (2) simplify to 1, and we have

n(A) = 1 +
(1− pC)

pC
log (1− pC)

c(A) = pC

c′(A) =
1

2

t(A) =
1

2

πCC(A) =
pC
2

πCD(A) =
pC
2

πDC(A) =
1− pC

2

πDD(A) =
1− pC

2

Now if r ± 1, then A is Tit-for-Tat (pC = 1, pD = 0) or the Bully (pC = 0, pD = 1), respectively.
But these boundary cases are easy to evaluate directly. Recalling that T denotes Tit-for-Tat, and B
denotes the Bully, we have

n(T ) = 1

c(T ) =
1

2

c′(T ) =
1

2
t(T ) = 1

πCC(T ) = 1− log(2)

πCD(T ) = −1

2
+ log(2)

πDC(T ) = −1

2
+ log(2)

πDD(T ) = 1− log(2)

n(B) = 0

c(B) =
1

2

c′(B) =
1

2
t(B) = 0

πCC(B) = −1

2
+ log(2)

πCD(B) = 1− log(2)

πDC(B) = 1− log(2)

πDD(B) = −1

2
+ log(2)

February 28, 2023 16/18



Irrespective of these considerations, we inherit the relations from Sections 1 and 2, that is, from
the behavior of the functions themselves.

pC(A) = pC

pD(A) = pD

r(A) = r

t(A) = pC · c′(A) + (1− pD) ·
(
1− c′(A)

)
s(A) = RCC · πCC(A) +RCD · πCD(A) +RDC · πDC(A) +RDD · πDD(A)

πCD(A) = c(A)− πCC(A)

πDC(A) = c′(A)− πCC(A)

πDD(A) = 1− c(A)− c′(A) + πCC(A)

With these identities in hand, it is now straightforward to generate the heatmaps that will be given
in Section 3 (the authors used Python). These expressions also suffice to compute exact values for
most of covariances between our functions of interest. As an example, we compute the covariance of
pC and c. Explicitly, we have

cov (pC , c) =
1

vol(X)

∫
X

(
pC(A)− 1

2

)(
c(A)− 1

2

)
dA

=

0∫
−1

1∫
−r

(
pC (r + pD, pD)− 1

2

)(
c (r + pD, pD)− 1

2

)
dpDdr

+

0∫
−1

1∫
−r

(
pC (r + pD, pD)− 1

2

)(
c (r + pD, pD)− 1

2

)
dpDdr

=

0∫
−1

(1 + r)
4

log (1 + r) + (1 + r)
3

(1− r) log (1− r)
12r2

dr

+

1∫
0

(1− r)4 log (1− r) + (1− r)3 (1 + r) log (1 + r)

12r2
dr

= 2

1∫
0

(1− r)4 log (1− r) + (1− r)3 (1 + r) log (1 + r)

12r2
dr.
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For ease of exposition, write φ(r) for the integrand of this last integral. We have

φ(r) =
(1− r)4 log (1− r) + (1− r)3 (1 + r) log (1 + r)

12r2

= − (1− r)4

12r2

∞∑
j=1

rj

j
+

(1− r)3 (1 + r)

12r2

∞∑
j=1

(−1)j+1rj

j

=
−1 + 4r − 6r2 + 4r3 − r4

12r2

∞∑
j=1

rj

j
+
−1 + 2r − 2r3 + r4

12r2

∞∑
j=1

(−1)jrj

j

=

∞∑
j=1

(
−1− (−1)j

12j

)
rj−2 +

∞∑
j=1

(
2 + (−1)j

6j

)
rj−1 −

∞∑
j=1

(
1

2j

)
rj

+

∞∑
j=1

(
2− (−1)j

6j

)
rj+1 +

∞∑
j=1

(
−1 + (−1)j

12j

)
rj+2

Note that the coefficient of r−1 in the first sum vanishes, so φ(r) is holomorphic at 0. Now

integrating each sum termwise, reindexing, and combining like terms,
1∫
0

φ(r) becomes

−
∞∑
j=1

7

12j(j + 1)
+

∞∑
j=1

1

3j(j + 2)
−
∞∑
j=1

1

12j(j + 3)
(8)

+

∞∑
j=1

(−1)j

12j(j + 1)
−
∞∑
j=1

(−1)j

6j(j + 2)
+

∞∑
j=1

(−1)j

12j(j + 3)
(9)

+

∞∑
j=1

1

3j2
+

∞∑
j=1

(−1)j

6j2
(10)

The series in (8) telescope to −7/12, 1/4, and −11/216 respectively. Similarly, performing a partial
fraction decomposition on the terms in the series of (9) yields scaled copies of the sum

∞∑
j=1

(−1)j

j
= − log (2) ,

possibly with some terms omitted at the beginning of the series. This perspective lets us evaluate
these series as 1

12 −
1
6 log(2), 1

24 , and 5
216 −

1
18 log(2). Finally, classic methods from analytic number

theory [4] let us evaluate the series in (10) as π2

18 and −π
2

72 . Summing these values, we conclude that

1∫
0

φ(r)dr =
−17 + 3π2 − 16 log(2)

72
,

and so

cov (pC , c) =
−17 + 3π2 − 16 log(2)

36
.

The other covariances we give explicit values for can be evaluated similarly.
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