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Abstract

Two vertices u, v ∈ V of an undirected connected graph G = (V,E) are resolved by a
vertex w if the distance between u and w and the distance between v and w are different.
A set R ⊆ V of vertices is a k-resolving set for G if for each pair of vertices u, v ∈ V there
are at least k distinct vertices w1, . . . , wk ∈ R such that each of them resolves u and v. The
k-Metric Dimension of G is the size of a smallest k-resolving set for G. The decision problem
k-Metric Dimension is the question whether G has a k-resolving set of size at most r, for
a given graph G and a given number r. In this paper, we proof the NP-completeness of
k-Metric Dimension for bipartite graphs and each k ≥ 2.

1 Introduction

The metric dimension of graphs has been introduced in the 1970s independently by Slater [Sla75]
and by Harary and Melter [HM76]. We consider simple undirected and connected graphs G =
(V,E), where V is the set of vertices and E ⊆ {{u, v} |u, v ∈ V, u 6= v} is the set of edges. Such
a graph has metric dimension at most r if there is a vertex set R ⊆ V such that |R| ≤ r and
∀u, v ∈ V , u 6= v, there is a vertex w ∈ R such that d(w, u) 6= d(w, v), where d(u, v) is the distance
(the length of a shortest path in an unweighted graph) between u and v. The metric dimension
of G is the smallest integer r such that G has metric dimension at most r.

If d(w, u) 6= d(w, v), for three vertices u, v, w, we say that u and v are resolved or distinguished
by vertex w. If every pair of vertices is resolved by at least one vertex of a vertex set R, then R
is a resolving set or metric generator for G. In certain applications, the vertices of a resolving set
are also called landmark nodes or anchor nodes. This is a common naming, particularly in the
theory of sensor networks.

The metric dimension finds applications in various areas, including network discovery and
verification [BEE+05], geographical routing protocols [LA06], combinatorial optimization [ST04],
sensor networks [HW12], robot navigation [KRR96] and chemistry [CEJO00, Hay77].

There are several algorithms for computing a minimum resolving set in polynomial time for
special classes of graphs, for example trees [CEJO00, KRR96], wheels [HMP+05], grid graphs
[MT84], k-regular bipartite graphs [BBS+11], amalgamation of cycles [IBSS10] and outerplanar
graphs [DPSL12]. The approximability of the metric dimension has been studied for bounded
degree, dense and general graphs in [HSV12]. Upper and lower bounds on the metric dimension
are considered in [CGH08, CPZ00] for further classes of graphs.

In this paper, we consider the k-Metric Dimension for some positive integer k. A set R ⊆ V
of vertices is a k-resolving set for G if for each pair of vertices u, v ∈ V there are at least k
vertices w1, . . . , wk ∈ R such that each of them resolves u and v. The k-Metric Dimension
of G is the size of a smallest k-resolving set for G. The k-Metric Dimension problem was
introduced by Estrada-Moreno et al. in [EMRY13]. The 1-metric dimension is simply called
metric dimension. The 2-metric dimension is also called fault-tolerant metric dimension and was
introduced in [HMSW08].

Estrada-Moreno et al. analysed the (k, t)-Metric Dimension [EMYRV16]. The (k, t)-
Metric Dimension is the k-Metric Dimension, with the addition, that the distance between
two vertices u, v of G is defined as the minimum of d(u, v) and t. Therefore, if t is set to the
diameter of G, the (k, t)-Metric Dimension is the same as the k-Metric Dimension. Estrada-
Moreno et al. showed the NP-completeness of (k, t)-Metric Dimension for odd values of k.

The decision problem k-Metric Dimension is defined as follows.
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k-Metric Dimension
Instance: An undirected connected graph G = (V,E) and a

number r.
Question: Is there a k-resolving set R ⊆ V for G of size at most r?

The complexity of deciding k-Metric Dimension has only been investigated for very few
graph classes, such as trees and other simple graph classes. For general graph classes, k-Metric
Dimension is assumed to be NP-complete if k is given as part of the input. The decision problem
1-Metric Dimension is known to be NP-complete, see [GJ79]. A proof can be found in [KRR96].
In this paper, we show the NP-completeness of k-Metric Dimension for bipartite graphs and
each k ≥ 2 by an alternative approach to [YER17], whose proof unfortunately is incorrect and
does not offer any simple correction options.

2 The NP-completeness of k-Metric Dimension

In this section, k-Metric Dimension is shown to be NP-complete for bipartite graphs and each
k ≥ 2 by a reduction from 3-Dimensional k-Matching, which is defined as follows.

3-Dimensional k-Matching (3DkM)
Instance: A set S ⊆ A×B ×C, where A, B and C are disjoint sets

of the same size n.
Question: Does S contain a k-matching, i.e. a subset M of size k · n

such that each element of A, B and C is contained in
exactly k triples of M?

For k = 1, the 3D1M problem is the well-known NP-complete 3-Dimensional Matching
(3DM) problem, see [GJ79]. The next theorem shows that 3DkM is also NP-complete for each
k ≥ 2.

Theorem 1. 3DkM is NP-complete for each k ≥ 2.

Proof. The 3DkM problem is obviously in NP, because it can be checked in polynomial time
whether a selection of triples from S is a k-matching.

The NP-hardness is shown by a reduction from 3DM. Let

A = {a1, . . . , an}, B = {b1, . . . , bn},
C = {c1, . . . , cn}, and S = {s1, . . . , sm}

be an instance for 3DM. Without loss of generality, n is assumed to be a multiple of (k− 1), that
is n = r(k− 1) for a positive integer r. If this is not the case, then expand A, B and C by at most
k − 2 elements each and S by at most k − 2 triples, which cover every additional element exactly
once and none of the originally given elements.

Now consider the following instance for 3DkM defined by

A′ = A ∪ {an+1, . . . , a3n}, B′ = B ∪ {bn+1, . . . , b3n},
C ′ = C ∪ {cn+1, . . . , c3n}, and S′ = S ∪ R ∪ T

where R = {(ai, bi, ci) |n + 1 ≤ i ≤ 3n} and T ⊆ A′ × B′ × C ′. Set T is a set with 3n(k − 1)
triples, which will be defined later.

The set A′, B′ and C ′ is the set A, B and C respectively, each expanded by additional 2n
elements. Set S′ is the set S expanded by the 2n triples of R and the 3n(k − 1) triples of T .

Let U = A ∪ B ∪ C and U ′ = A′ ∪ B′ ∪ C ′. The 2n triples of R cover each element of U ′ \ U
exactly once and no element of U . Set T will be defined such that its 3n(k− 1) triples cover each
element of U ′ exactly k− 1 times. Each triple of T will have exactly one element from U and two
elements from U ′ \ U .
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If M is a matching for U then M ∪R∪ T is obviously a k-matching for U ′ for any k ≥ 2. Any
k-matching M ′ for U ′ contains all triples from R and T , because otherwise it is not possible to
cover the elements of U ′ \ U at least k times. The triples of T cover the elements of U ′ exactly
k − 1 times. That is, if M ′ is a k-matching for U ′ then M = M ′ \ (R ∪ T ) is a matching for U .

The set T of triples can be easily defined with the help of a set

Tp,q ⊆ (A×B) ∪ (A× C) ∪ (B × C)

of tuples defined by

Tp,q =
{(ai, bj) | i ∈ {p, . . . , p + q − 1}, j ∈ {p + q, . . . , p + 2q − 1}}

∪ {(bi, cj) | i ∈ {p, . . . , p + q − 1}, j ∈ {p + q, . . . , p + 2q − 1}}
∪ {(ci, aj) | i ∈ {p, . . . , p + q − 1}, j ∈ {p + q, . . . , p + 2q − 1}}.

These 3q2 tuples cover each element of

{ap, . . . , ap+2q−1, bp, . . . , bp+2q−1, cp, . . . , cp+2q−1}

exactly q times. There are

• q2 tuples between the elements of {ap, . . . , ap+q−1} and {bp+q, . . . , bp+2q−1},

• q2 tuples between the elements of {bp, . . . , bp+q−1} and {cp+q, . . . , cp+2q−1}, and

• q2 tuples between the elements of {cp, . . . , cp+q−1} and {ap+q, . . . , ap+2q−1}.

Now let T ′ be the set of tuples defined by

T ′ =

r−1⋃
i=0

Tn+1+i2(k−1), k−1, with r =
n

k − 1
.

T ′ contains r3(k − 1)2 = n
k−1 · 3(k − 1)2 = 3n(k − 1) tuples. It is the union of r = n

k−1 sets Tp,q

where index p is running from n+ 1 to 3n+ 1− 2(k− 1) in steps of width 2(k− 1) and q = k− 1.
These tuples of T ′ cover each element of U ′ \ U exactly (k − 1) times.

In the last step, the 3n(k−1) tuples of T ′ are expanded to 3n(k−1) triples for T , by including
each element from U to exactly k − 1 tuples from T ′, such that each generated triple is from the
set A′ × B′ × C ′. Each tuple from T ′ is extended by exactly one element from U . The result is
the set T of triples with the required properties. This transformation can obviously be done in
polynomial time, see also Example 1.

Example 1. Let A = {a1, . . . , a4}, B = {b1, . . . , b4}, C = {c1, . . . , c4} and

S = {(a1, b1, c1), (a1, b2, c3), (a2, b3, c3), (a2, b4, c1), (a3, b1, c2), (a4, b3, c4)}

be an instance for 3DM. The triple (a1, b2, c3), (a2, b4, c1), (a3, b1, c2), (a4, b3, c4) form a 3-dimen-
sional matching and thus a solution for 3DM.

It follows the construction of an instance for 3DkM for k = 4 as defined in the proof of
Theorem 1. Integer n has to be a multiple of k − 1 = 3. To ensure this, A is extended by a5 and
a6, B is extended by b5 and b6, C is extended by c5 and c6 and S is extended by (a5, b5, c5) and
(a6, b6, c6). Now n = 6 and r = n

k−1 = 2.
Then A′ = {a1, . . . , a18}, B′ = {b1, . . . , b18}, C ′ = {c1, . . . , c18} and R = {(ai, bi, ci) | i =

7, . . . , 18}. Set T ′ is defined as T ′ = T7, 3 ∪ T13, 3. Finally, set S′ is defined as

S′ = S ∪ R ∪ T,

where, for example,

T7,3 =


(a7, b10), (a7, b11), (a7, b12), (a8, b10), (a8, b11), (a8, b12), (a9, b10), (a9, b11), (a9, b12),
(b7, c10), (b7, c11), (b7, c12), (b8, c10), (b8, c11), (b8, c12), (b9, c10), (b9, c11), (b9, c12),
(c7, a10), (c7, a11), (c7, a12), (c8, a10), (c8, a11), (c8, a12), (c9, a10), (c9, a11), (c9, a12)

 ,

3
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Figure 1: This graphic illustrates the transformation from 3DM to 3DkM for k = 4 as explained
in Example 1. The drawing on the top left visualizes an instance with 6 triples in S that cover the
elements {a1, . . . , a4, b1, . . . , b4, c1, . . . , c4}. The triples are indicated by 6 red and 2 black lines,
each covering 3 elements. Set S contains a matching indicated by the red lines. Each set A, B
and C is extended by two element a5, a6, b5, b6 and c5, c6 respectively, and set S is extended by
two triples (a5, b5, c5), (a6, b6, c6), such that the number of elements in the new sets A, B and C
is a multiple of (k − 1) = 3. These two triples are indicated by green lines. The drawing in the
middle right visualizes the 2 · 6 = 12 triples of R indicated by black lines. The drawing at the
bottom visualizes the 54 tuples of T ′ = T7,3 ∪ T13,3, also indicated by black lines, each covering 2
elements. The set T is formed from set T ′ by adding each element of A, B and C to k − 1 = 3
tuples of T ′. For the sake of clarity, only the triples from T for the elements a1, b1 and c1 are
shown in the figure. These triples are indicated by blue lines.

T13,3 =


(a13, b16), (a13, b17), (a13, b18), (a14, b16), (a14, b17), (a14, b18), (a15, b16), (a15, b17), (a15, b18),
(b13, c16), (b13, c17), (b13, c18), (b14, c16), (b14, c17), (b14, c18), (b15, c16), (b15, c17), (b15, c18),
(c13, a16), (c13, a17), (c13, a18), (c14, a16), (c14, a17), (c14, a18), (c15, a16), (c15, a17), (c15, a18)

 ,

T =



(a1, b7, c10), (a1, b7, c11), (a1, b7, c12), (a2, b8, c10), (a2, b8, c11), (a2, b8, c12),
(a3, b9, c10), (a3, b9, c11), (a3, b9, c12), (a4, b13, c16), (a4, b13, c17), (a4, b13, c18),
(a5, b14, c16), (a5, b14, c17), (a5, b14, c18), (a6, b15, c16), (a6, b15, c17), (a6, b15, c18),

(a7, b10, c1), (a7, b11, c1), (a7, b12, c1), (a8, b10, c2), (a8, b11, c2), (a8, b12, c2),
(a9, b10, c3), (a9, b11, c3), (a9, b12, c3), (a10, b1, c7), (a10, b2, c8), (a10, b3, c9),
(a11, b1, c7), (a11, b2, c8), (a11, b3, c9), (a12, b1, c7), (a12, b2, c8), (a12, b3, c9),

(a13, b16, c4), (a13, b17, c4), (a13, b18, c4), (a14, b16, c5), (a14, b17, c5), (a14, b18, c5),
(a15, b16, c6), (a15, b17, c6), (a15, b18, c6), (a16, b4, c13), (a16, b5, c14), (a16, b6, c15),
(a17, b4, c13), (a17, b5, c14), (a17, b6, c15), (a18, b4, c13), (a18, b5, c14), (a18, b6, c15)



,

see also Figure 1.

Theorem 2. k-MD is NP-complete for bipartite graphs G and each k ≥ 2.

Proof. The k-MD problem is obviously in NP, because it can be checked in polynomial time
whether a set of vertices is a k-resolving set.

The NP-hardness is proven by a reduction from 3D(k-1)M. Let A = {a1, ..., an}, B =
{b1, ..., bn}, C = {c1, ..., cn}, S = {s1, ..., sm} be an instance I for 3D(k − 1)M where k ≥ 2
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and n > k. The aim is to define a graph G = (V,E) and a number x such that G has a k-resolving
set of size x if and only if instance I has a (k-1)-matching.

Graph G is defined as follows, see also Figure 2. It has a vertex ai, bi and ci for i =
1, . . . , n and a vertex si for i = 1, . . . ,m. Graph G additionally contains vertices denoted by
a0, b0, c0, v0, vA, vB , vC and d1, . . . , dm′ where m′ = dlog(m)e.

1. Each vertex ai, 0 ≤ i ≤ n, is connected with

(a) vertex vA,

(b) vertex v0, and

(c) vertex sj , 1 ≤ j ≤ m if and only if triple sj contains element ai.

2. Each vertex bi, 0 ≤ i ≤ n, is connected with

(a) vertex vB ,

(b) vertex v0, and

(c) vertex sj , 1 ≤ j ≤ m if and only if triple sj contains element bi.

3. Each vertex ci, 0 ≤ i ≤ n, is connected with

(a) vertex vC ,

(b) vertex v0, and

(c) vertex sj , 1 ≤ j ≤ m if and only if triple sj contains element ci.

4. Each vertex di, 1 ≤ i ≤ m′, is connected with

(a) vertex v0 and

(b) vertex sj , 1 ≤ j ≤ m, if and only if the i-th bit of the binary representation of j is 1.

Graph G contains additionally so-called leg vertices. These leg vertices form paths (legs ) with
dk/2e or bk/2c vertices. Two such legs, one with dk/2e vertices and one with bk/2c vertices, are
attached to each vertex of Lroot = {vA, vB , vC , v0, d1, . . . , dm′}, see Figure 2. Set Lroot is the set
of root vertices of the legs. Let Lv be the set of vertices of the two legs at vertex v and

L = LvA ∪ LvB ∪ LvC ∪ Lv0 ∪ Ld1
∪ · · · ∪ Ldm′

be the set of all leg vertices of G. Set Lroot has 4 + m′ vertices, each set Lv, v ∈ Lroot, has k
vertices and L has (4 + m′)k vertices.

The graph G can obviously be constructed in polynomial time from instant I.
First of all, let us note some properties of G.

P1: G is bipartite.

P2: The distance between

(a) two vertices of {vB , vB , vC} is 4,

(b) two vertices of {d1, . . . , dm′} is 2,

(c) a vertex of {vB , vB , vC} and a vertex of {d1, . . . , dm′} is 3,

(d) vertex v0 and a vertex of {vB , vB , vC} is 2, and

(e) vertex v0 and a vertex of {d1, . . . , dm′} is 1.

P3: Every k-resolving set for G contains all vertices of L. This follows from the observation that
for each vertex v ∈ Lroot the two vertices of Lv adjacent with v are only resolved by the k
vertices of Lv.

5
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Now we will prove that S has a (k-1)-matching for instance I if and only if G has a resolving
set of size

x = (4 + m′)k + 3 + (k − 1)n.

”⇒:” Let M ⊆ S be a (k-1)-matching for instance I. The aim is to show that

R = L ∪ {a0, b0, c0} ∪ M

is a k-resolving set for G of size

x = (4 + m′)k + 3 + (k − 1)n,

that is, each pair of two distinct vertices u1, u2 of G is resolved by at least k vertices of U . Here
the triple sj of M are considered as vertices of G.

Consider the following case distinctions for two vertices u1 and u2.

1. u1, u2 ∈ Lv, v ∈ Lroot.

(a) d(u1, v) = d(u2, v). Each of the k vertices of Lv resolves u1 and u2.

(b) d(u1, v) 6= d(u2, v). Each of the k vertices of Lv′ , v′ ∈ Lroot \ {v}, resolves u1 and u2.

2. u1 ∈ Lv1 , u2 ∈ Lv2 , v1, v2 ∈ Lroot, v1 6= v2, and d(u1, v1) ≤ d(u2, v2). Each of the k vertices
of Lv1 resolves u1 and u2.

Up to this point all pairs of vertices u1, u2 are considered of which both are in L.

3. u1 ∈ LvA ∪ LvB ∪ LvC and u2 6∈ L. Each of the k vertices of Lv0
resolves u1 and u2.

4. u1 ∈ Ld1
∪ · · · ∪ Ldm′ and u2 6∈ L.

(a) u2 6∈ {vB , vC}. Each of the k vertices of LvA resolves u1 and u2.

(b) u2 6∈ {vA, vC}. Each of the k vertices of LvB resolves u1 and u2.

(c) u2 6∈ {vA, vB}. Each of the k vertices of LvC resolves u1 and u2.

5. u1 ∈ Lv0 and u2 6∈ L.

(a) u2 ∈ {vA, a0, . . . , an}. Each of the k vertices of LvA resolves u1 and u2.

(b) u2 ∈ {vB , b0, . . . , bn}. Each of the k vertices of LvB resolves u1 and u2.

(c) u2 ∈ {vC , c0, . . . , cn}. Each of the k vertices of LvC resolves u1 and u2.

(d) u2 ∈ {di} ∪ {sj | the i-th bit in the binary representation of j is 1}. Each of the k ver-
tices of Ldi

resolves u1 and u2.

Up to this point all pairs of vertices u1, u2 are considered of which at least one of them is in L.

6. u1 ∈ Lroot and u2 6∈ L. Each of the k vertices of Lu1
resolves u1 and u2.

Up to this point all pairs of vertices u1, u2 are considered of which at least one of them is in
L ∪ Lroot.

7. u1 = si1 ∈ {s1, . . . , sm′} and u2 6∈ L ∪ Lroot.

(a) u2 = si2 ∈ {s1, . . . , sm′}. Each of the k vertices of Ldj
resolves u1 and u2, if the binary

representation of i1 and i2 differs in position j.

(b) u2 ∈ {a0, . . . , an}, u2 ∈ {b0, . . . , bn}, or u2 ∈ {c0, . . . , cn}. Each of the k vertices of
LvA , LvB , or LvC , respectively, resolves u1 and u2.

Up to this point all pairs of vertices u1, u2 are considered of which at least one of them is in
L ∪ Lroot ∪ {s1, . . . , sm′}.

6
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8. u1 ∈ {a1, . . . , an} and u2 6∈ L ∪ Lroot ∪ {s1, . . . , sm′}.

(a) u2 ∈ {b0, . . . , bn, c0, . . . , cn}. Each of the k vertices of LvA resolves u1 and u2.

(b) u2 ∈ {a1, . . . , an}. Each vertex si for which triple si contains u1 or u2 resolves u1 and
u2. There are 2(k − 1) ≥ k such vertices for k ≥ 2.

(c) u2 = a0. Each vertex si for which triple si contains u1 resolves u1 and u2, and vertex
a0 resolves u1 and u2. Altogether these are exactly (k − 1) + 1 = k vertices.

9. u1 ∈ {b1, . . . , bn} and u2 6∈ L ∪ Lroot ∪ {s1, . . . , sm′}. (as in case 8)

10. u1 ∈ {c1, . . . , cn} and u2 6∈ L ∪ Lroot ∪ {s1, . . . , sm′}. (as in case 8)

11. u1, u2 ∈ {a0, b0, c0}. Each of the k vertices of LvA , LvB or LvC resolves u1 and u2.

Now all pairs of vertices u1, u2 of G are considered and it is shown that all of them are
resolved by at least k vertices from R. Note that only the vertex pairs u1, u2 ∈ {a0, . . . , an},
u1, u2 ∈ {b0, . . . , bn} and u1, u2 ∈ {c0, . . . , cn} are not already resolved by k vertices of L. Strictly
speaking, not a single vertex from L∪ {vA, vB , vC , v0, d1, . . . , dm′} resolves such a pair of vertices.

”⇐:” Let R ⊆ V be a k-resolving set for G with x = (4 + m′)k + 3 + (k − 1)n vertices. By
Property P3, R contains all the (4 +m)′k vertices of L. This leaves 3 + (k− 1)n vertices of R that
are not in L. Let us now consider the vertex pairs a0, ai, and b0, bi, and c0, ci for i = 1, . . . , n. The
vertices of L and the vertices of {vA, vB , vC , v0, d1, . . . , dm′} do not resolve these vertex pairs. The
only way to resolve these 3n vertex pairs at least k times with 3 + (k− 1)n vertices for n > k ≥ 2,
is to use k-1 vertices from {s1, . . . , sm} that form a k-1 matching and the three vertices a0, b0, c0.
This is the point where it is necessary that n is greater than k.

In the introduction of this paper, we mentioned that the k-Metric Dimension and the
(k, t)-Metric Dimension in [EMYRV16] are the same if t is set to the diameter of G. Since
the constructed graph in Theorem 2 has diameter 2 · dk/2e + 3, Theorem 2 also proves the NP-
completeness of (k, t)-Metric Dimension for bipartite graphs, each k ≥ 2 and t ≥ 2 · dk/2e+ 3.
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