A note on the complexity of K-METRIC DIMENSION

Yannick Schmitz, Duygu Vietz, and Egon Wanke
Heinrich-Heine-Universität Düsseldorf, Germany
yannick.schmitz@hhu.de, duygu.vietz@hhu.de, egon.wanke@hhu.de

Abstract

Two vertices $u, v \in V$ of an undirected connected graph $G=(V, E)$ are resolved by a vertex w if the distance between u and w and the distance between v and w are different. A set $R \subseteq V$ of vertices is a k-resolving set for G if for each pair of vertices $u, v \in V$ there are at least k distinct vertices $w_{1}, \ldots, w_{k} \in R$ such that each of them resolves u and v. The k-Metric Dimension of G is the size of a smallest k-resolving set for G. The decision problem k-Metric Dimension is the question whether G has a k-resolving set of size at most r, for a given graph G and a given number r. In this paper, we proof the NP-completeness of k-Metric Dimension for bipartite graphs and each $k \geq 2$.

1 Introduction

The metric dimension of graphs has been introduced in the 1970s independently by Slater [Sla75] and by Harary and Melter [HM76]. We consider simple undirected and connected graphs $G=$ (V, E), where V is the set of vertices and $E \subseteq\{\{u, v\} \mid u, v \in V, u \neq v\}$ is the set of edges. Such a graph has metric dimension at most r if there is a vertex set $R \subseteq V$ such that $|R| \leq r$ and $\forall u, v \in V, u \neq v$, there is a vertex $w \in R$ such that $d(w, u) \neq d(w, v)$, where $d(u, v)$ is the distance (the length of a shortest path in an unweighted graph) between u and v. The metric dimension of G is the smallest integer r such that G has metric dimension at most r.

If $d(w, u) \neq d(w, v)$, for three vertices u, v, w, we say that u and v are resolved or distinguished by vertex w. If every pair of vertices is resolved by at least one vertex of a vertex set R, then R is a resolving set or metric generator for G. In certain applications, the vertices of a resolving set are also called landmark nodes or anchor nodes. This is a common naming, particularly in the theory of sensor networks.

The metric dimension finds applications in various areas, including network discovery and verification $\left[\mathrm{BEE}^{+} 05\right]$, geographical routing protocols [LA06], combinatorial optimization [ST04], sensor networks [HW12], robot navigation [KRR96] and chemistry [CEJO00, Hay77].

There are several algorithms for computing a minimum resolving set in polynomial time for special classes of graphs, for example trees [CEJO00, KRR96], wheels [HMP ${ }^{+}$05], grid graphs [MT84], k-regular bipartite graphs [$\mathrm{BBS}^{+} 11$], amalgamation of cycles [IBSS10] and outerplanar graphs [DPSL12]. The approximability of the metric dimension has been studied for bounded degree, dense and general graphs in [HSV12]. Upper and lower bounds on the metric dimension are considered in [CGH08, CPZ00] for further classes of graphs.

In this paper, we consider the k-Metric Dimension for some positive integer k. A set $R \subseteq V$ of vertices is a k-resolving set for G if for each pair of vertices $u, v \in V$ there are at least k vertices $w_{1}, \ldots, w_{k} \in R$ such that each of them resolves u and v. The k-Metric Dimension of G is the size of a smallest k-resolving set for G. The k-Metric Dimension problem was introduced by Estrada-Moreno et al. in [EMRY13]. The 1-metric dimension is simply called metric dimension. The 2-metric dimension is also called fault-tolerant metric dimension and was introduced in [HMSW08].

Estrada-Moreno et al. analysed the (k, t)-Metric Dimension [EMYRV16]. The (k, t) Metric Dimension is the k-Metric Dimension, with the addition, that the distance between two vertices u, v of G is defined as the minimum of $d(u, v)$ and t. Therefore, if t is set to the diameter of G, the (k, t)-Metric Dimension is the same as the k-Metric Dimension. EstradaMoreno et al. showed the NP-completeness of (k, t)-Metric Dimension for odd values of k.

The decision problem k-Metric Dimension is defined as follows.

	k-METRIC DIMENSION
Instance:	An undirected connected graph $G=(V, E)$ and a
number r.	

The complexity of deciding k-Metric Dimension has only been investigated for very few graph classes, such as trees and other simple graph classes. For general graph classes, k-Metric Dimension is assumed to be NP-complete if k is given as part of the input. The decision problem 1-Metric Dimension is known to be NP-complete, see [GJ79]. A proof can be found in [KRR96]. In this paper, we show the NP-completeness of k-METRIC Dimension for bipartite graphs and each $k \geq 2$ by an alternative approach to [YER17], whose proof unfortunately is incorrect and does not offer any simple correction options.

2 The NP-completeness of k-Metric Dimension

In this section, k-Metric Dimension is shown to be NP-complete for bipartite graphs and each $k \geq 2$ by a reduction from 3-Dimensional k-Matching, which is defined as follows.

	3 -Dimensional k-Matching (3D $k \mathrm{M})$
Instance:	A set $S \subseteq A \times B \times C$, where A, B and C are disjoint sets of the same size n.
Question:	Does S contain a k-matching, i.e. a subset M of size $k \cdot n$ such that each element of A, B and C is contained in exactly k triples of $M ?$

For $k=1$, the 3D1M problem is the well-known NP-complete 3-Dimensional Matching (3DM) problem, see [GJ79]. The next theorem shows that $3 \mathrm{D} k \mathrm{M}$ is also NP-complete for each $k \geq 2$.

Theorem 1. $3 \mathrm{D} k \mathrm{M}$ is $N P$-complete for each $k \geq 2$.
Proof. The $3 \mathrm{D} k \mathrm{M}$ problem is obviously in NP, because it can be checked in polynomial time whether a selection of triples from S is a k-matching.

The NP-hardness is shown by a reduction from 3DM. Let

$$
\begin{array}{ll}
A=\left\{a_{1}, \ldots, a_{n}\right\}, & B=\left\{b_{1}, \ldots, b_{n}\right\} \\
C=\left\{c_{1}, \ldots, c_{n}\right\}, \text { and } & S=\left\{s_{1}, \ldots, s_{m}\right\}
\end{array}
$$

be an instance for 3DM. Without loss of generality, n is assumed to be a multiple of $(k-1)$, that is $n=r(k-1)$ for a positive integer r. If this is not the case, then expand A, B and C by at most $k-2$ elements each and S by at most $k-2$ triples, which cover every additional element exactly once and none of the originally given elements.

Now consider the following instance for $3 \mathrm{D} k \mathrm{M}$ defined by

$$
\begin{array}{ll}
A^{\prime}=A \cup\left\{a_{n+1}, \ldots, a_{3 n}\right\}, & B^{\prime}=B \cup\left\{b_{n+1}, \ldots, b_{3 n}\right\}, \\
C^{\prime}=C \cup\left\{c_{n+1}, \ldots, c_{3 n}\right\}, \text { and } & S^{\prime}=S \cup R \cup T
\end{array}
$$

where $R=\left\{\left(a_{i}, b_{i}, c_{i}\right) \mid n+1 \leq i \leq 3 n\right\}$ and $T \subseteq A^{\prime} \times B^{\prime} \times C^{\prime}$. Set T is a set with $3 n(k-1)$ triples, which will be defined later.

The set A^{\prime}, B^{\prime} and C^{\prime} is the set A, B and C respectively, each expanded by additional $2 n$ elements. Set S^{\prime} is the set S expanded by the $2 n$ triples of R and the $3 n(k-1)$ triples of T.

Let $U=A \cup B \cup C$ and $U^{\prime}=A^{\prime} \cup B^{\prime} \cup C^{\prime}$. The $2 n$ triples of R cover each element of $U^{\prime} \backslash U$ exactly once and no element of U. Set T will be defined such that its $3 n(k-1)$ triples cover each element of U^{\prime} exactly $k-1$ times. Each triple of T will have exactly one element from U and two elements from $U^{\prime} \backslash U$.

If M is a matching for U then $M \cup R \cup T$ is obviously a k-matching for U^{\prime} for any $k \geq 2$. Any k-matching M^{\prime} for U^{\prime} contains all triples from R and T, because otherwise it is not possible to cover the elements of $U^{\prime} \backslash U$ at least k times. The triples of T cover the elements of U^{\prime} exactly $k-1$ times. That is, if M^{\prime} is a k-matching for U^{\prime} then $M=M^{\prime} \backslash(R \cup T)$ is a matching for U.

The set T of triples can be easily defined with the help of a set

$$
T_{p, q} \subseteq(A \times B) \cup(A \times C) \cup(B \times C)
$$

of tuples defined by

$$
\begin{aligned}
& \\
& \left.T_{p, q}=\cup\left(a_{i}, b_{j}\right) \mid i \in\{p, \ldots, p+q-1\}, j \in\{p+q, \ldots, p+2 q-1\}\right\} \\
& \cup\left\{\left(b_{i}, c_{j}\right) \mid i \in\{p, \ldots, p+q-1\}, j \in\{p+q, \ldots, p+2 q-1\}\right\} \\
& \left\{\left(c_{i}, a_{j}\right) \mid i \in\{p, \ldots, p+q-1\}, j \in\{p+q, \ldots, p+2 q-1\}\right\}
\end{aligned}
$$

These $3 q^{2}$ tuples cover each element of

$$
\left\{a_{p}, \ldots, a_{p+2 q-1}, b_{p}, \ldots, b_{p+2 q-1}, c_{p}, \ldots, c_{p+2 q-1}\right\}
$$

exactly q times. There are

- q^{2} tuples between the elements of $\left\{a_{p}, \ldots, a_{p+q-1}\right\}$ and $\left\{b_{p+q}, \ldots, b_{p+2 q-1}\right\}$,
- q^{2} tuples between the elements of $\left\{b_{p}, \ldots, b_{p+q-1}\right\}$ and $\left\{c_{p+q}, \ldots, c_{p+2 q-1}\right\}$, and
- q^{2} tuples between the elements of $\left\{c_{p}, \ldots, c_{p+q-1}\right\}$ and $\left\{a_{p+q}, \ldots, a_{p+2 q-1}\right\}$.

Now let T^{\prime} be the set of tuples defined by

$$
T^{\prime}=\bigcup_{i=0}^{r-1} T_{n+1+i 2(k-1), k-1}, \quad \text { with } r=\frac{n}{k-1}
$$

T^{\prime} contains $r 3(k-1)^{2}=\frac{n}{k-1} \cdot 3(k-1)^{2}=3 n(k-1)$ tuples. It is the union of $r=\frac{n}{k-1}$ sets $T_{p, q}$ where index p is running from $n+1$ to $3 n+1-2(k-1)$ in steps of width $2(k-1)$ and $q=k-1$. These tuples of T^{\prime} cover each element of $U^{\prime} \backslash U$ exactly $(k-1)$ times.

In the last step, the $3 n(k-1)$ tuples of T^{\prime} are expanded to $3 n(k-1)$ triples for T, by including each element from U to exactly $k-1$ tuples from T^{\prime}, such that each generated triple is from the set $A^{\prime} \times B^{\prime} \times C^{\prime}$. Each tuple from T^{\prime} is extended by exactly one element from U. The result is the set T of triples with the required properties. This transformation can obviously be done in polynomial time, see also Example 1.

Example 1. Let $A=\left\{a_{1}, \ldots, a_{4}\right\}, B=\left\{b_{1}, \ldots, b_{4}\right\}, C=\left\{c_{1}, \ldots, c_{4}\right\}$ and

$$
S=\left\{\left(a_{1}, b_{1}, c_{1}\right),\left(a_{1}, b_{2}, c_{3}\right),\left(a_{2}, b_{3}, c_{3}\right),\left(a_{2}, b_{4}, c_{1}\right),\left(a_{3}, b_{1}, c_{2}\right),\left(a_{4}, b_{3}, c_{4}\right)\right\}
$$

be an instance for 3DM. The triple $\left(a_{1}, b_{2}, c_{3}\right),\left(a_{2}, b_{4}, c_{1}\right),\left(a_{3}, b_{1}, c_{2}\right),\left(a_{4}, b_{3}, c_{4}\right)$ form a 3-dimensional matching and thus a solution for 3 DM .

It follows the construction of an instance for $3 \mathrm{D} k \mathrm{M}$ for $k=4$ as defined in the proof of Theorem 1. Integer n has to be a multiple of $k-1=3$. To ensure this, A is extended by a_{5} and a_{6}, B is extended by b_{5} and b_{6}, C is extended by c_{5} and c_{6} and S is extended by $\left(a_{5}, b_{5}, c_{5}\right)$ and $\left(a_{6}, b_{6}, c_{6}\right)$. Now $n=6$ and $r=\frac{n}{k-1}=2$.

Then $A^{\prime}=\left\{a_{1}, \ldots, a_{18}\right\}, B^{\prime}=\left\{b_{1}, \ldots, b_{18}\right\}, C^{\prime}=\left\{c_{1}, \ldots, c_{18}\right\}$ and $R=\left\{\left(a_{i}, b_{i}, c_{i}\right) \mid i=\right.$ $7, \ldots, 18\}$. Set T^{\prime} is defined as $T^{\prime}=T_{7,3} \cup T_{13,3}$. Finally, set S^{\prime} is defined as

$$
S^{\prime}=S \cup R \cup T
$$

where, for example,

$$
T_{7,3}=\left\{\begin{array}{l}
\left(a_{7}, b_{10}\right),\left(a_{7}, b_{11}\right),\left(a_{7}, b_{12}\right),\left(a_{8}, b_{10}\right),\left(a_{8}, b_{11}\right),\left(a_{8}, b_{12}\right),\left(a_{9}, b_{10}\right),\left(a_{9}, b_{11}\right),\left(a_{9}, b_{12}\right), \\
\left(b_{7}, c_{10}\right),\left(b_{7}, c_{11}\right),\left(b_{7}, c_{12}\right),\left(b_{8}, c_{10}\right),\left(b_{8}, c_{11}\right),\left(b_{8}, c_{12}\right),\left(b_{9}, c_{10}\right),\left(b_{9}, c_{11}\right),\left(b_{9}, c_{12}\right), \\
\left(c_{7}, a_{10}\right),\left(c_{7}, a_{11}\right),\left(c_{7}, a_{12}\right),\left(c_{8}, a_{10}\right),\left(c_{8}, a_{11}\right),\left(c_{8}, a_{12}\right),\left(c_{9}, a_{10}\right),\left(c_{9}, a_{11}\right),\left(c_{9}, a_{12}\right)
\end{array}\right\}
$$

Figure 1: This graphic illustrates the transformation from 3 DM to $3 \mathrm{D} k \mathrm{M}$ for $k=4$ as explained in Example 1. The drawing on the top left visualizes an instance with 6 triples in S that cover the elements $\left\{a_{1}, \ldots, a_{4}, b_{1}, \ldots, b_{4}, c_{1}, \ldots, c_{4}\right\}$. The triples are indicated by 6 red and 2 black lines, each covering 3 elements. Set S contains a matching indicated by the red lines. Each set A, B and C is extended by two element $a_{5}, a_{6}, b_{5}, b_{6}$ and c_{5}, c_{6} respectively, and set S is extended by two triples $\left(a_{5}, b_{5}, c_{5}\right),\left(a_{6}, b_{6}, c_{6}\right)$, such that the number of elements in the new sets A, B and C is a multiple of $(k-1)=3$. These two triples are indicated by green lines. The drawing in the middle right visualizes the $2 \cdot 6=12$ triples of R indicated by black lines. The drawing at the bottom visualizes the 54 tuples of $T^{\prime}=T_{7,3} \cup T_{13,3}$, also indicated by black lines, each covering 2 elements. The set T is formed from set T^{\prime} by adding each element of A, B and C to $k-1=3$ tuples of T^{\prime}. For the sake of clarity, only the triples from T for the elements a_{1}, b_{1} and c_{1} are shown in the figure. These triples are indicated by blue lines.

$$
\begin{aligned}
& T_{13,3}=\left\{\begin{array}{l}
\left(a_{13}, b_{16}\right),\left(a_{13}, b_{17}\right),\left(a_{13}, b_{18}\right),\left(a_{14}, b_{16}\right),\left(a_{14}, b_{17}\right),\left(a_{14}, b_{18}\right),\left(a_{15}, b_{16}\right),\left(a_{15}, b_{17}\right),\left(a_{15}, b_{18}\right), \\
\left(b_{13}, c_{16}\right),\left(b_{13}, c_{17}\right),\left(b_{13}, c_{18}\right),\left(b_{14}, c_{16}\right),\left(b_{14}, c_{17}\right),\left(b_{14}, c_{18}\right),\left(b_{15}, c_{16}\right),\left(b_{15}, c_{17}\right),\left(b_{15}, c_{18}\right), \\
\left(c_{13}, a_{16}\right),\left(c_{13}, a_{17}\right),\left(c_{13}, a_{18}\right),\left(c_{14}, a_{16}\right),\left(c_{14}, a_{17}\right),\left(c_{14}, a_{18}\right),\left(c_{15}, a_{16}\right),\left(c_{15}, a_{17}\right),\left(c_{15}, a_{18}\right)
\end{array}\right\},
\end{aligned}
$$

see also Figure 1.
Theorem 2. k-MD is NP-complete for bipartite graphs G and each $k \geq 2$.
Proof. The k-MD problem is obviously in NP, because it can be checked in polynomial time whether a set of vertices is a k-resolving set.

The NP-hardness is proven by a reduction from $3 \mathrm{D}(k-1) \mathrm{M}$. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=$ $\left\{b_{1}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}, S=\left\{s_{1}, \ldots, s_{m}\right\}$ be an instance I for $3 \mathrm{D}(k-1)$ M where $k \geq 2$
and $n>k$. The aim is to define a graph $G=(V, E)$ and a number x such that G has a k-resolving set of size x if and only if instance I has a ($k-1$)-matching.

Graph G is defined as follows, see also Figure 2. It has a vertex a_{i}, b_{i} and c_{i} for $i=$ $1, \ldots, n$ and a vertex s_{i} for $i=1, \ldots, m$. Graph G additionally contains vertices denoted by $a_{0}, b_{0}, c_{0}, v_{0}, v_{A}, v_{B}, v_{C}$ and $d_{1}, \ldots, d_{m^{\prime}}$ where $m^{\prime}=\lceil\log (m)\rceil$.

1. Each vertex $a_{i}, 0 \leq i \leq n$, is connected with
(a) vertex v_{A},
(b) vertex v_{0}, and
(c) vertex $s_{j}, 1 \leq j \leq m$ if and only if triple s_{j} contains element a_{i}.
2. Each vertex $b_{i}, 0 \leq i \leq n$, is connected with
(a) vertex v_{B},
(b) vertex v_{0}, and
(c) vertex $s_{j}, 1 \leq j \leq m$ if and only if triple s_{j} contains element b_{i}.
3. Each vertex $c_{i}, 0 \leq i \leq n$, is connected with
(a) vertex v_{C},
(b) vertex v_{0}, and
(c) vertex $s_{j}, 1 \leq j \leq m$ if and only if triple s_{j} contains element c_{i}.
4. Each vertex $d_{i}, 1 \leq i \leq m^{\prime}$, is connected with
(a) vertex v_{0} and
(b) vertex $s_{j}, 1 \leq j \leq m$, if and only if the i-th bit of the binary representation of j is 1 .

Graph G contains additionally so-called leg vertices. These leg vertices form paths (legs) with $\lceil k / 2\rceil$ or $\lfloor k / 2\rfloor$ vertices. Two such legs, one with $\lceil k / 2\rceil$ vertices and one with $\lfloor k / 2\rfloor$ vertices, are attached to each vertex of $L_{\text {root }}=\left\{v_{A}, v_{B}, v_{C}, v_{0}, d_{1}, \ldots, d_{m^{\prime}}\right\}$, see Figure 2. Set $L_{\text {root }}$ is the set of root vertices of the legs. Let L_{v} be the set of vertices of the two legs at vertex v and

$$
L=L_{v_{A}} \cup L_{v_{B}} \cup L_{v_{C}} \cup L_{v_{0}} \cup L_{d_{1}} \cup \cdots \cup L_{d_{m^{\prime}}}
$$

be the set of all leg vertices of G. Set $L_{\text {root }}$ has $4+m^{\prime}$ vertices, each set $L_{v}, v \in L_{\text {root }}$, has k vertices and L has $\left(4+m^{\prime}\right) k$ vertices.

The graph G can obviously be constructed in polynomial time from instant I.
First of all, let us note some properties of G.
P1: G is bipartite.
P2: The distance between
(a) two vertices of $\left\{v_{B}, v_{B}, v_{C}\right\}$ is 4 ,
(b) two vertices of $\left\{d_{1}, \ldots, d_{m^{\prime}}\right\}$ is 2 ,
(c) a vertex of $\left\{v_{B}, v_{B}, v_{C}\right\}$ and a vertex of $\left\{d_{1}, \ldots, d_{m^{\prime}}\right\}$ is 3 ,
(d) vertex v_{0} and a vertex of $\left\{v_{B}, v_{B}, v_{C}\right\}$ is 2 , and
(e) vertex v_{0} and a vertex of $\left\{d_{1}, \ldots, d_{m^{\prime}}\right\}$ is 1 .

P3: Every k-resolving set for G contains all vertices of L. This follows from the observation that for each vertex $v \in L_{\text {root }}$ the two vertices of L_{v} adjacent with v are only resolved by the k vertices of L_{v}.

Now we will prove that S has a $(k-1)$-matching for instance I if and only if G has a resolving set of size

$$
x=\left(4+m^{\prime}\right) k+3+(k-1) n .
$$

$" \Rightarrow: "$ Let $M \subseteq S$ be a $(k-1)$-matching for instance I. The aim is to show that

$$
R=L \cup\left\{a_{0}, b_{0}, c_{0}\right\} \cup M
$$

is a k-resolving set for G of size

$$
x=\left(4+m^{\prime}\right) k+3+(k-1) n
$$

that is, each pair of two distinct vertices u_{1}, u_{2} of G is resolved by at least k vertices of U. Here the triple s_{j} of M are considered as vertices of G.

Consider the following case distinctions for two vertices u_{1} and u_{2}.

1. $u_{1}, u_{2} \in L_{v}, v \in L_{\mathrm{root}}$.
(a) $d\left(u_{1}, v\right)=d\left(u_{2}, v\right)$. Each of the k vertices of L_{v} resolves u_{1} and u_{2}.
(b) $d\left(u_{1}, v\right) \neq d\left(u_{2}, v\right)$. Each of the k vertices of $L_{v^{\prime}}, v^{\prime} \in L_{\text {root }} \backslash\{v\}$, resolves u_{1} and u_{2}.
2. $u_{1} \in L_{v_{1}}, u_{2} \in L_{v_{2}}, v_{1}, v_{2} \in L_{\text {root }}, v_{1} \neq v_{2}$, and $d\left(u_{1}, v_{1}\right) \leq d\left(u_{2}, v_{2}\right)$. Each of the k vertices of $L_{v_{1}}$ resolves u_{1} and u_{2}.

Up to this point all pairs of vertices u_{1}, u_{2} are considered of which both are in L.
3. $u_{1} \in L_{v_{A}} \cup L_{v_{B}} \cup L_{v_{C}}$ and $u_{2} \notin L$. Each of the k vertices of $L_{v_{0}}$ resolves u_{1} and u_{2}.
4. $u_{1} \in L_{d_{1}} \cup \cdots \cup L_{d_{m^{\prime}}}$ and $u_{2} \notin L$.
(a) $u_{2} \notin\left\{v_{B}, v_{C}\right\}$. Each of the k vertices of $L_{v_{A}}$ resolves u_{1} and u_{2}.
(b) $u_{2} \notin\left\{v_{A}, v_{C}\right\}$. Each of the k vertices of $L_{v_{B}}$ resolves u_{1} and u_{2}.
(c) $u_{2} \notin\left\{v_{A}, v_{B}\right\}$. Each of the k vertices of $L_{v_{C}}$ resolves u_{1} and u_{2}.
5. $u_{1} \in L_{v_{0}}$ and $u_{2} \notin L$.
(a) $u_{2} \in\left\{v_{A}, a_{0}, \ldots, a_{n}\right\}$. Each of the k vertices of $L_{v_{A}}$ resolves u_{1} and u_{2}.
(b) $u_{2} \in\left\{v_{B}, b_{0}, \ldots, b_{n}\right\}$. Each of the k vertices of $L_{v_{B}}$ resolves u_{1} and u_{2}.
(c) $u_{2} \in\left\{v_{C}, c_{0}, \ldots, c_{n}\right\}$. Each of the k vertices of $L_{v_{C}}$ resolves u_{1} and u_{2}.
(d) $u_{2} \in\left\{d_{i}\right\} \cup\left\{s_{j} \mid\right.$ the i-th bit in the binary representation of j is 1$\}$. Each of the k vertices of $L_{d_{i}}$ resolves u_{1} and u_{2}.

Up to this point all pairs of vertices u_{1}, u_{2} are considered of which at least one of them is in L.
6. $u_{1} \in L_{\text {root }}$ and $u_{2} \notin L$. Each of the k vertices of $L_{u_{1}}$ resolves u_{1} and u_{2}.

Up to this point all pairs of vertices u_{1}, u_{2} are considered of which at least one of them is in $L \cup L_{\text {root }}$.
7. $u_{1}=s_{i_{1}} \in\left\{s_{1}, \ldots, s_{m^{\prime}}\right\}$ and $u_{2} \notin L \cup L_{\text {root }}$.
(a) $u_{2}=s_{i_{2}} \in\left\{s_{1}, \ldots, s_{m^{\prime}}\right\}$. Each of the k vertices of $L_{d_{j}}$ resolves u_{1} and u_{2}, if the binary representation of i_{1} and i_{2} differs in position j.
(b) $u_{2} \in\left\{a_{0}, \ldots, a_{n}\right\}, u_{2} \in\left\{b_{0}, \ldots, b_{n}\right\}$, or $u_{2} \in\left\{c_{0}, \ldots, c_{n}\right\}$. Each of the k vertices of $L_{v_{A}}, L_{v_{B}}$, or $L_{v_{C}}$, respectively, resolves u_{1} and u_{2}.

Up to this point all pairs of vertices u_{1}, u_{2} are considered of which at least one of them is in $L \cup L_{\text {root }} \cup\left\{s_{1}, \ldots, s_{m^{\prime}}\right\}$.
8. $u_{1} \in\left\{a_{1}, \ldots, a_{n}\right\}$ and $u_{2} \notin L \cup L_{\text {root }} \cup\left\{s_{1}, \ldots, s_{m^{\prime}}\right\}$.
(a) $u_{2} \in\left\{b_{0}, \ldots, b_{n}, c_{0}, \ldots, c_{n}\right\}$. Each of the k vertices of $L_{v_{A}}$ resolves u_{1} and u_{2}.
(b) $u_{2} \in\left\{a_{1}, \ldots, a_{n}\right\}$. Each vertex s_{i} for which triple s_{i} contains u_{1} or u_{2} resolves u_{1} and u_{2}. There are $2(k-1) \geq k$ such vertices for $k \geq 2$.
(c) $u_{2}=a_{0}$. Each vertex s_{i} for which triple s_{i} contains u_{1} resolves u_{1} and u_{2}, and vertex a_{0} resolves u_{1} and u_{2}. Altogether these are exactly $(k-1)+1=k$ vertices.
9. $u_{1} \in\left\{b_{1}, \ldots, b_{n}\right\}$ and $u_{2} \notin L \cup L_{\text {root }} \cup\left\{s_{1}, \ldots, s_{m^{\prime}}\right\}$. (as in case 8)
10. $u_{1} \in\left\{c_{1}, \ldots, c_{n}\right\}$ and $u_{2} \notin L \cup L_{\text {root }} \cup\left\{s_{1}, \ldots, s_{m^{\prime}}\right\}$. (as in case 8)
11. $u_{1}, u_{2} \in\left\{a_{0}, b_{0}, c_{0}\right\}$. Each of the k vertices of $L_{v_{A}}, L_{v_{B}}$ or $L_{v_{C}}$ resolves u_{1} and u_{2}.

Now all pairs of vertices u_{1}, u_{2} of G are considered and it is shown that all of them are resolved by at least k vertices from R. Note that only the vertex pairs $u_{1}, u_{2} \in\left\{a_{0}, \ldots, a_{n}\right\}$, $u_{1}, u_{2} \in\left\{b_{0}, \ldots, b_{n}\right\}$ and $u_{1}, u_{2} \in\left\{c_{0}, \ldots, c_{n}\right\}$ are not already resolved by k vertices of L. Strictly speaking, not a single vertex from $L \cup\left\{v_{A}, v_{B}, v_{C}, v_{0}, d_{1}, \ldots, d_{m^{\prime}}\right\}$ resolves such a pair of vertices.
$" \Leftarrow: "$ Let $R \subseteq V$ be a k-resolving set for G with $x=\left(4+m^{\prime}\right) k+3+(k-1) n$ vertices. By Property P3, R contains all the $(4+m)^{\prime} k$ vertices of L. This leaves $3+(k-1) n$ vertices of R that are not in L. Let us now consider the vertex pairs a_{0}, a_{i}, and b_{0}, b_{i}, and c_{0}, c_{i} for $i=1, \ldots, n$. The vertices of L and the vertices of $\left\{v_{A}, v_{B}, v_{C}, v_{0}, d_{1}, \ldots, d_{m^{\prime}}\right\}$ do not resolve these vertex pairs. The only way to resolve these $3 n$ vertex pairs at least k times with $3+(k-1) n$ vertices for $n>k \geq 2$, is to use k - 1 vertices from $\left\{s_{1}, \ldots, s_{m}\right\}$ that form a k - 1 matching and the three vertices a_{0}, b_{0}, c_{0}. This is the point where it is necessary that n is greater than k.

In the introduction of this paper, we mentioned that the k-Metric Dimension and the (k, t)-Metric Dimension in [EMYRV16] are the same if t is set to the diameter of G. Since the constructed graph in Theorem 2 has diameter $2 \cdot\lceil k / 2\rceil+3$, Theorem 2 also proves the NPcompleteness of (k, t)-Metric Dimension for bipartite graphs, each $k \geq 2$ and $t \geq 2 \cdot\lceil k / 2\rceil+3$.

References

$\left[\mathrm{BBS}^{+} 11\right]$ Bača, Martin ; Baskoro, Edy T. ; Salman, A. N. M. ; Saputro, Suhadi W. ; Suprijanto, Djoko: The Metric Dimension of Regular Bipartite Graphs. In: Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 54 (2011), Nr. 1, S. 15-28
[$\left.\mathrm{BEE}^{+} 05\right]$ Beerliova, Zuzana ; Eberhard, Felix ; Erlebach, Thomas ; Hall, Alexander ; Hoffmann, Michael ; Mihǎ̌ák, Matúš ; Ram, L. S.: Network Discovery and Verification. In: Kratsch, Dieter (Hrsg.): Graph-Theoretic Concepts in Computer Science, Springer Berlin Heidelberg, 2005, 127-138
[CEJO00] Chartrand, Gary ; Eroh, Linda ; Johnson, Mark A. ; Oellermann, Ortrud: Resolvability in graphs and the metric dimension of a graph. In: Discrete Applied Mathematics 105 (2000), Nr. 1-3, 99-113. http://dx.doi.org/10.1016/S0166-218X(00)00198-0. - DOI 10.1016/S0166-218X(00)00198-0
[CGH08] Chappell, Glenn G. ; Gimbel, John G. ; Hartman, Chris: Bounds on the metric and partition dimensions of a graph. In: Ars Combinatoria 88 (2008)
[CPZ00] Chartrand, Gary ; Poisson, Christopher ; Zhang, Ping: Resolvability and the upper dimension of graphs. In: Computers and Mathematics with Applications 39 (2000), Nr. 12, S. 19-28
[DPSL12] Díaz, Josep ; Pottonen, Olli ; Serna, Maria J. ; Leeuwen, Erik J.: On the Complexity of Metric Dimension. In: Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, 2012, 419-430
[EMRY13] Estrada-Moreno, Alejandro ; Rodríguez-Velázquez, Juan A. ; Yero, Ismael G.: The k-metric dimension of a graph. In: Applied Mathematics \mathcal{E} Information Sciences 9 (2013), 12, Nr. 6, S. 2829-2840. http://dx.doi.org/10.12785/amis/090609. - DOI 10.12785/amis/090609

Figure 2: This graphic illustrates the transformation from 3 D 2 M to $3-\mathrm{MD}$. The Instance I consisting of $A=\left\{a_{1}, \ldots, a_{4}\right\}, B=\left\{b_{1}, \ldots, b_{4}\right\}, C=\left\{c_{1}, \ldots, c_{4}\right\}, S=\left\{s_{1}, \ldots, s_{12}\right\}$ with $s_{1}=$ $\left(a_{2}, b_{1}, c_{1}\right), s_{2}=\left(a_{3}, b_{2}, c_{2}\right), s_{3}=\left(a_{2}, b_{1}, c_{1}\right), s_{4}=\left(a_{1}, b_{2}, c_{1}\right), s_{5}=\left(a_{4}, b_{3}, c_{2}\right), s_{6}=\left(a_{1}, b_{3}, c_{3}\right)$, $s_{7}=\left(a_{2}, b_{1}, c_{3}\right), s_{8}=\left(a_{1}, b_{4}, c_{4}\right), s_{9}=\left(a_{3}, b_{2}, c_{2}\right), s_{10}=\left(a_{4}, b_{2}, c_{4}\right), s_{11}=\left(a_{4}, b_{3}, c_{1}\right), s_{12}=$ $\left(a_{4}, b_{4}, c_{4}\right)$ for 3D2M is transformed into the graph G and $x=(4+4) 3+3+(3-1) n=35$. The set of triples $M=\left\{s_{1}, s_{2}, s_{6}, s_{7}, s_{8}, s_{9}, s_{11}, s_{12}\right\}$, indicated in the figure by the red lines, is a 2 -matching for instance I, where $L \cup\left\{a_{0}, b_{0}, c_{0}\right\} \cup M$ is a 3-resolving set for G of size x. Set L is the set of vertices of the legs attached at the vertices $v_{A}, v_{B}, v_{C}, v_{0}, d_{1}, d_{2}, d_{3}, d_{4}$. In the figure, the vertices of L are colored blue.
[EMYRV16] Estrada-Moreno, Alejandro ; Yero, IG ; Rodríguez-Velázquez, JA: On the (k, t)metric dimension of graphs. In: The Computer Journal (2016)
[GJ79] Garey, Michael R. ; Johnson, David S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. - ISBN 0-7167-1044-7
[Hay77] Hayat, Sakander: Computing distance-based topological descriptors of complex chemical networks: New theoretical techniques. In: Chemical Physics Letters 688 (1977), Nr. 1, 51-58. http://dx.doi.org/10.1016/j.cplett.2017.09.055. - DOI 10.1016/j.cplett.2017.09.055
[HM76] Harary, Frank ; Melter, Robert A.: On the metric dimension of a graph. In: Ars Combinatoria 2 (1976), S. 191-195
$\left[\mathrm{HMP}^{+} 05\right]$ Hernando, M. C. ; Mora, Mercè ; Pelayo, Ignacio M. ; Seara, Carlos ; Cáceres, José ; Puertas, María Luz: On the metric dimension of some families of graphs. In: Electronic Notes in Discrete Mathematics 22 (2005), 129-133. http://dx.doi.org/10.1016/j.endm. 2005.06.023. - DOI 10.1016/j.endm.2005.06.023
[HMSW08] Hernando, M. C. ; Mora, Mercè ; Slater, Peter J. ; Wood, David R.: Fault-tolerant metric dimension of graphs. In: Convexity in Discrete Structures 5 (2008), S. 81-85
[HSV12] Hauptmann, Mathias ; Schmied, Richard ; Viehmann, Claus: Approximation complexity of Metric Dimension problem. In: Journal of Discrete Algorithms 14 (2012), 214-222. http: //dx.doi.org/10.1016/j.jda.2011.12.010. - DOI 10.1016/j.jda.2011.12.010
[HW12] Hoffmann, Stefan ; Wanke, Egon: Metric Dimension for Gabriel Unit Disk Graphs Is NPComplete. In: Algorithms for Sensor Systems, 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities, ALGOSENSORS 2012, Ljubljana, Slovenia, September 13-14, 2012. Revised Selected Papers, 2012, 90-92
[IBSS10] Iswadi, H. ; Baskoro, Edy T. ; Salman, A.N.M. ; Simanjuntak, Rinovia: The metric dimension of amalgamation of cycles. In: Far East Journal of Mathematical Sciences (FJMS) 41 (2010), Nr. 1, S. 19-31
[KRR96] Khuller, Samir ; Raghavachari, Balaji ; Rosenfeld, Azriel: Landmarks in Graphs. In: Discrete Applied Mathematics 70 (1996), Nr. 3, 217-229. http://dx.doi.org/10.1016/ 0166-218X (95)00106-2. - DOI 10.1016/0166-218X(95)00106-2
[LA06] Liu, Ke ; Abu-Ghazaleh, Nael B.: Virtual Coordinates with Backtracking for Void Traversal in Geographic Routing. In: Ad-Hoc, Mobile, and Wireless Networks, 5th International Conference, ADHOC-NOW 2006, Ottawa, Canada, August 17-19, 2006, Proceedings, 2006, 46-59
[MT84] Melter, Robert A. ; Tomescu, Ioan: Metric bases in digital geometry. In: Computer Vision, Graphics, and Image Processing 25 (1984), Nr. 1, 113-121. http://dx.doi.org/10. 1016/0734-189X (84) 90051-3. - DOI 10.1016/0734-189X(84)90051-3
[Sla75] Slater, Peter J.: Leaves of trees. In: Congressum Numerantium 14 (1975), S. 549-559
[ST04] Sebö, András ; Tannier, Eric: On Metric Generators of Graphs. In: Mathematics of Operations Research 29 (2004), Nr. 2, 383-393. http://dx.doi.org/10.1287/moor. 1030. 0070. - DOI 10.1287/moor.1030.0070
[YER17] Yero, Ismael G. ; Estrada-Moreno, Alejandro ; Rodríguez-Velázquez, Juan A.: Computing the k-metric dimension of graphs. In: Applied Mathematics and Computation 300 (2017), 60-69. http://dx.doi.org/10.1016/j.amc.2016.12.005. - DOI 10.1016/j.amc.2016.12.005

