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Abstract

Two vertices u,v € V of an undirected connected graph G = (V, E) are resolved by a
vertex w if the distance between u and w and the distance between v and w are different.
A set R C V of vertices is a k-resolving set for G if for each pair of vertices u,v € V there
are at least k distinct vertices wi,...,wr € R such that each of them resolves u and v. The
k-Metric Dimension of G is the size of a smallest k-resolving set for G. The decision problem
k-METRIC DIMENSION is the question whether G has a k-resolving set of size at most r, for
a given graph G and a given number r. In this paper, we proof the NP-completeness of
k-METRIC DIMENSION for bipartite graphs and each k > 2.

1 Introduction

The metric dimension of graphs has been introduced in the 1970s independently by Slater [Sla75]
and by Harary and Melter [HM76]. We consider simple undirected and connected graphs G =
(V,E), where V is the set of vertices and E C {{u,v}|u,v € V,u # v} is the set of edges. Such
a graph has metric dimension at most r if there is a vertex set R C V such that |R| < r and
Yu,v € V, u # v, there is a vertex w € R such that d(w, u) # d(w,v), where d(u,v) is the distance
(the length of a shortest path in an unweighted graph) between u and v. The metric dimension
of GG is the smallest integer r such that G has metric dimension at most r.

If d(w,u) # d(w,v), for three vertices u, v, w, we say that u and v are resolved or distinguished
by vertex w. If every pair of vertices is resolved by at least one vertex of a vertex set R, then R
is a resolving set or metric generator for G. In certain applications, the vertices of a resolving set
are also called landmark nodes or anchor nodes. This is a common naming, particularly in the
theory of sensor networks.

The metric dimension finds applications in various areas, including network discovery and
verification [BEET05], geographical routing protocols [LA06], combinatorial optimization [ST04],
sensor networks [[TW12], robot navigation [KRR9I6] and chemistry [CEJO00, Hay77].

There are several algorithms for computing a minimum resolving set in polynomial time for
special classes of graphs, for example trees [CEJO00, KRRI6], wheels [HMPT05], grid graphs
[MT84], k-regular bipartite graphs [BBS™11], amalgamation of cycles [[BSS10] and outerplanar
graphs [DPSL12]. The approximability of the metric dimension has been studied for bounded
degree, dense and general graphs in [HSV12]. Upper and lower bounds on the metric dimension
are considered in [CGHO08, CPZ00] for further classes of graphs.

In this paper, we consider the k-Metric Dimension for some positive integer k. A set R C V
of vertices is a k-resolving set for G if for each pair of vertices u,v € V there are at least k
vertices wi,...,wr € R such that each of them resolves w and v. The k-Metric Dimension
of G is the size of a smallest k-resolving set for G. The k-METRIC DIMENSION problem was
introduced by Estrada-Moreno et al. in [EMRY13]. The l-metric dimension is simply called
metric dimension. The 2-metric dimension is also called fault-tolerant metric dimension and was
introduced in [HMSWO08].

Estrada-Moreno et al. analysed the (k,¢)-METRIC DIMENSION [EMYRV16]. The (k,t)-
METRIC DIMENSION is the k-METRIC DIMENSION, with the addition, that the distance between
two vertices u,v of G is defined as the minimum of d(u,v) and ¢. Therefore, if ¢ is set to the
diameter of G, the (k,t)-METRIC DIMENSION is the same as the k-METRIC DIMENSION. Estrada-
Moreno et al. showed the NP-completeness of (k,t)-METRIC DIMENSION for odd values of k.

The decision problem k-METRIC DIMENSION is defined as follows.
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k-METRIC DIMENSION
Instance:  An undirected connected graph G = (V, E) and a
number 7.
Question: Is there a k-resolving set R C V for G of size at most r?

The complexity of deciding k-METRIC DIMENSION has only been investigated for very few
graph classes, such as trees and other simple graph classes. For general graph classes, k-METRIC
DIMENSION is assumed to be NP-complete if k is given as part of the input. The decision problem
1-METRIC DIMENSION is known to be NP-complete, see [GJ79]. A proof can be found in [KRR96].
In this paper, we show the NP-completeness of k-METRIC DIMENSION for bipartite graphs and
each k > 2 by an alternative approach to [YER17], whose proof unfortunately is incorrect and
does not offer any simple correction options.

2 The NP-completeness of k-METRIC DIMENSION

In this section, k-METRIC DIMENSION is shown to be NP-complete for bipartite graphs and each
k > 2 by a reduction from 3-DIMENSIONAL k-MATCHING, which is defined as follows.

3-DIMENSIONAL k-MATCHING (3DkM)
Instance: A set S C Ax B x C, where A, B and C are disjoint sets
of the same size n.
Question: Does S contain a k-matching, i.e. a subset M of size k- n
such that each element of A, B and C is contained in
exactly k triples of M?

For k£ = 1, the 3D1M problem is the well-known NP-complete 3-DIMENSIONAL MATCHING
(3DM) problem, see [GJ79]. The next theorem shows that 3DkM is also NP-complete for each
k> 2.

Theorem 1. 3DkM is NP-complete for each k > 2.

Proof. The 3DEKM problem is obviously in NP, because it can be checked in polynomial time
whether a selection of triples from S is a k-matching.
The NP-hardness is shown by a reduction from 3DM. Let

A:{ala"'van}a B:{bla"'vbn}a
C=A{c,...,cn}, and S ={s1,...,8m}

be an instance for 3DM. Without loss of generality, n is assumed to be a multiple of (k — 1), that
isn = r(k—1) for a positive integer r. If this is not the case, then expand A, B and C by at most
k — 2 elements each and S by at most k — 2 triples, which cover every additional element exactly
once and none of the originally given elements.

Now consider the following instance for 3DkM defined by

A=A U {ant1,..-,0a3n}, B"=B U {bnt1,---,b3n},
C'=CU{ept1,---s¢3n}, and S =SURUT

where R = {(as,bi,¢;)|n+1<4i<3n}and T C A" x B' x C'. Set T is a set with 3n(k — 1)
triples, which will be defined later.

The set A’, B’ and C' is the set A, B and C respectively, each expanded by additional 2n
elements. Set S’ is the set S expanded by the 2n triples of R and the 3n(k — 1) triples of T.

Let U= AUBUC and U’ = AU B’ UC". The 2n triples of R cover each element of U’' \ U
exactly once and no element of U. Set T will be defined such that its 3n(k — 1) triples cover each
element of U’ exactly k — 1 times. Each triple of T will have exactly one element from U and two
elements from U" \ U.

2
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If M is a matching for U then M U RUT is obviously a k-matching for U’ for any k > 2. Any
k-matching M’ for U’ contains all triples from R and T, because otherwise it is not possible to
cover the elements of U’ \ U at least k times. The triples of T cover the elements of U’ exactly
k — 1 times. That is, if M’ is a k-matching for U’ then M = M’ \ (RUT) is a matching for U.

The set T of triples can be easily defined with the help of a set

Tpg C(AxB)U(AxC)U (BxC(C)
of tuples defined by

{(ai,05)lie{p,....p+q—1}, je{p+q,...,p+2¢—1}}
Tpe= U {(bi,¢;)|lie{p,....0+q—1},je{p+q,....p+2¢—1}}
U {(ci,aj)lie{p,....,p+q—1},j€{p+aq,....,p+2¢—1}}.

These 3¢? tuples cover each element of

{ap, .- aprag—1, by, .- bpiag—1, Cpy oo s Cpyag—1}

exactly q times. There are

e ¢? tuples between the elements of {a,, ..., aprq—1} and {bpiq, ..., bpt2g-1},

e ¢° tuples between the elements o yens 1} and {cpiq,- -, Cprag—1}, AN
? tuples bet the el t f{bp bp-‘rq } d{p+q P+2q } d

e ¢° tuples between the elements of {c,,...,cprq—1} and {apiq, ..., api2g-1}-

Now let T” be the set of tuples defined by

r—1

. n
T — U Thi1+i2(k-1), k-1, With r= 7
1=0

T’ contains r3(k —1)* = 25 -3(k —1)® = 3n(k — 1) tuples. It is the union of r = 25 sets T},
where index p is running from n+1 to 3n +1 —2(k — 1) in steps of width 2(k —1) and ¢ = k— 1.
These tuples of T” cover each element of U’ \ U exactly (k — 1) times.

In the last step, the 3n(k — 1) tuples of T” are expanded to 3n(k — 1) triples for T, by including
each element from U to exactly k — 1 tuples from T”, such that each generated triple is from the
set A’ x B’ x C'. Each tuple from T is extended by exactly one element from U. The result is
the set T of triples with the required properties. This transformation can obviously be done in

polynomial time, see also Example 1. O

Example 1. Let A ={a1,...,a4}, B={b1,...,b4}, C ={c1,...,ca} and
S = {(a1,b1,c1), (a1, b2, c3), (az, b3, c3), (az, ba, c1), (a3, b1, c2), (aa, b3, ca)}

be an instance for 3DM. The triple (a1, ba,cs), (az,bs, 1), (as, by, ca), (ag,bs, cs) form a 3-dimen-
stonal matching and thus a solution for 3DM.

It follows the construction of an instance for 3DkM for k = 4 as defined in the proof of
Theorem 1. Integer n has to be a multiple of k — 1 = 3. To ensure this, A is extended by as and
ag, B is extended by bs and bg, C' is extended by c¢5 and cg and S is extended by (as,bs,c5) and
(a6,b6,c6). Nown =6 andr = "5 = 2.

Then A/ = {al, PN ,alg}, B/ = {bl, PN ,blg}, C/ = {Cl, PN ,Clg} and R = {(ai,bl-,ci) |Z =
7,...,18}. Set T' is defined as T' = Ty 3 U Ti3 3. Finally, set S’ is defined as

S =SURUT,
where, for example,

(a7,b10), (a7,b11), (a7, bi2), (as, bio), (as, b11), (as, b12), (a9, b1o), (a9, bi1), (ag, b12),
T73 = 3 (b7, c10), (b7, c11), (b7, c12), (bs, c10), (s, c11), (bs,c12), (bo, c10), (Do, c11), (b, c12), ¢,
(e7,a10), (c7,a11), (c7,a12), (cs, a10), (cs, a11), (cs, a12), (9, a1o), (co, a11), (co, a12)
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Figure 1: This graphic illustrates the transformation from 3DM to 3DkM for k = 4 as explained
in Example 1. The drawing on the top left visualizes an instance with 6 triples in S that cover the
elements {ai,...,a4,b1,...,b4,¢1,...,c4}. The triples are indicated by 6 red and 2 black lines,
each covering 3 elements. Set S contains a matching indicated by the red lines. Each set A, B
and C' is extended by two element as, ag, b5, bg and cs, cg respectively, and set S is extended by
two triples (as, b5, ¢5), (ae, bg, ¢6), such that the number of elements in the new sets A, B and C
is a multiple of (k — 1) = 3. These two triples are indicated by green lines. The drawing in the
middle right visualizes the 2 - 6 = 12 triples of R indicated by black lines. The drawing at the
bottom visualizes the 54 tuples of 77 = T7 3 U T3 3, also indicated by black lines, each covering 2
elements. The set T is formed from set T’ by adding each element of A, B and C to k — 1 =3
tuples of T”. For the sake of clarity, only the triples from T for the elements ai, by and ¢; are
shown in the figure. These triples are indicated by blue lines.

(a13, 616)7 (a13, 517)7 (a13, b18)7 aiq, b16) )
Ti3,3 = { (bis,ci6), (bis,ci7), (b1s,c1s), (b14,c16), (b14,c17), (b1a,c18), (b1s,c16), (b1s,c17), (b15,C18),
)

(a1a,b17), (a14, b1s), (a1s, big), (a1s,b17), (a1s, b1s),
(
(c13,a16), (c13,a17), (c13, a18), (c14, a16), (c14, a17), (c14, a18), (15, a16), (c15, a17), (¢15, ais)
)
)

(
(
(
(a1,b7,c10), (a1,b7,c11), (a1,br,c12), (a2,bs,ci0), (az,bs,ci1), (a2,bs,ci2),
(as,be,c10), (as,bo,ci1), (as,bo,ci2), (aa,bis,cis), (as,bis,ci7), (as,b1s,cis),
(as, b1a,c16), (as,bia,c17), (as,bia,c1s), (as,bis,ci6), (as,bis,c17), (as,b1s,c18),
(a7,b10,c1), (a7,bi1,c1), (a7,biz,c1), (as,bio,c2), (as,bi1,c2), (as,bi2,c2),
T = (ag,bio,c3), (ag,bi1,c3), (ao,b12,c3), (a10,b1,¢7), (aio,b2,cs), (aio,bs,co), o,
(a11,b1,¢7), (ai1,b2,cs), (ai1,bs,co), (ar2,b1,c7), (aiz, be,cs), (ai2,bs,co),

(a13,b16,ca), (a13,bi7,ca), (a13,bis,ca), (a14,b16,c5), (a14,b17,¢5), (aia,bis,cs),
(a1s, b6, c6), (ais,bi7,c6), (ais,bis,cs), (as,ba,c13), (a16,bs,c14), (aie, bs,c1s),
(a17,ba,c13), (ai7,bs,c14), (a17,be,c15), (ais,bs,c13), (ais,bs,c14), (ais,bs,c1s5)

see also Figure 1.

Theorem 2. k-MD is NP-complete for bipartite graphs G and each k > 2.

Proof. The k-MD problem is obviously in NP, because it can be checked in polynomial time
whether a set of vertices is a k-resolving set.

The NP-hardness is proven by a reduction from 3D(k-1)M. Let A = {a1,...,an}, B =
{b1,...,bn}, C = {c1,...,cn}, S = {s1,...,8m} be an instance I for 3D(k — 1)M where k > 2

4
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and n > k. The aim is to define a graph G = (V, E') and a number z such that G has a k-resolving
set of size x if and only if instance I has a (k-1)-matching.

Graph G is defined as follows, see also Figure 2. It has a vertex a;, b; and ¢; for i =
1,...,n and a vertex s; for ¢« = 1,...,m. Graph G additionally contains vertices denoted by
agp, by, co, Vo, Va4, vp,vc and dy, . .., dy, where m' = [log(m)].

1. Each vertex a;, 0 <17 < n, is connected with

(a) vertex vg4,
(b) vertex vg, and

(c) vertex sj, 1 <7 < m if and only if triple s; contains element a;.
2. Each vertex b;, 0 < i < n, is connected with

(a) vertex vp,
(b) vertex vg, and

(c) vertex sj, 1 < j <m if and only if triple s; contains element b;.
3. Each vertex ¢;, 0 < i < n, is connected with

(a) vertex vg,
b) vertex vg, and
( ;

(c) vertex s;, 1 < j < m if and only if triple s; contains element c¢;.
4. Each vertex d;, 1 < ¢ < m/, is connected with

(a) vertex vy and

(b) vertex sj, 1 < j < m, if and only if the i-th bit of the binary representation of j is 1.
Graph G contains additionally so-called leg vertices. These leg vertices form paths (legs ) with
[k/2] or |k/2] vertices. Two such legs, one with [k/2] vertices and one with |k/2] vertices, are

attached to each vertex of Lyoot = {va,vB,vc,v0,d1,...,dm }, see Figure 2. Set Lyoot is the set
of root wvertices of the legs. Let L, be the set of vertices of the two legs at vertex v and

LZLUA ULvB Uch ULUO ULd1 U .- ULdm,

be the set of all leg vertices of G. Set L.,o; has 4 + m’ vertices, each set L,, v € Lyoot, has k
vertices and L has (4 + m’)k vertices.

The graph G can obviously be constructed in polynomial time from instant I.

First of all, let us note some properties of G.

P1: G is bipartite.
P2: The distance between

a) two vertices of {vp,vp,vc} is 4,
b) two vertices of {dy,...,dm } is 2,

(
(

)
)
(c) a vertex of {vp,vp,vc} and a vertex of {dy,...,d } is 3,
(d) vertex vg and a vertex of {vp,vp,vc} is 2, and

)

(e) vertex vy and a vertex of {dy,...,dy } is 1.

P3: Every k-resolving set for G contains all vertices of L. This follows from the observation that
for each vertex v € Lot the two vertices of L, adjacent with v are only resolved by the k
vertices of L,.
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Now we will prove that S has a (k-1)-matching for instance I if and only if G has a resolving

set of size
r=A+m)k+3+(k—1)n.

"= Let M C S be a (k-1)-matching for instance I. The aim is to show that
R = L U {ag,bg,c0} UM
is a k-resolving set for G of size
r=4+m")k+3+ (k—1)n,

that is, each pair of two distinct vertices uy,us of G is resolved by at least k vertices of U. Here
the triple s; of M are considered as vertices of G.
Consider the following case distinctions for two vertices u; and us.

1. ui,uz € Ly, v € Lyoot-

(a) d(u1,v) = d(usz,v). Each of the k vertices of L, resolves u; and us.
(b) d(u1,v) # d(ug,v). Each of the k vertices of L/, v/ € Lyoot \ {v}, resolves u; and us.

2. uy € Ly,, ug € Ly,, v1,V2 € Lioot, V1 # U2, and d(ug,v1) < d(ug,vs). Each of the k vertices
of L,, resolves u; and us.

Up to this point all pairs of vertices uy,us are considered of which both are in L.
3. ug € L,, ULy, ULy, and up ¢ L. Each of the k vertices of L,,, resolves u; and us.
4. uy € Lg, U---ULy , and us € L.

(a) ug € {vp,vc}. Each of the k vertices of L, , resolves u; and us.
(b) ug & {va,vc}. Each of the k vertices of L, resolves uj and us.

(¢) uz € {va,vp}. Each of the k vertices of L, resolves u; and us.

5. uy € Ly, and us & L.

(a) ug € {va,aqp,...,a,}. Each of the k vertices of L, , resolves u; and us.
(b) ug € {vp,bg,...,by}. Each of the k vertices of L,, resolves u; and us.
(¢) uz € {ve,co,-..,cn}. Bach of the k vertices of L, resolves u; and us.
(d) ug € {d;} U {s; |the i-th bit in the binary representation of j is 1}. Each of the k ver-

tices of Lg, resolves u; and us.
Up to this point all pairs of vertices w1, us are considered of which at least one of them is in L.
6. u1 € Lyoot and ug € L. Each of the k vertices of L,, resolves u; and us.

Up to this point all pairs of vertices uy,us are considered of which at least one of them is in
LU Lot

7. uy = 8; €{81,-..,8m} and uzs & LU Lyoot.

a) us = S, € {81,...,8m . Each of the k vertices of Ly resolves u; and us, if the binary
2 J
representation of 41 and iy differs in position j.

(b) us € {ag,...,an}, us € {bo,...,bn}, or us € {co,...,c,}. Each of the k vertices of

Ly,, Ly, or L,,, respectively, resolves u; and usg.

VA veH

Up to this point all pairs of vertices uy,us are considered of which at least one of them is in
LU Lyoot U{S1,...,Sm }-
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8. up € {a,...,an}t and ug &€ LU Lyoot U {S1,...,Sm/ }-

(a) ug € {bg,...,bn,co,...,cn}. Each of the k vertices of L, , resolves u; and us.

(b) ug € {a1,...,a,}. Each vertex s; for which triple s; contains u; or us resolves u; and
ug. There are 2(k — 1) > k such vertices for k > 2.

(¢) us = ag. Each vertex s; for which triple s; contains uj resolves u; and ug, and vertex
ap resolves u; and us. Altogether these are exactly (k— 1) + 1 = k vertices.

9. up € {b1,...,b,} and ug € LU Lot U {s1,...,8m }. (as in case 8)
10. u; €{e1,...,cn} and ug &€ LU Lot U {S1,...,8m }. (as in case 8)
11. uy,us € {ag,bg, co}. Each of the k vertices of L,,,, L,, or L, resolves u; and us.

Now all pairs of vertices ui,us of G are considered and it is shown that all of them are

resolved by at least k vertices from R. Note that only the vertex pairs ui,us € {ao,...,an},
up,ug € {bg,...,b,} and uy,us € {cg,...,c,} are not already resolved by k vertices of L. Strictly
speaking, not a single vertex from LU{va,vp,vc, vy, d1, ..., dn } resolves such a pair of vertices.

"< Let R C V be a k-resolving set for G with x = (4 + m/)k + 3 + (k — 1)n vertices. By
Property P3, R contains all the (4+m)’k vertices of L. This leaves 3+ (k — 1)n vertices of R that
are not in L. Let us now consider the vertex pairs ag, a;, and by, b;, and cg,c; fori =1,...,n. The
vertices of L and the vertices of {va,vp,vc, vo,di, ..., dn } do not resolve these vertex pairs. The
only way to resolve these 3n vertex pairs at least k times with 34 (k — 1)n vertices for n > k > 2,
is to use k-1 vertices from {sy,..., Sy, } that form a k-1 matching and the three vertices ag, b, co.
This is the point where it is necessary that n is greater than k. O

In the introduction of this paper, we mentioned that the k-METRIC DIMENSION and the
(k,t)-METRIC DIMENSION in [EMYRV16] are the same if ¢ is set to the diameter of G. Since
the constructed graph in Theorem 2 has diameter 2 - [k/2] + 3, Theorem 2 also proves the NP-
completeness of (k,t)-METRIC DIMENSION for bipartite graphs, each k > 2 and t > 2- [k/2] + 3.
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Figure 2: This graphic illustrates the transformation from 3D2M to 3-MD. The Instance I
consisting of A = {ay,...,a4}, B ={b1,...,b4}, C ={c1,...,ca}, S = {s1,...,512} with s =
(az,b1,c1), s2 = (as,ba,c2), s3 = (az,b1,c1), s4 = (a1,b2,¢1), $5 = (aa,bs,¢2), s¢ = (a1,bs,c3),
s7 = (ag,b1,c3), sg = (a1,bs,ca), s9 = (as,ba,c2), s10 = (aa,b2,c4), s11 = (aa,b3,¢1), s12 =
(a4,byq,cq) for 3D2M is transformed into the graph G and ¢ = (4 +4)3 +3 4+ (3 — 1)n = 35.
The set of triples M = {s1, s2, S¢, 57, Ss, So, $11, S12 }, indicated in the figure by the red lines, is a
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