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Abstract

The distributed task allocation problem, as one of the most interesting distributed
optimization challenges, has received considerable research attention recently.
Previous works mainly focused on the task allocation problem in a population of
individuals, where there are no constraints for affording task amounts. The latter
condition, however, cannot always be hold. In this paper, we study the task alloca-
tion problem with constraints of task allocation in a game-theoretical framework.
We assume that each individual can afford different amounts of task and the cost
function is convex. To investigate the problem in the framework of population
games, we construct a potential game and calculate the fitness function for each
individual. We prove that when the Nash equilibrium point in the potential game
is in the feasible solutions for the limited task allocation problem, the Nash equi-
librium point is the unique globally optimal solution. Otherwise, we also derive
analytically the unique globally optimal solution. In addition, in order to confirm
our theoretical results, we consider the exponential and quadratic forms of cost
function for each agent. Two algorithms with the mentioned representative cost
functions are proposed to numerically seek the optimal solution to the limited task
problems. We further perform Monte Carlo simulations which provide agreeing
results with our analytical calculations.
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Nash equilibrium, Distributed optimization.

1. Introduction

Distributed optimization problems can frequently be detected in engineer-
ing [1, 2, 3, 4, 5, 6, 7, 8] including traffic [1], lighting systems [2], multirobot sys-
tems [8], and generator power systems [3, 4, 5, 6, 7]. Indeed, the related problems
can be solved by minimizing the global objective function in a multi-agent system,
where each individual can only obtain the information of its adjacent neighbors in
a connected graph [9, 10, 11, 12, 13].

As one of the most popular distributed optimization problems, the distributed
task allocation problem has collected significant research interest in the last decade [14,
15, 16, 17, 18]. It has been solved by means of different approaches including Gra-
dients [19, 20], Distributed Control [21, 22, 23], Consensus Algorithm [24, 25, 26,
27, 28], and Game Theory [2, 3, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. In par-
ticular, Pantoja et al. studied the allocation problem by analysing the distributed
replicator equation [2, 3], in which each individual has a fitness function and the
task is dynamically adjusted based on these functions. With this approach the op-
timal solution to the problem can be derived. Recently, game-theoretical approach
for solving the distributed optimization problems has been received considerable
attention [34, 40, 41, 42, 43].

Notably, previous works mainly focused on the task allocation problem in a
number of agents where there are no constraints on the amount of task that each
individual affords in a game-theoretical framework [32, 36]. It is worth mention-
ing that there exists the globally optimal solution in this scenario when the cost
function is strictly convex [2, 3]. Indeed, each individual can only afford a lim-
ited amount of task due to their finite capacities or physical strengths or economic
factors [3, 44]. Thus, it is significant to address the task allocation problem with
constraints of task allocation. Note that some works have already studied this re-
search path [20, 22, 23, 28]. For example, Chen et al. considered a distributed
gradient-descent algorithm for the distributed optimization problem with equality
constraints and local box constraints [20]. In Ref. [22], an initialization-free dis-
tributed algorithm is proposed for the problem with coupled equality constraints
and local feasibility constraints. Xu et al. proposed a novel distributed algo-
rithm to solve the above problem based on duality analysis [23]. In Ref. [28],
a distributed surplus-based algorithm is proposed to solve the problem with in-
equality constraints, and the convergence is analyzed under strongly connected
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directed graphs. Notably, these works mainly solved the problem via distributed
algorithms. However, thus far few works have used game-theoretical approach to
study the task allocation problem with constraints of task allocation. Recently,
Martinez-Piazuelo considered the problem of GNE seeking in population games
under fairly general constraints [45]. However, it is unclear how the optimal solu-
tion to the task problem with constraints of task allocation can be obtained in the
proposed game-theoretical framework.

Motivated by this scientific challenge, in this paper we study the task allo-
cation problem with constraints of task affording and convex cost function in a
game-theoretical framework. We construct a potential game and calculate the fit-
ness function for each individual. We hence derive the unique globally optimal
solution. Furthermore, we respectively consider the exponential and quadratic
forms of cost function for each agent and present two algorithms to numerically
seek the optimal solution to the limited task allocation problem.

The remainder of this article is arranged as follows. Section II presents our
model and method. Section III presents our theoretical analysis of exploring the
globally optimal solution and the uniqueness of the solution for the limited task
allocation problem. In Section IV, we propose two algorithms to numerically seek
the globally optimal solution, while numerical examples are provided in Section V.
Finally, conclusions are drawn in Section VI.

2. Model and method

2.1. Graphs
We use a graph-theoretical tool to describe the structure of a multi-agent sys-

tem [32]. To be specific, let G = (ν, ε) be an undirected connected topology,
where ν = {1, 2, · · · , n} denotes the set of nodes representing individuals in the
population and {(i, j)|i, j ∈ ν} ∈ ε indicates that individual i and individual j
are mutually connected. Then, let A = [aij] be an n× n adjacency matrix whose
elements satisfy the following property

aij =

{
1, if (i, j) ∈ ε,

0, otherwise,

where aij = aji for all i, j ∈ ν.
We define Ni = {j|(i, j) ∈ ε} = {j|aij = 1, j ∈ ν} to be the set of neighbors

of a node i ∈ ν.
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2.2. Distributed optimization problem
In this paper, we use a graph to depict the population structure in which there

are n individuals and assume that the total amount of task for the population of
individuals is a fixed value, given by w. We assume that the total task is undertaken
by these n individuals and suppose that wi is the task amount which individual i
bears. However, each individual has the thresholds of task allocation and the upper
and lower limits that individual i can undertake are respectively set as wi and wi.
Here, wi ≤ wi ≤ wi. In addition, we have

∑n
i=1wi = w. Furthermore, individual

i needs to pay the cost when it undertakes the task and we assume that the cost
function of individual i is given as ci(wi). In this work, we aim to study how
to optimally allocate the total task among the n individuals, so that the total cost
amount can be minimized. Accordingly, this limited task allocation problem can
be written as follows

min C(W ) =
n∑

i=1

ci(wi),

s.t.
n∑

i=1

wi = w,

wi ≤ wi ≤ wi,

(1)

where C(W ) is the total cost function and W = (w1, w2, · · · , wn)
T . Here, we

suppose that C(W ) is a strictly convex function, so that there exists the optimal
solution [46]. Accordingly, the feasible solutions for the limited task allocation
problem can be given as

S = {W |
n∑

i=1

wi = w and wi ≤ wi ≤ wi}.

3. Theoretical analysis

3.1. Preliminaries
Population games are often used to study the strategic interactions in a large

population of players, which can be used to solve distributed optimization problem
of limited task allocation [2, 3]. Accordingly, we consider that in a population
with size n, each individual i can bear an amount of task wi (wi ≥ 0) in a strategic
interaction. We then use an n dimension vector W = (w1, w2, · · · , wn)

T to depict
the population state which describes how the total task is completely allocated
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among all the n individuals. Hence the state distribution in the population can be
described by a simplex [47], that is,

△ = {W ∈ Rn
+|

n∑
i=1

wi = w},

where Rn
+ = {W = (w1, w2, · · · , wn)

T |wi ≥ 0}. It is easy to see that △ ⊆ S.
In the framework of population games, each individual i who bears the amount

of task wi can obtain a payoff, which is described by a payoff function fi(wi).
Accordingly, we have fi : [wi, wi] 7−→ R and then can have the payoff vector for
the population game [32], which is given as

F (W ) = (f1(w1), f2(w2), · · · , fn(wn))
T .

In a multi-agent system, we can apply a potential game to describe the op-
timization problem of the population by choosing an appropriate payoff func-
tion [3, 48]. We thus define that the payoff vector F satisfies the following equa-
tion

fi(wi) =
∂[−C(W )]

∂wi

= −∂C(W )

∂wi

= −dci(wi)

dwi

,

hence F is a potential game.
According to Refs. [32, 36], we can conclude that there exists a Nash equilib-

rium W ∗ = (w∗
1, w

∗
2, · · · , w∗

n)
T in the potential game for the optimization prob-

lem [48]. Correspondingly, we can have

NE(F ) = {W ∗ ∈ △|w∗
i > 0 ⇒ fi(w

∗
i ) ≥ fj(w

∗
j ),∀i, j ∈ v}.

Therefore, if W ∗ ∈ NE(F ) ∩ Rn
++, it is easy to see that fi(w∗

i ) = fj(w
∗
j ) for all

i, j ∈ v, where Rn
++ = {W = (w1, w2, · · · , wn)

T |wi > 0}.

3.2. Globally optimal solution
Here we study the globally optimal solution in two different cases as follows.

3.2.1. The case of W ∗ ∈ NE(F ) ∩ S
Based on the above description, we state the following conclusion described

by Theorem 1.

Theorem 1. If W ∗ ∈ NE(F ) ∩ S , then W ∗ is the globally optimal solution for
the limited task allocation problem described by Eq. (1).
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Proof: The limited task allocation problem described by Eq. (1) can be ex-
pressed as

min C(W ) =
n∑

i=1

ci(wi),

s.t. wi − wi ≥ 0,

wi − wi ≥ 0,
n∑

i=1

wi − w = 0 .

(2)

Here, for the sake of convenience we define pi(W ) = wi −wi, qi(W ) = wi −wi,
and h(W ) =

∑n
i=1wi−w. Accordingly, the feasible solutions for the limited task

allocation problem can be given as

S = {W |h(W ) = 0, pi(W ) ≥ 0, qi(W ) ≥ 0,∀i = 1, 2, · · · , n}.

Note that the functions pi(W ), qi(W ), and h(W ) are all linear with w1, w2, · · · , wn.
Consequently, the Karush-Kuhn-Tucker (KKT) conditions are both necessary and
sufficient for the solution of the problem described by Eq. (2). We now formulate
and solve the specific KKT conditions for the limited task allocation problem. To
do that, we assume that gradients are taken as (∂C(W )

∂w1
, ∂C(W )

∂w2
, · · · , ∂C(W )

∂wn
)T and

define I = {i|pi(W ∗) = 0} and J = {j|qj(W ∗) = 0}.
According to the above description, the Kuhn-Tucker equality for Eq. (2) is

∇C(W ∗)−
∑
i∈I

αi∇pi(W
∗)−

∑
J∈J

βj∇qj(W
∗)− γ∇h(W ∗) = 0.

Due to W ∗ ∈ NE(F ) ∩ S ⊆ NE(F ) ∩ Rn
++, we have fi(w

∗
i ) = fj(w

∗
j )

(i, j = 1, 2, · · · , n). For simplicity, we set that fi(w∗
i ) = −λ ∈ ℜ which is the

fitness value for each i. We then have

∇C(W ∗) = (−f1(w
∗
1),−f2(w

∗
2), · · · ,−fn(w

∗
n))

T

= (λ, λ, · · · , λ)T .

There should exist a set of parameters αi = 0, βj = 0, and γ = λ, where i ∈ I
and j ∈ J , to make the following equation satisfied [49]

∇C(W ∗)−
∑
i∈I

αi∇pi(W
∗)−

∑
j∈J

βj∇qj(W
∗)− γ∇h(W ∗) = 0. (3)
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It is easy to show that the KKT conditions are satisfied for W = W ∗. We can
thus conclude that W ∗ is a globally optimal solution for limited task allocation
problem [49].

Furthermore, we can obviously have the following corollary:

Corollary 1. If NE(F ) ∩ S = ϕ, then W ∗ is the unique optimal solution to the
limited task allocation problem described by Eq. (1).

In the framework of population games, the amount of task wi for actor i can
be dynamically adjusted based on the above payoff information. According to the
distributed replicator dynamics (DRD) [47] when the cost function is strictly con-
vex [2, 3, 32] and individuals have not specific constraints, the optimal allocation
scheme can be reached finally. Correspondingly, the dynamical equation for the
task allocation is given by [32]

ẇi = wi(fi(wi)− f̄(W ))

= wi(fi(wi)
∑
j∈Ni

wj

w
−

∑
j∈Ni

fj(wj)
wj

w
)

=
wi

w
(fi(wi)

∑
j∈Ni

wj −
∑
j∈Ni

fj(wj)wj),

(4)

where f̄(W ) denotes the average payoff of the population, and we have

f̄(W ) =
∑
j∈Ni

fj(wj)
wj

w
. (5)

We can accordingly have the conclusion, described by Lemma 1.

Lemma 1. If F is a Potential Game with strictly convex potential function C(W )
and W (0) ∈ S, W (t) will asymptotically converge to W ∗ under DRD.

Proof: Due to W ∗ ∈ NE(F ), it is obvious that W ∗ = argminW∈S C(W ). We
thus construct a Lyapunov function as

V (W ) = C(W )− C(W ∗).

Then we can easily see that V (W ) ≥ 0, and V (W ) = 0 iff W = W ∗. Fur-
thermore, we can calculate V̇ (W ) as

V̇ (W ) =
n∑

i=1

ċi(wi) =
n∑

i=1

dci(wi)

dwi

ẇi = ∇C(W )T Ẇ

= −F T Ẇ ,
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where Ẇ = (ẇ1, ẇ2, · · · , ẇn)
T .

According to Refs. [3, 50], V̇ (W ) can be simplified as

V̇ (W ) = −F T Ẇ

= −
n∑

i=1

fi(wi)ẇi

= −
n∑

i=1

fi(wi)[
wi

w
(fi(wi)

∑
j∈Ni

wj −
∑
j∈Ni

fj(wj)wj)]

= − 1

w
(

n∑
i=1

f 2
i (wi)wi

∑
j∈Ni

wj −
n∑

i=1

fi(wi)wi

∑
j∈Ni

fj(wj)wj)

= − 1

w

∑
(i,j)∈ε

(f 2
i (wi)wiwj + f 2

j (wj)wjwi − fi(wi)wifj(wj)wj − fj(wj)wjfi(wi)wi)

= − 1

w

∑
(i,j)∈ε

wiwj(fi(wi)− fj(wj))
2.

Therefore, it is easy to see that V̇ (W ) ≤ 0. We further know that if fi(wi) =
fj(wj) for all (i, j) ∈ ε, V̇ (W ) = 0. In this case, we also have W = W ∗. Thus
V̇ (W ) = 0 iff W = W ∗. Hence, if W (0) ∈ S, W (t) asymptotically converges to
W ∗ under DRD.

3.2.2. The case of NE(F ) ∩ S = ϕ

Based on the above description, we can state the following theorem.

Theorem 2. If NE(F ) ∩ S = ϕ and ∂C(W )
∂wi

is continuously differentiable and
monotonically increasing, then W o = (wo

1, w
o
2, · · · , wo

n)
T ∈ S is a globally op-

timal solution to the limited task allocation problem described by Eq. (1), given
as

wo
i =


wi, w∗

i < wi,

w∗
i , wi ≤ w∗

i ≤ wi,

wi, w∗
i > wi,

where W ∗ = (w∗
1, w

∗
2, · · · , w∗

n)
T ∈ NE(F ).
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Proof: The limited task allocation problem described by Eq. (1) can be ex-
pressed as

min C(W ) =
n∑

i=1

ci(wi),

s.t. wi − wi ≥ 0,

wi − wi ≥ 0,
n∑

i=1

wi − w = 0.

(6)

Here, for convenience we define pi(W ) = wi − wi, qi(W ) = wi − wi, and
h(W ) =

∑n
i=1wi − w. Accordingly, the feasible solutions to the limited task

allocation problem can be given as

S = {W |h(W ) = 0, pi(W ) ≥ 0, qi(W ) ≥ 0,∀i = 1, 2, · · · , n}.

Note that the functions pi(W ), qi(W ), and h(W ) are all linear in w1, w2, · · · , wn.
Consequently, the KKT conditions are both necessary and sufficient for the solu-
tion of problem described by Eq. (6). We now formulate and solve these condi-
tions for the limited task allocation problem. To be specific, we first divide the set
{1, 2, · · · , n} into three K, I , and J subsets, where

K = {k|wk < wo
k < wk} = {k1, k2, · · · , kx},

I = {i|pi(W o) = 0} = {i1, i2, · · · , iy},
and

J = {j|qj(W o) = 0} = {j1, j2, · · · , jz}.
Note that |K| = x, |I| = y, and |J | = z, which respectively represent the number
of elements in the subset K, I , and J .

Based on the definition of NE(F ), we can conclude that fi(w∗
i ) = fj(w

∗
j ),

when w∗
i > 0 and w∗

j > 0. For simplicity, we set that fi(w∗
i ) = −λ ∈ ℜ which is

the fitness value for w∗
i > 0. We can then write the gradient of C(W ) as

∇C(W ) = (
∂C(W )

∂wk1

,
∂C(W )

∂wk2

, · · · , ∂C(W )

∂wkx

,

∂C(W )

∂wi1

,
∂C(W )

∂wi2

, · · · , ∂C(W )

∂wiy

,

∂C(W )

∂wj1

,
∂C(W )

∂wj2

, · · · , ∂C(W )

∂wjz

)T .

9



In particular, we have

∂C(W o)

∂wi

=


λ, i ∈ K,

− fi(wi), i ∈ I,

− fi(wi), i ∈ J.

According to the above description, the Kuhn-Tucker equality for Eq. (6) is

∇C(W o)−
∑
i∈I

αi∇pi(W
o)−

∑
j∈J

βj∇qj(W
o)− γ∇h(W o) = 0.

We can then respectively calculate ∇C(W o), ∇pi(W
o), ∇qi(W

o), and ∇h(W o)
as

∇C(W o) = (λ, · · · , λ,−fi1(wi1
), · · · ,−fiy(wiy),

−fj1(wj1),−fj2(wj2), · · · ,−fjz(wjz))
T ,

∇pi(W
o) = (0, · · · , 0, 1, 0, · · · , 0)T ∀i = i1, i2, · · · , iy,

∇qj(W
o) = (0, · · · , 0,−1, 0, · · · , 0)T ∀j = j1, j2, · · · , jz,

and

∇h(W o) = (1, 1, · · · , 1)T ,
where the (x + m)th element value of ∇pim(W

o) is 1, other element value of
∇pim(W

o) is 0; the (x+ y+ l)th element value of ∇qjl(W
o) is −1, other element

value of ∇qjl(W
o) is 0. Here, m (1 ≤ m ≤ y) is a positive integer and l (1 ≤ l ≤

z) is also a positive integer.
Hence, there should exist a set of parameters αi = −fi(wi) − λ, βj = λ +

fi(wi), and γ = λ, where i ∈ I and j ∈ J , which make the following equation
satisfied [49]

∇C(W o)−
∑
i∈I

αi∇pi(W
o)−

∑
j∈J

βj∇qj(W
o)− γ∇h(W o) = 0. (7)

Note that fi(wi) is continuously differentiable and monotonically decreasing, we
have that αi ≥ 0 for i ∈ I and βj ≥ 0 for j ∈ J .

Based on the above description, so it is easy to show that the KKT conditions
are satisfied for W = W o. We can thus conclude that W o is a globally optimal
solution to the limited task allocation problem [49].

Accordingly, we can obviously obtain the following corollary.

Corollary 2. If NE(F ) ∩ S = ϕ, then W o is the unique optimal solution to the
limited task allocation problem described by Eq. (1).
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4. Seeking solutions

In this section, the cost functions in realistically limited task allocation prob-
lems often has specific forms. In particular, the exponential function [51] and
quadratic function [2, 3], which are also typically nonlinear functions, are two
of the most commonly used functions to describe the emerging cost. Hence, we
present how to search numerically the globally optimal solution to the limited task
allocation problem with exponential or quadratic cost function.

4.1. The case of W ∗ ∈ NE(F ) ∩ S
According to Eq. (4), we can write the following discrete-time dynamical

equation for depicting how each individual updates its task allocation amount as

wi(t+ 1) = wi(t) + ∆t(
wi(t)

w
(fi(wi(t))

∑
j∈Ni

wj(t)−
∑
j∈Ni

fj(wj(t))wj(t))),

(8)

where ∆t ∈ ℜ+ is the fixed step size of the discretization [52, 53]. Here, wi(t)
corresponds to the value of wi at time t. Based on this equation, we can obtain the
globally optimal solution numerically.

4.2. The case of NE(F ) ∩ S = ϕ

4.2.1. The cost function is exponential
We consider two specific forms of convex cost functions for ci(wi). First, we

consider the exponential function by following previous works [51], given as,

ci(wi) = aie
wi−wi
wi−wi , (9)

where ai is a positive coefficient factor.
According to Theorem 2, we solve the globally optimal solution to the limited

task allocation problem by analysing the Nash equilibrium point. Based on the
definition of NE(F ), we can conclude that fi(w∗

i ) = fj(w
∗
j ), when w∗

i > 0 and
w∗

j > 0. For simplicity, we set that fi(w∗
i ) = −λ ∈ ℜ which is the fitness value

for w∗
i > 0. Since the cost function is defined by Eq. (9), we have

λ =
ai

wi − wi

e
w∗
i −wi

wi−wi

11



and

w∗
i − wi = (wi − wi)(ln

λ

ai
+ ln (wi − wi)).

Furthermore, we have∑
i∈B

w∗
i −

∑
i∈B

wi =
∑
i∈B

u∗
i lnλ+

∑
i∈B

u∗
i lnu

∗
i −

∑
i∈B

u∗
i ln ai,

where u∗
i = wi − wi and B = {i|w∗

i > 0, i ∈ ν}.
Since w =

∑n
i=1 w

∗
i =

∑
i∈B w

∗
i , we have

w = a lnλ+ b,

where a =
∑

i∈B u
∗
i and b =

∑
i∈B u

∗
i lnu

∗
i−

∑
i∈B u

∗
i ln ai+

∑
i∈B wi are constant.

Hence, we can get a linear relationship between
∑n

i=1wi and lnλ. Inspired by
non-iterative λ-logic based algorithm in Ref. [54], we design allocated tasks al-
gorithm for exponential cost function, which can be used for seeking the globally
optimal solution. For any undirected connected topology, the details for seeking
the solution is presented in Algorithm 1. In addition, we know that the computa-
tion complexity is about o(n2(T1 + T2)).

4.2.2. The cost function is quadratic
We then consider the quadratic function for ci(wi) by following previous works [2,

3]. To be specific, we set

ci(wi) =

∫ wi

0

Hi(wi)dwi.

Here Hi(wi) is the cost function for the unit task load of individual i, given by

Hi(wi) =

{
bi, if 0 < wi ≤ wi,

ai(wi − wi) + bi, otherwise,

where ai and bi are positive coefficient factors and bi denotes the basic yield
amount when individual i bears the lower limit of task amount wi. Accordingly,
we have

ci(wi) =
1

2
ai(wi − wi)

2 + biwi. (10)
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Algorithm 1: Algorithm of task allocation for exponential cost function
Input: Total tasks w, the number of individual n, the upper of tasks W = (w1, · · · , wn), the lower of tasks W = (w1, · · · , wn)T ,

time scale T1 and T2 , initial value W∗ = (w1(0), · · · , wn(0)), coefficient factor a = (a1, · · · , an)T , n × n adjacency
matrix A = [aij ]

Output: Allocated tasks W = (w1, w2, · · · , wn)T

1 for each t in range T1 do
2 for each i in range n do
3 wi(t + 1) = wi(t) + ∆t(

wi(t)
w

fi(wi(t))(
∑

j∈Ni
wj(t) −

∑
j∈Ni

fj(wj(t))wj(t)));

4 W∗ = (w1(T ), · · · , wn(T ))T

5 for each i in range n do
6 λimin =

dci(wi)
dwi

;

7 Append(L, lnλimin);

8 λimax =
dci(wi)

dwi
;

9 Append(L, lnλimax);

10 Sort(L);
11 for each j in range 2n do
12 for each i in range n do
13 if Lj ≤ lnλimin then
14 Mji = wi;

15 if Lj ≥ lnλimax then
16 Mji = wi;

17 else

18 Mji = wi + (wi − wi)(ln
Lj
ai

+ ln (wi − wi));

19 mj = Sum(Mj);

20 for each j in range 2n do
21 if mj ≤ w ≤ mj+1 then
22 break;

23 J = j;

24 Slop[J → J + 1] =
LJ+1−LJ
mJ+1−mJ

;

25 lnλnew = (Slop[J → J + 1])(w − mJ ) + LJ ;
26 for each i in range n do
27 if lnλnew ≤ lnλimin then
28 wi = wi;

29 if lnλnew ≥ lnλimax then
30 wi = wi;

31 else
32 wi = wi + (wi − wi)(ln

λnew
ai

+ ln (wi − wi));

33 Wo = (w1, w2, · · · , wn)T ;
34 for each i in range n do
35 ci1 = ci(W

∗[i]);
36 ci2 = ci(W

o[i]);

37 C1 = (c11, · · · , cn1)
T , C2 = (c12, · · · , cn2)

T ;
38 for each t in range T2 do
39 for each i in range n do
40 C1[i] =

∑n
j=1 A[i][j] ∗ C1[j];

41 C2[i] =
∑n

j=1 A[i][j] ∗ C2[j];

42 if C1[1] ≤ C2[1] then
43 W = W∗;

44 else
45 W = Wo;

46 return W ;
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We proceed similarly to the previously discussed case, but now the form of the
cost function is defined by Eq. (10). Thus we have

w∗
i =

λ+ aiwi − bi
ai

.

Furthermore, we have∑
i∈B

w∗
i = λ

∑
i∈B

1

ai
+
∑
i∈B

wi −
∑
i∈B

bi
ai
.

Since w =
∑n

i=1 w
∗
i =

∑
i∈B w

∗
i , we have

w = aλ+ b,

where a =
∑

i∈B
1
ai

and b =
∑

i∈B wi −
∑

i∈B
bi
ai

.
This leads to a linear relationship between

∑n
i=1 wi and λ. Similar to the

previous case, we design an algorithm for quadratic cost function, which can be
used for seeking the globally optimal solution. For any undirected connected
topology, the details for seeking the solution is presented in Algorithm 2. Besides,
we see that the computation complexity is about o(n2(T1 + T2)).

5. Numerical examples

By using the above specified methods, we here provide numerical examples
about searching the globally optimal solution to the limited task allocation with
exponential or quadratic cost function.

5.1. The case of W ∗ ∈ NE(F ) ∩ S
5.1.1. The cost function is exponential

We present an example where 6 individuals, represented by nodes on a con-
nected graph, as shown in Fig. 1, participate in the limited task allocation and we
set that w = 2800. Here the cost function for each individual is given Eq. (9). The
parameter values are set as

W = (w1, w2, · · · , w6)
T = (0, 0, 0, 0, 0, 0)T ,

W = (w1, w2, · · · , w6)
T

= (750, 800, 1400, 1000, 900, 1700)T ,
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Algorithm 2: Algorithm of task allocation for quadratic cost function
Input: Total tasks w, the number of individual n, the upper of tasks W = (w1, · · · , wn), the lower of tasks W = (w1, · · · , wn)T ,

time scale T1 and T2 , initial value W∗ = (w1(0), · · · , wn(0)), coefficient factor a = (a1, · · · , an)T and
b = (b1, · · · , bn)T , n × n adjacency matrix A = [aij ]

Output: Allocated tasks W = (w1, w2, · · · , wn)T

1 while t < T1 do
2 for each i in range n do
3 wi(t + 1) = wi(t) + ∆t(

wi(t)
w

fi(wi(t))(
∑

j∈Ni
wj(t) −

∑
j∈Ni

fj(wj(t))wj(t)));

4 t + +;

5 W∗ = (w1(T ), · · · , wn(T ))T

6 while i < n + 1 do
7 λimin =

dci(wi)
dwi

;

8 Append(L, λimin);

9 λimax =
dci(wi)

dwi
;

10 Append(L, λimax);
11 i + +;

12 Sort(L);
13 while j < 2n + 1 do
14 for each i in range n do
15 if Lj ≤ λimin then
16 Mji = wi;

17 if Lj ≥ λimax then
18 Mji = wi;

19 else

20 Mji =
Lj+aiwi−bi

ai
;

21 mj = Sum(Mj);
22 j + +;

23 for each j in range 2n do
24 if mj ≤ w ≤ mj+1 then
25 break;

26 J = j;

27 Slop[J → J + 1] =
LJ+1−LJ
mJ+1−mJ

;

28 λnew = (Slop[J → J + 1])(w − mJ ) + LJ ;
29 while i < n + 1 do
30 if λnew ≤ λimin then
31 wi = wi;

32 if λnew ≥ λimax then
33 wi = wi;

34 else
35 wi =

λnew+aiwi−bi
ai

;

36 i + +;

37 Wo = (w1, w2, · · · , wn)T ;
38 while i < n + 1 do
39 ci1 = ci(W

∗[i]);
40 ci2 = ci(W

o[i]);
41 i + +;

42 C1 = (c11, · · · , cn1)
T , C2 = (c12, · · · , cn2)

T ;
43 while t < T2 do
44 for each i in range n do
45 C1[i] =

∑n
j=1 A[i][j] ∗ C1[j];

46 C2[i] =
∑n

j=1 A[i][j] ∗ C2[j];

47 t + +;

48 if C1[1] ≤ C2[1] then
49 W = W∗;

50 else
51 W = Wo;

52 return W ;
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Figure 1: Illustrative figure showing a connected graph of six nodes in the limited task allocation
problem. Each node represents an individual and a link between two nodes implies that these two
individuals can communicate with each other.

and

a = (a1, a2, · · · , a6)T

= (750, 800, 1400, 1000, 900, 1700)T .

Furthermore, based on Eq. (8), we present the evolution of allocated tasks wi,
the total cost function C(W ), and fitness function fi as a function of time, as
shown in Fig. 2. We can find that the total cost function is decreasing monoton-
ically as time increases and finally reaches the minimal value. Correspondingly,
the allocation task for each individual gradually converges to the optimal solution,
and meanwhile each individual has the identical fitness value.

5.1.2. The cost function is quadratic
By using the same multi-agent system as specified in Fig. 1, we consider that

the cost function for each individual is given as defined by Eq. (10). Here the
parameter values are set as

W = (w1, w2, · · · , w6)
T = (700, 350, 200, 50, 40, 200)T ,

W = (w1, w2, · · · , w6)
T = (980, 580, 350, 170, 150, 790)T ,

a = (a1, a2, · · · , a6)T

= (0.006, 0.008, 0.01, 0.012, 0.0132, 0.00136)T ,
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Figure 2: The time evolution of allocated tasks wi, the total cost function C(W ), and individual
fitness function fi. We can find that the total cost function is decreasing monotonically as time
increases and finally reaches the minimal value. Correspondingly, the allocation task for each
individual gradually converges to the optimal solution, and meanwhile each individual has the
identical fitness value. Parameter values: n = 6, w = 2800, and ∆t = 0.0001. The cost function
is exponential.

and

b = (b1, b2, · · · , b6)T = (0.4, 0.2, 0.5, 0.56, 0.828, 0.88)T .

In this case the time evolution of allocated tasks wi, the total cost function
C(W ), and the individual fitness function fi are shown in Fig. 3. We can find
that the total cost function monotonically decreasing as time increases and finally
reaches the minimal value. Correspondingly, the allocation task for each individ-
ual gradually converges to the optimal solution, and meanwhile each individual
has the identical value of fitness.

5.2. The case of NE(F ) ∩ S = ϕ

5.2.1. The cost function is exponential
We here consider an interaction topology of three individuals as shown in

Fig. 4. For the limited task allocation problem we set the total task amount w =
1150. The cost functions for these three individuals are respectively given as

c1(w1) = 1000e
w1−200

150 (200 ≤ w1 ≤ 350),

c2(w2) = 1900e
w2−350

130 (350 ≤ w2 ≤ 480),
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Figure 3: The time evolution of allocated tasks wi, the total cost function C(W ), and individual
fitness function fi. We find the total cost function monotonically decreasing as time increases
and finally reaches the minimal value. Besides, the allocation task for each individual gradually
converges to the optimal solution, and meanwhile each individual has the identical value of fitness.
Parameter values: n = 6, w = 2800, and ∆t = 0.001. The cost function is quadratic.

and

c3(w3) = 2300e
w3−410

130 (410 ≤ w3 ≤ 540).

Based on Algorithm 1, we can respectively calculate lnλimin and lnλimax

for each individual, and these correlation parameter values are listed in Table I.
Accordingly, we can respectively compute mj and Slope[j → j + 1], where
j ∈ {1, 2, 3, 4, 5, 6}, and these correlation parameter values are listed in Table II.

Table 1: lnλimin and lnλimax values
i wi lnλi

1 w1 = 200 lnλ1min = 1.897
1 w1 = 350 lnλ1max = 2.897
2 w2 = 350 lnλ2min = 2.682
2 w2 = 480 lnλ2max = 3.682
3 w3 = 410 lnλ3min = 2.873
3 w3 = 540 lnλ3max = 3.873
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Table 2: mj and Slope[j → j + 1] values
j Lj mj Slope[j → j + 1]
1 1.897 960

6.6677× 10−3

2 2.682 1077.732
3.5721× 10−3

3 2.873 1131.202
2.4388× 10−3

4 2.897 1141.043
3.8460× 10−3

5 3.682 1345.153
7.6870× 10−3

6 3.873 1370

1

2 3

Figure 4: An alternative multi-agent system for the limited task allocation problem. Nodes repre-
sent agents and links between them signal that they communicate with each other.

Furthermore, the globally optimal solution in our example can be obtained, given
as

w1 = 350, w2 = 382.4, and w3 = 417.6.

In order to confirm the numerical outcomes obtained by Algorithm 1, we also
perform Monte Carlo simulations which can be used for searching the optimal
solution to the limited task allocation problem [55]. Our simulation results are
shown in Fig. 5 and we find that the optimal solution obtained by our Monte
Carlo simulations is consistent with that obtained by Algorithm 1. The latter is
indicated by a red circle in the figure.
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Figure 5: Monte Carlo simulation results for the limited task allocation problem with exponential
cost function. We randomly choose 108 points in the area of feasible solutions and calculate
the corresponding C(W ) values. These values are color coded. The red circle represents the
globally optimal solution obtained numerically by using Algorithm 1. The black arrow indicates
the globally optimal solution solved by Monte Carlo simulations.

5.2.2. The cost function is quadratic
For the same system shown in Fig. 4, we here also set that the total task amount

w = 1150 and consider that the cost functions for these three individuals are
respectively given as

c1(w1) = 0.003(w1 − 200)2 + 5w1 (200 ≤ w1 ≤ 350),

c2(w2) = 0.004(w2 − 350)2 + 5.4w2 (350 ≤ w2 ≤ 480),

and

c3(w3) = 0.005(w3 − 410)2 + 5.6w3 (410 ≤ w3 ≤ 540).

Based on Algorithm 2, we can then respectively calculate λimin and λimax for
each individual, and these correlation parameter values are listed in Table III. We
can also calculate mj and Slope[j → j+1], where j ∈ {1, 2, 3, 4, 5, 6}, and these
correlation parameter values are listed in Table IV.

In this example, the globally optimal solution is given as
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Table 3: λimin and λimin values
i wi λi

1 w1 = 200 λ1min = 5.00
1 w1 = 350 λ1max = 5.90
2 w2 = 350 λ2min = 5.40
2 w2 = 480 λ2max = 6.44
3 w3 = 410 λ3min = 5.60
3 w3 = 540 λ3max = 6.90

Table 4: mj and Slope[j → j + 1] values
j Lj mj Slope[j → j + 1]
1 5 960

6× 10−3

2 5.4 1026.667
3.4286× 10−3

3 5.6 1085
2.5532× 10−3

4 5.9 1202.5
4.4444× 10−3

5 6.44 1324
10× 10−3

6 6.9 1370
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Figure 6: Monte Carlo simulation results for the limited task allocation problem with the quadratic
function. We randomly choose 108 points in the area of feasible solutions for the limited task
allocation problem and calculate the corresponding C(W ) values. These values are color coded, as
shown in the legend. The red circle represents the globally optimal solution obtained numerically
by using Algorithm 2. The black arrow indicates the globally optimal solution solved by Monte
Carlo simulations.

w1 = 327.7, w2 = 395.7, and w3 = 426.6.

The predictions of Algorithm 2 can also be checked by Monte Carlo simula-
tions. Indeed, the latter confirm the previously obtained solution as it is shown in
Fig. 6.

6. Conclusions

By using a game-theoretical approach, our present work has focused on the
limited task allocation problem when there are individual constraints and con-
vex cost function. We assume that each individual can afford different amounts
of task. We further construct a potential game to investigate the problem in the
framework of population games and accordingly calculate the fitness function for
each individual in the potential game. When the Nash equilibrium point in the
potential game is in the feasible solutions for the limited task allocation problem,
we prove that the Nash equilibrium point is the unique globally optimal solution
and is also globally asymptotically stable under DRD. Whereas when the Nash
equilibrium point in the potentia game is not in the feasible solutions, we also
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derive the globally optimal solution and we prove that this solution is the unique
solution to the corresponding limited task allocation problem. Finally, we provide
some examples and perform numerical calculations by means of our proposed al-
gorithms and DRD. We find that our numerical results also confirmed by Monte
Carlo simulations support our theoretical analysis.

In this work, we respectively consider the exponential and quadratic cost func-
tions for each individual. We stress that these two cost functions are typical con-
vex functions, which can be found to exist in realistic situations. Furthermore,
we present two algorithms to numerically seek the optimal solution to the limited
task problems with the mentioned cost functions under any undirected connected
topology. We believe that our work could be potential for the practical applications
of collective robotics in a gaming environment [34, 42]. In addition, we study the
limited task allocation problem with individual constraints under an undirected
connected topology. In some situations, the interaction between individuals could
be unidirectional. Therefore, it could be interesting to explore the optimal solution
to the limited task allocation problem with individual constraints under a directed
connected topology. This would be a research path for further work.
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