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We begin by showing that any 𝑛 × 𝑛 matrix can be decomposed into a sum of 𝑛 circulant matrices 
with periodic relaxations on the unit circle. This decomposition is orthogonal with respect to a 
Frobenius inner product, allowing recursive iterations for these circulant components. It is also 
shown that the dominance of a few circulant components in the matrix allows sparse similarity 
transformations using Fast-Fourier-transform (FFT) operations. This enables the evaluation of all 
eigenvalues of dense Toeplitz, block-Toeplitz, and other periodic or quasi-periodic matrices, to a 
reasonable approximation in (𝑛2) arithmetic operations. The utility of the approximate similarity 
transformation in preconditioning linear solvers is also demonstrated.

1. Introduction

Matrix decompositions, low-rank approximations, and projections on low complexity classes are some of the approaches useful in 
reducing the computation incurred with dense matrices [1]. Other approaches are also available in the case of sparse and effectively-

sparse matrices, for example, in efficiently and accurately evaluating eigenvalues [2–7]. Dense matrices that occur frequently in the 
numerical solution of eigenvalue problems such as Toeplitz, block-Toeplitz, and other matrices with periodicity in the diagonals are 
a class where further reduced computing may be possible. An efficient decomposition of the given matrix into circulant components 
i.e. circulant matrices with periodic relaxations on the unit circle, is shown to allow drastic reduction in such computations at a 
relatively small cost in the accuracy.

(𝑛2) algorithms to evaluate the characteristic polynomial and its derivative were proposed a few decades ago for Toeplitz [8], 
block-Toeplitz [9,10] and Hankel matrices [11]. These algorithms were amalgamated with the Newton methods to evaluate only the 
eigenvalues of interest. On the other hand, the asymptotic behavior of spectra of Toeplitz and block-Toeplitz operators in the limit of 
large dimensions are well studied [12–16] and they can also be approximated by appropriate circulant matrices. Matrix-less methods 
scaling as (𝑛) have been proposed for evaluating eigenvalues of certain classes of Toeplitz matrices using asymptotic expansions 
[17].

An approximation of a finite-dimensional Toeplitz matrix using a circulant matrix for speed up of operations was suggested 
decades ago [18,19]. Similarly, circulant preconditioners were constructed for Toeplitz matrices by minimizing the Frobenius norm 
of the residue [20]. Spectral preserving properties of this preconditioner were shown, and block circulant versions were also proposed 
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and analyzed [21]. They are expected to speed up iterative methods in regularization and optimization even though they can fail in 
special cases of poor approximation, and they may not be sufficiently accurate as a similarity transformation of the given Toeplitz 
matrix. This preconditioner based on minimizing the Frobenius norm of residue, is shown to be the first term in the circulant 
decomposition of the matrix discussed here. Using a single circulant component of a Toeplitz matrix for estimating all its eigenvalues 
results in a (𝑛 log𝑛) algorithm. The relation between this single-term circulant approximation of a Toeplitz matrix, and its 𝑠𝑦𝑚𝑏𝑜𝑙, 
is highlighted in the appendix. The approach of approximating the Toeplitz matrix by a circulant matrix minimizing the norm of 
the residue, was also extended to a generalized circulant preconditioner where only the absolute values of the entries preserve the 
periodicity [22]. The full circulant decomposition of a matrix presented here enhances and broadens the scope of such preconditioners 
and approximate similarity transformations, to matrices with any periodicity along the diagonals. Such matrices are relevant to signal 
and image processing, solving differential and integral equations, applications of queuing theory, and polynomial computations 
[23,24].

We first recall in Remark 1.1 that any matrix can be decomposed into 𝑛 cycles that generate its 2𝑛-1 diagonals. We later show in 
Lemma 1.3 and Theorem 1.4 that the decomposition of a matrix into 𝑛 circulant matrices with periodic relaxations on the unit circle, 
is equivalent to a decomposition of a similar matrix into such cycles. By including only the dominant cycles of the similar matrix, 
we include the dominant circulant components of the given matrix. The sparse similar matrix can be operated by a non-symmetric 
Lanczos algorithm for (block) tridiagonalization, and one can evaluate all eigenvalues of such dense matrices in (𝑛2) arithmetic 
operations. Other relevant approaches for eigenvalues of sparse matrices have been reported as well [2].

Let 𝐼𝑛 be the identity matrix of dimension 𝑛, and 𝐶 be the permutation matrix corresponding to a full cycle.

𝐶 =
[

0 1
𝐼𝑛−1 0

]
𝑛×𝑛

.

Remark 1.1. Any matrix A can be decomposed into 𝑛 cycles given by a power series in 𝐶 such that 𝐴 =
𝑛−1∑
𝑘=0

Λ𝑘𝐶𝑘, where the 

Hadamard product 𝐴◦𝐶𝑘 = Λ𝑘𝐶𝑘, and Λ𝑘 are diagonal matrices. Entries supported on 𝐶𝑘 i.e. diagonal entries of Λ𝑘 in the above 
decomposition, are referred as the 𝑘th cycle of the matrix 𝐴.

Example 1.1. The decomposition of a matrix into cycles, 𝐴 =
𝑛−1∑
𝑗=0

Λ𝑗𝐶
𝑗 for an order 3 magic square.

⎡⎢⎢⎣
8 1 6
3 5 7
4 9 2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
8 0 0
0 5 0
0 0 2

⎤⎥⎥⎦𝐶0 +
⎡⎢⎢⎣
6 0 0
0 3 0
0 0 9

⎤⎥⎥⎦𝐶1 +
⎡⎢⎢⎣
1 0 0
0 7 0
0 0 4

⎤⎥⎥⎦𝐶2

Let the permutation matrix given by a flipped identity matrix be

𝐽 =

⎡⎢⎢⎢⎢⎢⎣

0 ⋯ 0 0 1
0 ⋯ 0 1 0
0 ⋯ 1 0 0
⋮ ..

. 0 0 0
1 ⋯ 0 0 0

⎤⎥⎥⎥⎥⎥⎦𝑛×𝑛

.

Let i denote 
√
−1. For a sequence {𝑥(𝑝)}𝑛−1

0 , its Discrete-Fourier-Transform (DFT) is given by {𝑋(𝑘)}𝑛−1
0 , with 𝑋(𝑘) =

𝑛−1∑
𝑝=0

𝑥(𝑝)𝑒i
2𝜋𝑝𝑘

𝑛 . Eigenvalues of a circulant matrix 𝑅 are given by the DFT of the first row {𝑅(0, 𝑗)}𝑛−1
𝑗=0 . The corresponding eigenvectors 

are given by the columns of the matrix 𝑊 with 𝑊 (𝑝, 𝑞) = 1√
𝑛
𝑒−i

2𝜋𝑝𝑞
𝑛 , with 𝑝, 𝑞 = 0, 1, 2 ⋯ 𝑛 − 1.

Remark 1.2. 𝑊 2 = 𝐶𝐽 , and any circulant matrix has an eigen decomposition 𝑅 = 𝑊 Λ𝑊 ∗. Here 𝑊 ∗ is the conjugate transpose of 
the matrix 𝑊 . 𝑅 is also given by 𝑅 = 𝑊 ∗Λ̃𝑊 where Λ̃ = 𝐶𝐽Λ𝐽𝑇 𝐶𝑇 . Thus for 1 ≤ 𝑘 ≤ 𝑛 − 1, we have Λ̃(𝑘, 𝑘) = Λ(𝑛 − 𝑘, 𝑛 − 𝑘) and 
Λ(0, 0) = Λ̃(0, 0).

Lemma 1.3. Given diagonal matrices 𝐷𝑘 with 𝐷𝑘(𝑞, 𝑞) = 𝑒i
2𝜋𝑘𝑞

𝑛 (for 0 ≤ 𝑞 ≤ 𝑛 − 1) and any circulant matrix 𝑅 with eigenvalues given by a 
diagonal matrix Λ̃, the matrices 𝑅𝐷𝑘 and Λ̃𝐶𝑘 are similar.

Proof. Using 𝑊 for a linear transformation of 𝑅𝐷𝑘,

𝑊 𝑅𝐷𝑘𝑊 ∗ = 𝑊 𝑊 ∗Λ̃𝑊 𝐷𝑘𝑊 ∗
2

= Λ̃𝑊 𝐷𝑘𝑊 ∗
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= Λ̃𝐶𝑘.

The substitution 𝑊 𝐷𝑘𝑊 ∗ = 𝐶𝑘, can be deduced by evaluating its (𝑝, 𝑙)th entry.

(𝑝, 𝑙)th entry of 𝑊 𝐷𝑘𝑊 ∗ = 1
𝑛

𝑛−1∑
𝑞=0

𝑒−i
2𝜋𝑝𝑞

𝑛 𝑒i
2𝜋𝑘𝑞

𝑛 𝑒i
2𝜋𝑞𝑙

𝑛

= 1
𝑛

𝑛−1∑
𝑞=0

𝑒i
2𝜋(−𝑝+𝑘+𝑙)𝑞

𝑛

= 1 when 𝑝 ≡ 𝑙 + 𝑘 mod 𝑛, and 0 otherwise.

Hence, the eigenvalues of 𝑅𝐷𝑘 are the eigenvalues of the matrix Λ̃𝐶𝑘.

Note that the matrix Λ̃𝐶𝑘 is sparse and represents a single cycle, while the similar matrix 𝑅𝐷𝑘 is dense. Remark 1.1 recalls that 
any matrix has a decomposition into such cycles. The cycle decomposition of a matrix 𝐴 is equivalent to a circulant decomposition 
of a transformed similar matrix 𝑊 𝐴𝑊 ∗. Conversely, a circulant decomposition of the given matrix 𝐴 is equivalent to a cycle 
decomposition of the transformed similar matrix 𝑊 𝐴𝑊 ∗, as presented in the theorem below.

Theorem 1.4. Any 𝑛 × 𝑛 square matrix 𝐴 can be represented as a sum of 𝑛 circulant matrices with periodic relaxations taking values from 

the 𝑛th root of unity. It is of the form 𝐴 =
𝑛−1∑
𝑘=0

𝑅𝑘𝐷𝑘 where 𝑅𝑘 is a circulant matrix and 𝐷𝑘 is a diagonal matrix with 𝐷𝑘(𝑞, 𝑞) = 𝑒i
2𝜋𝑘𝑞

𝑛 (with 

0 ≤ 𝑞 ≤ 𝑛 − 1).

Proof. Consider a matrix 𝐵 = 𝑊 𝐴𝑊 ∗. Recalling its decomposition into cycles, and using the substitution 𝐶𝑘 = 𝑊 𝐷𝑘𝑊 ∗ from the 

proof of Lemma 1.3, we have 𝐵 =
𝑛−1∑
𝑘=0

Λ̃𝑘𝐶𝑘 =
𝑛−1∑
𝑘=0

Λ̃𝑘𝑊 𝐷𝑘𝑊 ∗, where Λ̃𝑘 are diagonal matrices. Thus, the original matrix A is given 

by:

𝐴 = 𝑊 ∗𝐵𝑊 =
𝑛−1∑
𝑘=0

𝑊 ∗Λ̃𝑘𝑊 𝐷𝑘 =
𝑛−1∑
𝑘=0

𝑅𝑘𝐷𝑘. (1.1)

Example 1.2. The decomposition of a matrix into circulant components, 𝐴 =
𝑛−1∑
𝑘=0

𝑅𝑘𝐷𝑘 for an order 3 magic square.

⎡⎢⎢⎣
8 1 6
3 5 7
4 9 2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
5 4 6
6 5 4
4 6 5

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
+
⎡⎢⎢⎣
1.5 − 0.86i 1.73i −1.5 − 0.86i
−1.5 − 0.86i 1.5 − 0.86i 1.73i

1.73i −1.5 − 0.86i 1.5 − 0.86i

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
1 0 0
0 𝑒i

2𝜋
3 0

0 0 𝑒i
4𝜋
3

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎣
1.5 + 0.86i −1.73i −1.5 + 0.86i
−1.5 + 0.86i 1.5 + 0.86i −1.73i

−1.73i −1.5 + 0.86i 1.5 + 0.86i

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
1 0 0
0 𝑒i

4𝜋
3 0

0 0 𝑒i
2𝜋
3

⎤⎥⎥⎥⎦ .

Frobenius inner product: Let ⟨𝐴, 𝐵⟩𝐹 =
∑
𝑖,𝑗

𝐴(𝑖, 𝑗)𝐵(𝑖, 𝑗) denote the Frobenius inner product of matrices 𝐴 and 𝐵. Note that 

any unitary transformation of the matrices preserves this inner product. It is also shown below that the circulant decomposition in 
Theorem 1.4 is an orthogonal decomposition with respect to ⟨., .⟩𝐹 .

Lemma 1.5. For any unitary matrices 𝑈, 𝑉 and matrices 𝐴, 𝐵, ⟨𝐴, 𝐵⟩𝐹 = ⟨𝑈𝐴𝑉 , 𝑈𝐵𝑉 ⟩𝐹 .

Proof. Let ̂ denote a vector formed by concatenating the columns of a matrix such as

𝐴 =
⎡⎢⎢⎢⎣
𝐴(∶,1)
𝐴(∶,2)

⋮
𝐴(∶, 𝑛)

⎤⎥⎥⎥⎦.
3

Then ⟨𝐴, 𝐵⟩𝐹 = 𝐴∗𝐵̂. Let [] denote the expansion into a matrix of diagonal blocks, such as
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[𝑈 ] =
⎡⎢⎢⎢⎣
𝑈 0 ⋯ 0
0 𝑈 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 𝑈

⎤⎥⎥⎥⎦
𝑛2×𝑛2

.

Let 𝑃 be the permutation such that 𝑃𝐴 = 𝐴𝑇 , and 𝐺 = 𝑈𝐴𝑉 , 𝐻 = 𝑈𝐵𝑉 . Then

𝐺 = [𝑉 ]𝑃 [𝑈 ]𝐴 = 𝑇 𝐴,

where 𝑇 = [𝑉 ]𝑃 [𝑈 ] is also a unitary matrix. Thus we have

⟨𝑈𝐴𝑉 ,𝑈𝐵𝑉 ⟩𝐹 = ⟨𝐺,𝐻⟩𝐹 = 𝐴∗𝑇 ∗𝑇 𝐵,

= 𝐴∗𝐵,

= ⟨𝐴,𝐵⟩𝐹 .

Theorem 1.6. In the decomposition, 𝐴 =
𝑛−1∑
𝑘=0

𝑅𝑘𝐷𝑘, we have ⟨𝐷𝑖, 𝐷𝑗⟩𝐹 = 𝑛𝛿𝑖,𝑗 , (with 𝛿𝑖,𝑗 = 1 if 𝑖 = 𝑗 and zero otherwise). Also, for 𝑖 ≠ 𝑗, ⟨𝑅𝑖𝐷𝑖, 𝑅𝑗𝐷𝑗⟩𝐹 = 0.

Proof. It is easy to verify ⟨𝐷𝑖, 𝐷𝑗⟩𝐹 = 𝑛𝛿𝑖,𝑗 . From the transformation 𝐴 → 𝑊 𝐴𝑊 ∗, and by Lemma 1.5 we can show that,

⟨𝑅𝑖𝐷𝑖,𝑅𝑗𝐷𝑗⟩𝐹 = ⟨𝑊 𝑅𝑖𝐷𝑖𝑊
∗,𝑊 𝑅𝑗𝐷𝑗𝑊

∗⟩𝐹 ,

= ⟨𝐶𝑖Λ𝑖, 𝐶
𝑗Λ𝑗⟩𝐹 ,

= 0 for 𝑖 ≠ 𝑗.

The Theorem 1.6 implies a Gram-Schmidt orthogonalization type of procedure to obtain the individual circulant matrices in the 
decomposition of Theorem 1.4.

Remark 1.7. Recursive iterations for circulant components: The following procedure gives the individual circulant components 
for a given matrix 𝐴.

• Initialize 𝐴0 = 𝐴,

• for 𝑘 = 0, 1, 2, ⋯ , 𝑛 − 2
∗ 𝑅𝑘(𝑗, 0) =

1
𝑛

(
𝟏𝑇 (𝐴𝑘◦𝐶𝑗 )𝟏

)
for 𝑗 = 0, 1, ⋯ 𝑛 − 1, and 𝟏 is a 𝑛-vector with entries all ones i.e. Average the entries of 𝐴𝑘 in the 

corresponding cycles to find the 𝑛 unknown entries of circulant 𝑅𝑘.

∗ 𝐴𝑘+1 = (𝐴𝑘 −𝑅𝑘)𝐷−1.

• 𝑅𝑛−1 = 𝐴𝑛−1

The circulant matrix component 𝑅𝑘 of 𝐴 can also be evaluated using an inverse transformation of a cycle of 𝑊 𝐴𝑊 ∗, given by 
𝑊 ∗(𝑊 𝐴𝑊 ∗◦𝐶𝑘)𝑊 . Note that 𝑅0 minimizes ‖𝐴 −𝑅‖𝐹 for any circulant matrix 𝑅.

Lemma 1.8. Given Λ with diagonal entries {𝜆𝑗}𝑛−1
𝑗=0 , let 𝑅1 = 𝑊 Λ𝑊 ∗ and 𝑅2 = 𝑊 ∗Λ𝑊 . Then |𝑅1(0, 0)| = |𝑅2(0, 0)| and |𝑅1(0, 𝑗)| =|𝑅2(0, 𝑛 − 𝑗)| for 1 ≤ 𝑗 ≤ 𝑛 − 1.

Proof. 𝑅1(0, 𝑗) is the 𝑗th coefficient of the inverse discrete Fourier transform of the diagonals of Λ. We have,

|𝑅1(0, 𝑗)| = ||||||
𝑛−1∑
𝑘=0

𝜆𝑘𝑒i2𝜋
𝑘𝑗
𝑛

|||||| =
||||||
𝑛−1∑
𝑘=0

𝜆𝑘𝑒−i2𝜋
𝑘(−𝑗)

𝑛

|||||| (1.2)

=
||||||
𝑛−1∑
𝑘=0

𝜆𝑘𝑒−i2𝜋
𝑘(𝑛−𝑗)

𝑛

|||||| . (1.3)

Note that the first row and first column of the matrices correspond to index zero of the discrete Fourier transform. So the claim 
follows.

We proceed further to derive the relationship between the frequencies in the varying entries along the matrix diagonals, and the 
4

cycles of 𝑊 𝐴𝑊 ∗. The following definitions are relevant for this exercise.
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Weight of a cycle - 𝑤𝑖: Let 𝐵 =
𝑛−1∑
𝑖=0

𝑅𝑖𝐷𝑖. The relative weight of circulant component 𝑅𝑖 in 𝐵 is 𝑤𝑖 =
‖𝑅𝑖‖2𝐹∑
𝑗
‖𝑅𝑗‖2𝐹 . When 𝐵 = 𝑊 𝐴𝑊 ∗, 

note that 𝑤𝑖 also represents the relative weight of the cycle 𝑖 in 𝐴, and 
∑
𝑖

𝑤𝑖 = 1, 0 ≤ 𝑤𝑖 ≤ 1.

Partial energy of a set of frequencies - 𝐸𝑖: Let 𝐴 =
𝑛−1∑
𝑖=0

Λ𝑖𝐶
𝑖, and the discrete Fourier transform of the diagonal entries 

{Λ𝑖(𝑗, 𝑗)}𝑛−1
𝑗=0 be 𝛾𝑖

𝑗
. Let 𝑆𝑘 = {𝑎1, 𝑎2, ⋯ 𝑎𝑘} be a set of indices, with 

𝑘∑
𝑗=1

(|𝛾𝑖
𝑎𝑗

|)2
𝑛∑

𝑗=1
(|𝛾𝑖

𝑗
|)2 = 𝐸𝑖, where 0 ≤ 𝐸𝑖 ≤ 1. We say that the frequencies 

given by 𝑆𝑘 have a partial energy 𝐸𝑖 on the cycle 𝑖, where energy refers to the square of the magnitude.

Also note that 𝛿𝑖
𝑗
, the inverse discrete Fourier transform of the diagonal entries, have the corresponding index set 𝑇𝑘 =

{𝑏1, 𝑏2, ⋯ 𝑏𝑘} given by Lemma 1.8 (𝑏𝑗 = 𝑎𝑗 if 𝑎𝑗 = 0, else 𝑏𝑗 = 𝑛 − 𝑎𝑗 ), such that 

𝑘∑
𝑗=1

(|𝛿𝑖
𝑏𝑗
|)2

𝑛∑
𝑗=1

(|𝛿𝑖
𝑗
|)2 = 𝐸𝑖.

Relative magnitude of a set of cycles - 𝑠: For a matrix 𝐵 =
𝑛−1∑
𝑖=0

Λ𝑖𝐶
𝑖, when the cycles corresponding to indices 𝐽𝑘 = {𝑗1, 𝑗2, ⋯ 𝑗𝑘}

have 

∑
𝑗∈𝐽𝑘

‖Λ𝑗‖2𝐹
‖𝐵‖2

𝐹

= 𝑠, we say that the cycles 𝐽𝑘 have a relative magnitude 𝑠.

Theorem 1.9. When 𝐸𝑖 is the partial energy in a set of frequencies indexed by 𝑆𝑘 on the cycle 𝑖 of matrix 𝐴, the cycles of matrix 
𝐵 = 𝑊 𝐴𝑊 ∗ indexed by the corresponding 𝑇𝑘 have a relative magnitude 𝑠 =

∑
𝑤𝑖𝐸𝑖 where 

∑
𝑤𝑖 = 1 and 0 ≤ 𝑤𝑖 ≤ 1.

Proof. Consider the decomposition,

𝐴 =
𝑛−1∑
𝑖=0

Λ𝑖𝐶
𝑖 and 𝐵 = 𝑊 (

𝑛−1∑
𝑖=0

Λ𝑖𝐶
𝑖)𝑊 ∗ =

𝑛−1∑
𝑖=0

𝑅𝑖𝐷𝑖.

By Parsevals theorem, ‖𝐵‖2𝐹 =
∑
𝑖
‖𝑅𝑖‖2𝐹 , and in the decomposition 𝐵 =

𝑛−1∑
𝑗=0

Λ̃𝑗𝐶
𝑗 , cyclic diagonal entries Λ̃𝑗 are given by the discrete 

Fourier transform of the sequence {𝑅𝑖(0, 𝑗)}𝑛−1
𝑖=0 (and scaled by 

√
𝑛). Considering the ratio of entries corresponding to the cycles 

indexed by 𝑇𝑘,

∑
𝑗∈𝑇𝑘

‖Λ̃𝑗‖2𝐹‖𝐵‖2𝐹 = 𝑛

∑
𝑗∈𝑇𝑘

𝑛−1∑
𝑖=0

|𝑅𝑖(0, 𝑗)|2∑
𝑖
‖𝑅𝑖‖2𝐹 , using Parseval’s theorem (1.4)

= 𝑛

𝑛−1∑
𝑖=0

∑
𝑗∈𝑇𝑘

|𝑅𝑖(0, 𝑗)|2∑
𝑖
‖𝑅𝑖‖2𝐹 , changing the order of summation (1.5)

= 𝑛

𝑛−1∑
𝑖=0

‖𝑅𝑖‖2𝐹
𝑛

𝐸𝑖∑
𝑖
‖𝑅𝑖‖2𝐹 , by definition of 𝐸𝑖 (1.6)

=
𝑛−1∑
𝑖=0

⎛⎜⎜⎜⎝
‖𝑅𝑖‖2𝐹∑
𝑖
‖𝑅𝑖‖2𝐹

⎞⎟⎟⎟⎠𝐸𝑖. (1.7)

Using 𝑤𝑖 =
‖𝑅𝑖‖2𝐹∑
𝑗
‖𝑅𝑗‖2𝐹 , we get 𝑠 =

𝑛−1∑
𝑖=0

𝑤𝑖𝐸𝑖.

Note that 𝑠 → 1 as 𝐸𝑖 → 1. Thus, when a matrix 𝐴 has only 𝑘 ≪ 𝑛 dominant frequencies in the variation of entries along its 
diagonals, the similar matrix 𝐵 = 𝑊 𝐴𝑊 ∗ is effectively sparse and has only 𝑘 dominant cycles, with the Frobenius norm of the other 
5

𝑛 − 𝑘 cycles being negligible.
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Corollary 1.10. For a Toeplitz matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣

𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑛−1
𝑎−1 𝑎0 𝑎1 𝑎2 ⋱
𝑎−2 𝑎−1 𝑎0 ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱

𝑎−(𝑛−1) 𝑎−(𝑛−2) ⋯ ⋯ 𝑎0

⎤⎥⎥⎥⎥⎥⎦
,

by Theorem 1.9, the relative magnitude of the diagonal of 𝐵 = 𝑊 𝐴𝑊 ∗ is 𝑠0 =
∑
𝑖

𝑤𝑖𝐸
0
𝑖
, where 𝐸0

𝑖
includes only the zero-frequency or the 

average value of entries in the cycle 𝑖.

𝑠0 =
∑

𝑖

(𝑛− 𝑖)|𝑎−𝑖|2 + 𝑖|𝑎𝑛−𝑖|2‖𝐴‖2𝐹
|(𝑛− 𝑖)𝑎−𝑖 + 𝑖𝑎𝑛−𝑖|2

𝑛((𝑛− 𝑖)|𝑎−𝑖|2 + 𝑖|𝑎𝑛−𝑖|2) , (1.8)

=

∑
𝑖
|(𝑛− 𝑖)𝑎−𝑖 + 𝑖𝑎𝑛−𝑖|2

𝑛‖𝐴‖2𝐹 . (1.9)

In the above (1.9) note that for the cases 𝑎−𝑖 = 𝑎𝑛−𝑖, representing the circulant matrices, 𝑠0 = 1 showing that only the diagonal of the 
corresponding 𝐵 has non-zero entries. Minimizing the first circulant component 𝑠0 for a Toeplitz matrix using special pathological cases such 
as 𝑎−𝑖 = −𝑖𝑎𝑖∕(𝑛 − 𝑖) where 𝐸0

𝑖
= 0 for all 𝑖 > 0, the lower bound on 𝑠0 is

𝑠0 ≥
𝑛|𝑎0|2‖𝐴‖2𝐹 .

The above lower bound shows that the circulant matrix 𝑅 directly minimizing ‖𝐴 −𝑅‖𝐹 need not be an effective approximation 
for a Toeplitz matrix in general, even in the limit of large 𝑛. Using expressions such as (1.9) for the other partial energies, one can 
show that when the entries of the Toeplitz matrix {𝑎−(𝑛−1), 𝑎−(𝑛−2), ⋯ 𝑎0, ⋯ 𝑎(𝑛−2), 𝑎(𝑛−1)} are randomly chosen, partial energies 𝐸𝑘

𝑖

and 𝐸𝑛−𝑘
𝑖

for frequencies 𝑘 ≪ 𝑛 are dominant corresponding to a small set of cycles in 𝐵. In other cases, depending on the set of 
given 2𝑛 −1 entries, only the dominant cycles (representing the dominant partial energies) can be included in a sparse approximation 
of 𝐵 with a negligible residue.

Corollary 1.11. Given the set of entries {𝑎−(𝑛−1), 𝑎−(𝑛−2), ⋯ 𝑎0, ⋯ 𝑎(𝑛−2), 𝑎(𝑛−1)} of a Toeplitz matrix, the distribution of the partial energies 
𝐸𝑘

𝑖
in the different frequencies indexed by 𝑘 = 1, 2, ...𝑛 − 1, for a cycle 𝑖 is given by:

𝐸𝑘
𝑖 =

|𝑎−𝑖 − 𝑎𝑛−𝑖|2
𝑛((𝑛− 𝑖)|𝑎−𝑖|2 + 𝑖|𝑎𝑛−𝑖|2)

||||||
sin 𝜋(𝑛−𝑖+1)𝑘

𝑛

sin 𝜋𝑘

𝑛

||||||
2

. (1.10)

Corollary 1.12. For a block Toeplitz matrix, we have constant matrices of a block size 𝑚 replacing the scalar entries 𝑎𝑖 and 𝑎−𝑖 in the 
Toeplitz matrix. Here, we have 𝑚 frequencies of interest given by the indices 𝑆𝑚 = {𝑛∕𝑚, 2𝑛∕𝑚, 3𝑛∕𝑚, ⋯ 𝑛}. Correspondingly, we have the 
cycles of interest indexed by 𝑇𝑚 = {𝑛(𝑚 − 1)∕𝑚, 𝑛(𝑚 − 2)∕𝑚, ⋯ 0} in 𝐵 = 𝑊 𝐴𝑊 ∗.

2. Approximating eigenvalues using the circulant decomposition

When a matrix 𝐴 has 𝑘 dominant frequencies in the variation of entries along its diagonals, the similar matrix 𝐵 = 𝑊 𝐴𝑊 ∗ is 
effectively sparse and has 𝑘 dominant cycles, with the Frobenius norm of the other 𝑛 − 𝑘 cycles being negligible (see Theorem 1.9). 

We can approximate 𝐵 by a sparse 𝐵̃ =
𝑘∑

𝑖=1
Λ𝑎𝑖

𝐶𝑎𝑖 by choosing the 𝑘 dominant cycles in 𝑎𝑖 ∈ {0, 1, 2 ⋯ 𝑛 − 1}. This is followed by the 

application of an algorithm suited for the eigenvalues of a sparse matrix.

2.1. Identifying the dominant circulant components

The similarity transformation by the matrix 𝑊 is shown to restrict the larger magnitudes to certain cycles for the Toeplitz and 
block Toeplitz matrices (Fig. 1). However, the similarity transform fails to show such behavior for random matrices with no restriction 
on the entries (Fig. 2), as expected.

Toeplitz matrices 𝐴, for example, have constant entries along the diagonals and the similarity transformation typically produces 
a very large magnitude for the cycle that represents a zero frequency (the main diagonal of the similar matrix 𝐵), and a few other 
cycles representing a low frequency of variations (see Corollary 1.11). On the other hand, a block Toeplitz matrix 𝐴 with a block size 
𝑚 is 𝑚-periodic. Its similar matrix 𝐵 has dominant cycles given by integers 𝑛∕𝑚 and its multiples (see Corollary 1.12). Similarly, in 
the case of a quasi-periodic matrix where we have a random variation of 𝑘 frequencies along diagonals, the dominant cycles resemble 
6

a mixture of block-Toeplitz matrices of 𝑘 different block sizes. This is illustrated with examples in Section 3.
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Fig. 1. 𝐿2 norm of cycles of 𝑊 𝐴𝑊 ∗ numbered 0 to 𝑛 − 1 where 𝑛 = 100. The dominant cycle numbering zero given by the diagonal is folded as number 100 in the 
plot. Left: 𝐴 is a Toeplitz matrix with randomly chosen entries Right: 𝐴 is a random block Toeplitz matrix of block-size 5.

Fig. 2. The 𝐿2 norm of cycles numbered 0 to 𝑛 − 1 where 𝑛 = 100. The cycle numbered zero is folded as number 100 on the X-axis. Left: Cycles of a random matrix A 
with entries from  (0, 1). Right: Cycles of 𝑊 𝐴𝑊 ∗ where entries of 𝐴 are given by  (0, 1).

2.2. Computing 𝑊 𝐴𝑊 ∗

The (𝑝, 𝑞) entry of the matrix 𝐵 = 𝑊 𝐴𝑊 ∗ is given by

𝐵(𝑝, 𝑞) = 1
𝑛

𝑛∑
𝑘=1

𝑛∑
𝑗=1

𝑒−i
2𝜋𝑝𝑘

𝑛 𝐴(𝑘, 𝑗)𝑒i
2𝜋𝑗𝑞

𝑛 . (2.1)

Relation with fast Fourier transform: If  (𝐴) represents the discrete Fourier transform (DFT) of the columns of matrix 𝐴, we have

𝐵 = 1
𝑛
 ( (𝐴)∗)∗. (2.2)

If we denote the two dimensional DFT of the matrix 𝐴 by 2(𝐴), then we have 𝐵 = [2(𝐴)]∕𝑛. Thus 𝑊 𝐴𝑊 ∗ is computed in 2𝑛2 log𝑛

operations when the full linear transformation is required.

Evaluating only 𝑘 cycles of 𝑊 𝐴𝑊 ∗: In the 𝑛-point fast-Fourier-transform (FFT) of a vector there are log2 𝑛 stages in its butterfly 
structure i.e. decomposition of a larger size DFT recursively into smaller sizes. When we require only 𝑘 frequency components of the 
given matrix at the final stage, the number of required points double every previous stage until 2𝑚𝑘 = 𝑛 for some 𝑚 = log2

(
𝑛

𝑘

)
. So 

the number of arithmetic operations 𝑂𝑘 for including 𝑘 frequency components is:

𝑂𝑘 =
𝑚−1∑
𝑗=0

2𝑗𝑘+ 𝑛
(
log2 𝑛− log2

(
𝑛

𝑘

))
,

𝑂𝑘 = 𝑘(2𝑚 − 1) + 𝑛 log2 𝑘,

𝑂𝑘 = (𝑛− 𝑘) + 𝑛 log2 𝑘.

The total number of required operations for 𝑛 vectors is 𝑛𝑂𝑘, which is (𝑛2) for a given 𝑘. In the special case of 𝑘 = 1 for a Toeplitz 
7

matrix, the averaging of entries on the cycles to evaluate the 𝑛 entries of the first circulant 𝑅0 requires 2𝑛 arithmetic operations 
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(see Remark 1.7), followed by the evaluation of 𝑊 𝑅0𝐷0𝑊
∗ requires 𝑛 log𝑛 arithmetic operations, where 𝐷0 = 𝐼 . This produces the 

diagonal of the similar matrix 𝐵 and the corresponding approximation of the eigenvalues.

Algorithm 2.1 Approximation of eigenvalues using a circulant decomposition.

Output : Λ ⟵[ ]; a set of eigenvalues of given matrix.

Initialization: 𝑊 (𝑝, 𝑞) ⟵ 1√
𝑛
𝑒−𝑖 2𝜋

𝑛
𝑝𝑞 ; Construct transformation matrix.

Sparsification : 𝐵̃ ⟵ 𝑊 𝐴𝑊 ∗ − Δ; Construct 𝐵̃ using the dominant cycles.

Reduced evaluation : Λ ⟵ 𝜆𝑖{𝐵̃}; Eigenvalue algorithm for sparse matrices.

2.3. Error in approximations

The similar matrix 𝐵 is reduced to a sparse matrix 𝐵̃ by selecting dominant cycles with the largest Frobenius norms. Let Δ =𝐵−𝐵̃, 
and 𝜆𝑖 be the eigenvalues of 𝐵, and 𝜆̃𝑖 be the eigenvalues of 𝐵̃. Let 𝐵 = 𝑋Λ𝑋−1. From Bauer-Fike theorem,

|𝜆𝑖 − 𝜆̃𝑖| ≤ 𝜅(𝑋)‖Δ‖2. (2.3)

Here 𝜅(𝑋) = ‖𝑋‖‖𝑋−1‖ is the condition number of the eigenvector matrix 𝑋. So the eigenvalues are better approximated when 
the eigenvector matrix 𝑋 is well conditioned, and ‖Δ‖2 is minimized. Similarly, the relative error can be bound when 𝐵 is non 
singular and diagonalizable.|𝜆𝑖 − 𝜆̃𝑖||𝜆𝑖| ≤ 𝜅(𝑋)‖𝐵−1Δ‖2. (2.4)

2.4. Positive definiteness of B̃

It can be shown that for a positive definite 𝐴, the diagonal matrix with the diagonal entries of 𝐵 is positive definite [25]. But 
the matrix 𝐵̃ with other cycles included, need not be positive definite. Here we provide a sufficient condition for the matrix 𝐵̃ to be 
positive definite.

Theorem 2.1. When the approximation 𝐵̃ includes the diagonal of 𝐵 along with any 𝑘 symmetric cycles indexed by a set of some whole 

numbers 𝑎𝑖 ∈  , the approximated matrix is positive definite if 
√

𝐵(𝑖,𝑖)𝐵(𝑎𝑗 ,𝑎𝑗 )

𝑘
≥ 𝐵(𝑖, 𝑎𝑗 ) for all 𝑖, 𝑎𝑗 .

Proof. By using the expansion of 𝑢∗𝐵̃𝑢 with constraint ‖𝑢‖ = 1, it can be divided into two parts

𝑢∗𝐵̃𝑢 =
∑

𝑖

|𝑢𝑖|2𝐵(𝑖, 𝑖) +
∑

𝑝,𝑞∈
𝑢𝑝𝑢𝑞𝐵(𝑝, 𝑞) + 𝑢𝑞𝑢𝑝𝐵(𝑝, 𝑞), (2.5)

𝑢∗𝐵̃𝑢 ≥
∑

𝑖

|𝑢𝑖|2𝐵(𝑖, 𝑖) −
∑

𝑝,𝑞∈
2|𝑢𝑝||𝑢𝑞||Re(𝐵(𝑝, 𝑞))|, (2.6)

𝑢∗𝐵̃𝑢 ≥
∑

𝑝,𝑞∈

(
(|𝑢𝑝|2𝐵(𝑝, 𝑝) + |𝑢𝑞|2𝐵(𝑞, 𝑞))| | − 2|𝑢𝑝||𝑢𝑞||Re(𝐵(𝑝, 𝑞))|) . (2.7)

From the last equality, for every 𝑝, 𝑞 ∈  if

(|𝑢𝑝|2𝐵(𝑝, 𝑝) + |𝑢𝑞|2𝐵(𝑞, 𝑞))| | − 2|𝑢𝑝||𝑢𝑞||Re(𝐵(𝑝, 𝑞))| ≥ 0, (2.8)

then it satisfies a sufficient condition for the matrix 𝐵̃ to be positive definite. With 𝜃 =
|||| 𝑢𝑝

𝑢𝑞

||||, this implies

𝜃𝐵(𝑝, 𝑝) + 1
𝜃
𝐵(𝑞, 𝑞)| | ≥ 2|Re(𝐵(𝑝, 𝑞))|. (2.9)

Now minimizing 𝑓 (𝜃) = 𝜃𝐵(𝑝, 𝑝) + 1
𝜃
𝐵(𝑞, 𝑞) w.r.t. 𝜃, we find the minimum value to be 2

√
𝐵(𝑝, 𝑝)𝐵(𝑞, 𝑞), giving us the sufficient 

condition,√
𝐵(𝑝, 𝑝)𝐵(𝑞, 𝑞)| | ≥ |Re(𝐵(𝑝, 𝑞))|. (2.10)

On the other hand, 𝐵(𝑖,𝑖)+𝐵(𝑗,𝑗)
2 < |Re(𝐵̃(𝑖, 𝑗))| for any 𝑖, 𝑗 implies a vector 𝑢 = 𝑎𝑒𝑖 + 𝑏𝑒𝑗 with suitable 𝑎, 𝑏 such that 𝑢∗𝐵𝑢 < 0. So 
8

we note that 𝐵(𝑖,𝑖)+𝐵(𝑗,𝑗)
2 > |Re(𝐵̃(𝑖, 𝑗))| for all 𝑖, 𝑗 when 𝐵 is positive definite.
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Fig. 3. A qualitative comparison of eigenvalue approximations using the direct [26] and the circulant sparsifiers for identical number of non-zero entries in the 
resulting matrix. The smaller magnitudes of the former show that the information lost by the direct sparsifier is significantly larger compared to that of the suggested 
computationally efficient sparsification using the dominant circulant components. Left: A random Toeplitz matrix. Right: A random block Toeplitz matrix of block size 
5.

Fig. 4. Average and deviation of relative error in the approximated eigenvalues with increasing number of cycles considered. Corresponding relative errors in the 
similarity transformation are given by the dashed line and Y-axis on the right. Left: Toeplitz matrix of dimension 𝑛 = 1000. Right: Block Toeplitz matrix of block size 
5 and dimension 𝑛 = 1000.

3. Numerical results

3.1. Eigenvalue evaluations

We begin by qualitatively highlighting the advantages of the suggested sparsification over a direct sparsifier, for matrices with 
periodic properties. Later, we present quantitative results of the errors in the similarity transformation and eigenvalue approximations 
of Toeplitz, block Toeplitz and quasi-periodic matrices. Random matrices with  (0, 1) as entries of the matrix or its blocks were 
used for corresponding numerical experiments on Toeplitz and block Toeplitz matrices. It should be noted that in applications where 
the matrices are not random, one can expect even better results. The results show that including a few dominant cycles provides us 
lower relative errors for eigenvalues of such matrices, compared to the single-term circulant approximation. Also, while the relative 
errors may be notable for the smaller eigenvalues, their absolute errors are very small, as expected.

3.1.1. Comparison with direct sparsifiers

The eigenvalues of the approximated Toeplitz and block Toeplitz matrices using 𝑊 𝐴𝑊 ∗ and a direct sparsifier [26], along with 
the actual eigenvalues are shown in Fig. 3. In general, the eigenvalues with the direct sparsifier are smaller in magnitude i.e. more 
centered in the plot, compared to the eigenvalues with the proposed sparsifier in the frequency domain. Intuitively, the information 
lost by the direct sparsifier by thresholding some entries in the matrix to zero, is larger compared to the information lost in the 
frequency domain by removing the same number of entries as cycles of the matrix 𝑊 𝐴𝑊 ∗.

3.1.2. Toeplitz and block-Toeplitz matrices

The average relative error and standard deviation of the errors of all the 𝑛 eigenvalues, decrease with an increase in the number of 
cycles in the approximation of eigenvalues of a Toeplitz matrix, as shown in Fig. 4. The cumulative relative error of the approximate 
similarity transformation in terms of the Frobenius norms, ‖Δ‖∕‖𝐴‖, is also plotted in these figures. Also, the mean of the average 
relative error and its deviation over 1000 matrices in Fig. 5 show reasonably small errors, and better results are expected for block 
9

Toeplitz and other periodic matrices.
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Fig. 5. Mean of the average relative error and its deviation in the approximated eigenvalues with the increasing number of included cycles; evaluated using 1000 
random matrices of dimension 𝑛 = 100. Note that the errors further reduce significantly with the increasing dimensions 𝑛 as shown in Fig. 6. Left: Toeplitz matrices. 
Right: Block Toeplitz matrices of block size 5.

Fig. 6. Left: Average and deviation of relative error in the approximated eigenvalues of a random periodic matrix of dimension 𝑛 = 100 with the included cycles. 
Periods 4, 5, 10 were chosen randomly along the diagonals with a uniform probability. In the suggested algorithm, cycles numbering around 20, 40, 50, 60 and 80 are 
preferentially included in the sparse similarity transformation. Right: Average and deviation of relative error in the approximated eigenvalues using only two cycles 
(𝐶0 , 𝐶⌊ 𝑛

2 ⌋), of block Toeplitz matrices of block-size five, for dimensions 𝑛 ranging from 100 to 1000. Corresponding relative errors in the similarity transformation 
are given by the dashed line and Y-axis on the right.

Block-Toeplitz matrices with random entries from  (0, 1) were used for the numerical experiments. The average relative error 
and standard deviation of the errors decrease with an increase in the number of cycles in the approximation as shown in the example 
in Fig. 4. The mean of the average relative error and its deviation over 1000 matrices are shown in Fig. 5. Note that inclusion of a few 
cycles may be sufficient to achieve a reasonable accuracy in approximating all the eigenvalues for these matrices. The improvements 
in the accuracy of the eigenvalue estimation for a given 𝑘, with the increase in the size of the matrix, are also illustrated in the Fig. 6.

3.1.3. Other periodic and quasi-periodic matrices

The above properties of Toeplitz and block-Toeplitz matrices can describe the properties and the efficacy of sparsification of a 
quasi-periodic matrix as well. The dominant components for such matrices become the corresponding sizes of periodic blocks in the 
matrix; thus displaying the characteristics similar to that of a block-Toeplitz matrix. It can be used to include only the dominant 
cycles of the similar matrix 𝐵. Average relative error and deviation in the relative errors are plotted with the cycle number for a 
random periodic matrix in Fig. 6. Here, a uniform probability of periods 𝑚 = 4, 5, and 10 were used to generate the entries along 
the diagonals for a matrix of dimension 𝑛 = 100. These result in dominant cycles in the similar matrix 𝐵 that are multiples of the 
corresponding integers 𝑛∕𝑚 given by 25, 20, and 10 respectively, with their common multiples being even more significant. Note 
that the error in Fig. 6 reduces mostly for corresponding cycles, as in the case of a mixture of block Toeplitz matrices.

3.2. Preconditioning linear systems

Toeplitz linear systems appear, for example, in solving linear ordinary differential equations and delay differential equa-

tions. Here, T. Chan and generalized T. Chan’s preconditioners are used in speeding up Conjugate Gradient (PCG) algorithms 
[21,25]. In Example-1 of the article [25], preconditioned CG is applied on a symmetric Toeplitz matrix with first row given by 
𝐴(1, ∶) =

[
2 −1

2
−1
22

−1
23 ⋯ −1

2𝑛−1

]
with right hand side vector 𝑏 =

[
1 2 3 ⋯ 𝑛

]𝑇
. The preconditioner considered was a 
10

generalization of the T. Chan’s preconditioner, given as 𝑃 (𝑘) = 𝑊 ∗(𝐵◦𝑄(𝑘))𝑊 with the matrix 𝑄(𝑘) given as
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Table 1

Toeplitz matrices of dimension 2000. The first case is Example-1 of [25], and others were 
generated using random entries. The preconditioner ‘I’ represents the plain solver. Both pre-

conditioners are identical when only a single cycle of 𝑊 𝐴𝑊 ∗ is considered. The stopping 
criterion was a relative residue less than 10−6.

Number of non-zero entries in 
preconditioner and iterations 
required ⟶

𝐼 𝑃 (𝑛) 𝑃 (3𝑛) 𝑃 (5𝑛) 𝑃 (7𝑛) 𝑃 (9𝑛)

Generalized T. Chan 683 30 23 23 23 23

𝑊 𝐴𝑊 ∗ cycles 30 44 43 45 47

Generalized T. Chan 61 38 38 38 38 38

𝑊 𝐴𝑊 ∗ cycles 38 27 24 21 21

Generalized T. Chan 103 61 61 61 61 61

𝑊 𝐴𝑊 ∗ cycles 61 45 40 34 33

Generalized T. Chan 51 33 33 33 33 33

𝑊 𝐴𝑊 ∗ cycles 33 23 21 21 19

Generalized T. Chan 56 36 36 36 36 34

𝑊 𝐴𝑊 ∗ cycles 36 26 23 22 20

Fig. 7. Cycle-wise dominant entries of the matrix 𝐵 = 𝑊 𝐴𝑊 ∗ . Heat map represents the magnitude of the matrix entry normalized by the largest magnitude among 
entries in the corresponding cycle. The matrices 𝐴 are symmetric Toeplitz matrices of dimension 500. Left: When 𝐴 has entries from Example-1 of [25], and note the 
higher relative magnitudes of the cycles at the bottom right indicated by a box. Right: When 𝐴 has random Gaussian  (0, 1) entries.

𝑄(𝑘) =

[
𝐼

𝑛−⌈√𝑛−𝑘⌉ 0
0 𝟏⌈√𝑛−𝑘⌉

]
.

Here 𝟏𝑘 is a 𝑘 × 𝑘 matrix of all ones. Note that this preconditioner includes a single circulant component i.e. the diagonal of 𝑊 𝐴𝑊 ∗

along with a square sub-matrix at the bottom-right corner in the matrix 𝐵. Table 1 shows the number of iterations required by a 
preconditioned CG for positive definite symmetric Toeplitz matrices. The generalized T. Chan’s preconditioner performs marginally 
better than the proposed banded preconditioner with a few cycles of 𝑊 𝐴𝑊 ∗ for Example-1, and not in the other cases. This can be 
explained using Fig. 7. The matrix 𝑊 𝐴𝑊 ∗ for Example-1 has higher relative magnitudes of all cycles in the bottom right corner. 
As mentioned, the T. Chan’s preconditioner can capture most of these entries as a bottom-right sub-matrix, in comparison with the 
corresponding banded preconditioner. Whereas other Toeplitz matrices may not show such a cluster of high magnitude entries near 
the diagonal. Thus, T. Chan’s preconditioner does not reduce required iterations with small increments in the size of its non-zero 
sub-matrix, in general. Thus the banded preconditioner using the cycles of 𝑊 𝐴𝑊 ∗ performs better than the generalized T. Chan’s 
preconditioner in the other positive definite Toeplitz matrices with arbitrary entries.

In the case of block-Toeplitz matrices we see that the banded preconditioner speeds up computations with inclusion of cycles of 
𝑊 𝐴𝑊 ∗ as shown in Table 2, whereas the T. Chan’s preconditioner fails to do so for the same number of non-zero entries in it. These 
results highlight the generality of the dominant cycles of matrix 𝐵 = 𝑊 𝐴𝑊 ∗, as an appropriate preconditioner for matrices with 
some periodicity in entries.

4. Conclusion

We began with a decomposition of any given matrix into circulant matrices with periodic relaxations on the unit circle. Exploiting 
the periodicity of entries along the diagonals of a matrix, and the dominance of a few circulant components, we can reduce the given 
matrix using appropriate fast-Fourier-transform operations for an approximate and sparse similarity transformation.

Using numerical results, we highlighted the efficacy of the sparsification of the periodic matrices using the circulant decompo-

sition, in terms of errors both in approximation of entries of the matrix and also its eigenvalues. Examples of the relative errors 
in the eigenvalues were produced as a function of the number of circulant components included in the approximation. Results in 
11

preconditioning linear systems were presented where the generalized T. Chan’s preconditioner was compared. These results show 
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Table 2

Block-Toeplitz matrices of dimension 1100 of block size 11. The matrices are symmetric positive defi-

nite with symmetric blocks, and condition number of the matrices is (104). The stopping criterion was 
a relative residue less than 10−6. The preconditioner ‘I’ represents the plain solver. Both preconditioners 
are identical when only a single cycle of 𝑊 𝐴𝑊 ∗ is considered.

Number of non-zero entries in 
preconditioner and iterations 
required ⟶

𝐼 𝑃 (𝑛) 𝑃 (3𝑛) 𝑃 (5𝑛) 𝑃 (7𝑛) 𝑃 (9𝑛) 𝑃 (11𝑛)

Generalized T. Chan 168 162 162 162 162 162 162

𝑊 𝐴𝑊 ∗ cycles 162 148 121 106 78 19

Generalized T. Chan 136 121 121 121 121 121 121

𝑊 𝐴𝑊 ∗ cycles 121 119 106 94 66 17

Generalized T. Chan 172 172 172 172 172 172 172

𝑊 𝐴𝑊 ∗ cycles 172 131 134 105 66 19

Generalized T. Chan 408 402 403 402 400 403 399

𝑊 𝐴𝑊 ∗ cycles 402 375 327 284 232 29

Generalized T. Chan 125 124 124 124 124 124 124

𝑊 𝐴𝑊 ∗ cycles 124 120 100 90 51 17

that the suggested sparse similarity transformation of a matrix is useful in efficiently approximating eigenvalues, and preconditioning 
linear systems, and may as well be exploited for other evaluations when a dense matrix has any periodicity along its diagonals.
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Appendix A. Single-term circulant approximation of a Toeplitz matrix, and its symbol

A Toeplitz matrix is of the form,

𝐴𝑛 =

⎡⎢⎢⎢⎢⎢⎣

𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑛−1
𝑎−1 𝑎0 𝑎1 𝑎2 ⋱
𝑎−2 𝑎−1 𝑎0 ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱

𝑎−(𝑛−1) 𝑎−(𝑛−2) ⋯ ⋯ 𝑎0

⎤⎥⎥⎥⎥⎥⎦
.

The function 𝑎(𝑒i𝜃) =
∞∑

𝑘=−∞
𝑎𝑘𝑒i𝑘𝜃 for 𝜃 ∈ [0, 2𝜋) is called the symbol of the family of Toeplitz matrices 𝐴𝑛 [15]. This section con-

siders different types of symbols, the corresponding eigenvalues of the single-term circulant approximation, and the actual spectrum 
of the Toeplitz matrices. The single-term approximation is given by only the diagonal entries of 𝑊 𝐴𝑛𝑊

∗. We have the diagonal 
entry

(𝑊 𝐴𝑛𝑊
∗)(𝑝, 𝑝) = 1

𝑛

𝑛−1∑
𝑞=0

𝑛−1∑
𝑘=0

𝐴𝑛(𝑞, 𝑘)𝑒i2𝜋𝑝
𝑞−𝑘
𝑛 = 1

𝑛

(
𝑛∑

𝑚=1

(𝑚−1)∑
𝑠=−(𝑚−1)

𝑎𝑠𝑒
i𝑝 2𝜋𝑠

𝑛

)
,

as the Cesáro sum. When 𝑎 is continuous and 2𝜋 periodic, the Cesaro sum, i.e. the diagonal elements of (𝑊 𝐴𝑛𝑊
∗)(𝑝, 𝑝), converge 

uniformly to the range of the symbol evaluated at 𝑒i
2𝜋𝑝
𝑛 , with 𝑝 = 0, … , 𝑛 − 1. Both allow approximation of eigenvalues of Toeplitz 

matrices; the symbol in (𝑛2) arithmetic operations and the single-circulant approximation in (𝑛 log𝑛) arithmetic operations. 
While the symbol may be better in approximating the spectra of Toeplitz matrices, an approximation using one or more circulant 
components is applicable even to block-Toeplitz and other dense matrices with some periodicity in entries with a (𝑛2) scaling in 
the computing effort. Here we present three cases where the relationship between the above two methods of approximating the 
eigenvalues of a Toeplitz matrix can be qualified, but note that these cases are not exhaustive.

A.1. Case 1: the symbol is of the Tilli class

Spectrum of 𝐴𝑛 is said to be canonically distributed if the limiting spectrum approaches the range of the symbol. It was shown by 
Tilli, that if the complement of the range is a connected set, then the spectrum follows the symbol [27]. Several conditional theorems 
on the symbol such that the spectrum of 𝐴𝑛 is canonically distributed are presented in [15]. Fig. 8 shows the spectrum, single-term 
12

circulant approximation, and the symbol for 𝑎(𝜃) = (1 + 𝜃)𝑒𝑖𝜃 .
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Fig. 8. Range of the symbol, and diagonal entries of 𝑊 𝐴𝑛𝑊
∗ for a Toeplitz matrix of dimension 200 with a symbol 𝑎(𝜃) = (1 + 𝜃)𝑒𝑖𝜃 .

Fig. 9. Range of the symbol, and diagonal entries of 𝑊 𝐴𝑛𝑊
∗ for a banded Toeplitz matrix of dimension 100, with 7 non-zero entries in each row. The work in this 

paper is not directed at such sparse matrices.

Fig. 10. Range of the symbol, and diagonal entries of 𝑊 𝐴𝑛𝑊
∗ for a Toeplitz matrix of dimension 200 with a symbol 𝑎(𝜃) = 𝜃

2𝜋
+ 𝑖

1
𝜋2 (𝜃 − 𝜋)2 + 𝑒𝑖2𝜃 .

A.2. Case 2: the symbol of the banded Toeplitz matrix is a trigonometric polynomial

For a banded Toeplitz matrix 𝐴𝑛, with first row 𝑎0, 𝑎1, 𝑎2, ⋯ 𝑎𝑙 and first column entries 𝑎0, 𝑎−1, ⋯ 𝑎−𝑚, the symbol given by 

𝑎(𝑒𝑖𝜃) =
𝑙∑

𝑘=−𝑚

𝑎𝑘𝑒𝑖𝑘𝜃 is a curve in the complex plane. The eigenvalues of such matrices lie in the convex hull (denoted (𝑎)) of the 

curve 𝑎(𝑒𝑖𝜃) for 𝜃 ∈ [0, 2𝜋) [14,27]. On the other hand, we have the diagonal entries of 𝑊 𝐴𝑛𝑊
∗ as FFT of the sequence

(𝑎0,
𝑛− 1

𝑛
𝑎1,

𝑛− 2
𝑛

𝑎2,⋯
𝑛− 𝑙

𝑛
𝑎𝑙,0,0,⋯0, 𝑛−𝑚

𝑛
𝑎−𝑚,⋯

𝑛− 1
𝑛

𝑎−1).
13

Note that these values lie in near proximity to the trace of the symbol in the complex plane when 𝑙, 𝑚 ≪ 𝑛, as shown in Fig. 9.
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A.3. Case 3: the symbol is a sum of a polynomial and a trigonometric polynomial

This can be regarded as the combination of the previous two cases. Even though the spectra mimic the symbol on open arcs, 
they lie inside the closed arcs. Typically, when the symbol is a sum of a polynomial and a trigonometric polynomial we observe 
such a scenario. Here, Theorems 1 and Theorem 3 of Tilli [27] have to be applied. The spectrum of the matrix with symbol 𝑎(𝑒𝑖𝜃) =
𝜃

2𝜋 + 𝑖 1
𝜋2 (𝜃 − 𝜋)2 + 𝑒𝑖2𝜃 is shown in Fig. 10.
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