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Abstract

In signal analysis, among the effort of seeking for efficient representations of
a signal into the basic ones of meaningful frequencies, to extract principal
frequency components, consecutively one after another or n at one time, is a
fundamental strategy. For this goal, we define the concept of mean-frequency
and develop the related frequency decomposition with the complete Szegö
kernel dictionary, the latter consisting of the multiple kernels, being defined
as the parameter-derivatives of the Szegö kernels. Several major energy
matching pursuit type sparse representations, including greedy algorithm
(GA), orthogonal greedy algorithm (OGA), adaptive Fourier decomposition
(AFD), pre-orthogonal adaptive Fourier decomposition (POAFD), n-Best ap-
proximation and unwinding Blaschke expansion, are analyzed and compared.
Of which an order in re-construction efficiency between the mentioned algo-
rithms is given based on detailed study of their respective remainders. The
study spells out the natural connections between the multiple kernels and the
related Laguerre system, and in particular shows that both, like the Fourier
series, extract out the O(n−σ) order convergence rate from the functions in
the Hardy-Sobolev space of order σ > 0. Existence of the n-Best approxima-
tion with the complete Szegö dictionary is proved and the related algorithm
aspects are discussed. The included experiments form a significant integra-
tion part of the study, for they not only illustrate the theoretical results, but
also provide cross comparison between various ways of combination between
the matching pursuit algorithms and the dictionaries in use. Experiments
show that the complete dictionary remarkably improves approximation effi-
ciency.
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1. Introduction

Matching pursuit, as a methodology to generate sparse representations of
signals, is usually based on a dictionary of the underlying Hilbert space. The
most basic matching pursuit algorithm would be one called greedy algorithm
in the context of Hilbert space with a dictionary [1, 2]. In 2011, Qian and
Wang proposed AFD, or Core AFD [3, 4, 5], which crucially uses energy
matching pursuit, as well as the complex Hardy space techniques, to develop
a sparse representation in the form of a Takenaka-Malmquist system. Ever
since then, there have been generalizations and variations of AFD, including
pre-orthogonal AFD [6], the n-Best AFD [7] and Unwinding AFD [8]. A
closely related method, called unwinding Blaschke expansion was proposed
early by R. Coifman et al. in 2000 [9, 10]. AFD was further extended to
multivariate and matrix-valued cases [6, 11, 12]. In this paper, we restrict
ourselves only to the one dimensional cases with scalar function values. AFD
and its one dimensional variations are all based on the Szegö kernel dictio-
nary. We, however, adopt a general formulation as follows.

LetH be a Hilbert space with a dictionary D. That means that D consists
of norm-one elements and span{D} is a dense subset of H. Each of the
elements of the dictionary D is labeled by a parameter q ∈ E , and is denoted
as Eq.We will call a set K of elements inH a pre-dictionary if the unimodular
normalizations of the elements inK form a dictionary. In a reproducing kernel
Hilbert space (RKHS), for instance, Kq(p) ≜ K(q, p) form a pre-dictionary.
The parameter set E is usually an open set of Euclidean space. We usually
assume that the concerned Eq and Kq are smooth in q, and in particular
have as many orders of derivatives in E as we use. The boundary of E in
the Euclidean topology is denoted ∂E . The concerned general theory will be
applicable to RKHS and many non-RKHS cases as well.

In the present paper, we will study the case where H is the complex
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Hardy space

H2(D) = {f : D → C : f is analytic in D, ∥f∥2H2(D)

= sup
0<r<1

1

2π

∫ 2π

0

|f(reit)|2dt <∞} (1)

together with the Szegö dictionary,

D = {ea}a∈D, ea(z) =

√
1− |a|2
1− az

, a, z ∈ D. (2)

It is noted that for every f ∈ H2(D)

lim
D∋z→eit

f(z) exist for a.e. t ∈ [0, 2π],

where the limit z → eit takes the non-tangential manner. The mapping that
sends f(z) ∈ H2(D) to its non-tangential boundary limit f(eit) on the unit
circle is an isometric isomorphism between H2(D) and a closed subspace
H2(∂D) of L2(∂D). In terms of the non-tangential boundary limit functions
the inner product of H2(D) may be defined through that of the L2(∂D)
space, namely,

⟨f, g⟩H2 =
1

2π

∫ 2π

0

f(eit)g(eit)dt. (3)

Using this inner product, as a consequence of the Cauchy formula, H2(D) is
a RKHS having ka(z) as its reproducing kernel, where

ka(z) =
1

1− az
.

The Szegö dictionary element ea is the norm-1 normalization of the Szegö
kernel ka. The collection K = {ka}a∈D is a pre-dictionary.

The space of the boundary limit functions can be alternatively defined as

H2(∂D)

= {f : ∂D → C : f(eit) =
∞∑
k=0

cke
ikt,

∥f∥2H2(∂D) ≜
∞∑
k=0

|ck|2 <∞}. (4)
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Remark 1. For any real-valued function of finite energy g ∈ L2(∂D),

g+ ≜
1

2
(g + iHg + c0) ∈ H2(D),

g− ≜
1

2
(g − iHg − c0) ∈ H2(D

c
),

the latter being the complex Hardy space outside the closure of the unit disc,
and

g = g+ + g− = 2Reg+ − c0, (5)

where c0 is the average of g over the unit circle:

c0 =
1

2π

∫ 2π

0

g(eit)dt,

H is the circular Hilbert transform. For proofs of these fundamental rela-
tions, see, for instance, [13] or [14]. The relation (5), in particular, reduces
the analysis of the real-valued functions on compact intervals to that of the
functions in the Hardy space. The latter is, in fact, the space of the Z-
transforms.

There exists a parallel theory for functions g defined on the real line with
finite energy in which g± ≜ 1

2
(g + iHg), where H is the Hilbert transform

on the line and g = 2Reg+. g+ is identical to the Laplace transform of g. In
both cases, g+ is interpreted as the Gabor analytic signal associated with g.
In the real line case, the associated Hardy space is H2(C+) that is isometric
with H2(∂C+) = H2(R).

The same philosophy is obeyed by signals of several complex and several
real variables (with the Clifford algebra setting), and of scalar- or vector-, and
even matrix-values. Some of the cases have been developed. See [6, 11, 12, 15]
and the references therein.

In the rest of the paper we concentrate on developing the theory and
practice in the unit disc case, and when we use the notation H2 and the
terminology “the Hardy space” we refer to just the unit disc case.

With the matching pursuit idea the following n-Best question is natural.

The Ill-Posed n-Best Question:
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Let f ∈ H and n be a fixed positive integer. Can one find n distinguished
parameters q1, · · · , qn and n complex numbers c1, · · · , cn such that for the
corresponding pre-dictionary elements Kq1 , · · · , Kqn , there holds

∥f −
n∑
k=1

ckKqk∥H = inf{∥f −
n∑
k=1

dkKpk∥H :

all distinguished pk ∈ E and all dk ∈ C }. (6)

The answer to this question is dependent on the underlying Hilbert space H
and the pre-dictionary in use. Even for n = 1 the answer is not necessarily
“Yes”. See, for instance, [16], for some counterexamples as weighted Hardy
type spaces.

Definition 1. In the study of matching pursuit the concept boundary van-
ishing condition (BVC) is established: A pair (H,D) is said to satisfy BVC
if for every f ∈ H there holds

lim
q→∂E

⟨f, Eq⟩ = 0. (7)

If (H,D) satisfies BVC, then through a Bolzano-Weierstrass type compact
argument the above n-Best problem has a solution for n = 1. It is proved
in [3] that the Hardy space H2 and the Szegö dictionary, as a pair, satisfies
BVC, and hence there exist 1-Best solutions in the case. Verification of BVC
usually involves detailed analysis. In general, if (H,D) satisfies BVC, then
the powerful POAFD matching pursuit is available. See §3 below for details.

When n > 1 the answer to the n-Best question is “No” even for the
Hardy space and the Szegö dictionary case. The following is an example of
the ill-posed-ness for n > 1.

Example 1. We take f(z) = 1
(2−z)2 , which is a function in the Hardy space

H2(D), and take n = 2. The function can be infinitely approximated by linear
combinations of two distinguished Szegö kernels. Or, the infimum error is
zero. However, any two-term approximation cannot get the zero error.

However, if in the n-Best question the phrase “all distinguished pk ∈ E”
is modified to be “all multiple kernels K̃pk , pk ∈ E ,”, then the problem in
many cases becomes well-posed. In the Hardy space and Szegö dictionary
case, for instance, multiple kernels are defined to be derivatives of Ka with
respect to a.
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We now introduce multiple Szegö kernels and the complete Szegö kernel
dictionary as follows [17]. Denote the set of non-negative integers by N.
Generating the notations in (2), we have

Definition 2. The set of multiple Szegö kernels

K̃ = {kn,a}n∈N,a∈D,

is a pre-dictionary consisting of

kn,a(z) =

(
∂

∂ā

)n
ka(z) = Cn,a

zn

(1− az)n+1
, (8)

where Cn,a are constants depending on n and a. The totality of their unimod-
ular normalizations

D̃ = {en,a(z) =
kn,a
∥kn,a∥

}n∈N,a∈D (9)

is called the complete Szegö dictionary with the parameter set

E = {(n, a)}(n,a)∈N×D.

Returning to Example 1, f(z) = 1/(z − 2)2 may be expressed as C ∂
∂a
ka,

where a = 1/2 and C is a complex number. The 2-Best approximation (with
infimum error 0) is then reached.

The multiple kernel notion may be extended to general Hilbert spaces
H with a pre-dictionary D = {Kq}, q ∈ E . To simplify the terminology we
will call all the subjects Kq, Eq, ea, ka etc., by kernel, although some are
normalized and some are not, and we will normally denote

{Eq} = { Kq

∥Kq∥
}, q ∈ E . (10)

Note that for a kernel Kq(x) the domain E for the parameter q and that for
the spatial or the time variable x may not be the same. Let l be a positive
integer, and (q1, · · · , ql) an l-tuple of parameters in E , allowing multiplicity.
Define l(q1, · · · , ql) be the repeating number of ql in q1, · · · , ql, 1 ≤ l ≤ n.
Without ambiguity, we write l(q1, · · · , ql) as l(ql) in short. As examples,
l(q1) = 1, and l(ql) = 1 if ql is different from the proceeding q1, · · · , ql−1. For
E being an open set of the complex number field, we define

K̃ql =

[(
∂

∂q

)(l(ql)−1)

Kq

]
(ql) (11)
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to be the l-th multiple kernels with respect to (q1, · · · , ql), and Ẽql the norm-
1 normalization of K̃ql . The differential operation ∂

∂q
in below will also be

denoted as ∂. If ql are several or hyper-complex variables, then the derivatives
are replaced by directional derivatives. In the RKHS case there exists the
following useful relation:

∂
l(ql)−1

fqk = ∂
l(ql)−1⟨f,Kqk⟩ = ⟨f, K̃qk⟩. (12)

Under the multiple kernel concept, the question (6) may be re-formulated
to become well-posed:

The n-Best Question (reformulation): Let f ∈ H,K a pre-dictionary,
and n a fixed positive integer. Can one find n parameters q1, · · · , qn, with
multiplicity when necessary, and n complex numbers c1, · · · , cn, such that for
the multiple kernels K̃q1 , · · · , K̃qn there holds

∥f −
n∑
k=1

ckK̃qk∥H = inf{∥f −
n∑
k=1

dkKpk∥H :

all distinguished pk ∈ E and all dk ∈ C }, (13)

where K̃qk , k = 1, · · · , n, are, consecutively, the multiple kernels associated
with (q1, · · · , qn).

Under the new formulation, existence of solution to the n-Best problem
has been proved for a number of most commonly studied Hilbert spaces of
a BVC dictionary, including the Hardy space, the Bergman space, and the
weighted Bergman spaces together with the dictionaries naturally induced by
their respective reproducing kernels. See [7, 18] and the references therein.
The n-Best approximation problem in the Hardy space is, in fact, equiva-
lent to the best approximation problem by rational functions in the space
of degrees not exceeding n [19]. Several practical algorithms for the Hardy
n-Best have been proposed that, however, cannot prevent from sinking into
the local minima [20, 21, 22, 23]. Through generalizing the techniques in re-
lation to the backward shift operator, existence of the n-Best approximation
was lately extended to a class of RKHSs, including the weighted Bergman
and weighted Hardy spaces as particular cases [24]. These existence proofs
also play a definitive role in seeking for a theoretical algorithm to obtain
all the n-tuple minimizers. In the present paper, we prove existence of the
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n-Best approximation for the Hardy space under the complete Szegö kernel
dictionary. See §6.

Besides the one for the n-Best approximation there is another reason that
motivates the study of multiple kernels: We are to decompose a signal into
its principal frequency components in terms of the energy, not in the degree
of the frequency. In §2 we define the notion mean-frequency for functions
in the Hardy space. Mean-frequency is a measurement of the total amount
of the frequencies in an analytic signal by which Szegö kernels possess zero
mean-frequency. All the concerned matching pursuit algorithms in the con-
text are to select one after another dictionary elements, but unfortunately
restricted to only the zero mean-frequency ones. In such a way, the high
frequency terms are generated by the GS orthogonalization process, in which
the order of applying GS process is a matter. What is desirable in frequency
decomposition, however, would be the principal components directly related
to the signal. They should be selected in terms of the greatest energy match-
ing to the complete dictionary elements possessing any frequency, or, in other
words, not be restricted to prescribed frequency levels. This question was also
raised by [25] who pointed out that the existing analytic frequency decom-
position, I.e., adaptive Fourier decomposition is not according to principal
frequency components, but constructed from representatives of the lowest
frequency. The present study points out how by using the complete dictio-
nary and performing POAFD the goal of the principal frequency component
may be achieved.

The writing plan of this paper is as follows. In §2 we establish the notion
of mean-frequency and prove some basic results. Mean-frequency is used to
measure the total amount, or degree level, of frequencies that an analytic
signal contains. In §3 we give a concise summary but detailed analysis of
the most commonly concerned matching pursuit algorithms. The analyzed
algorithms include AFD, GA, OGA, POAFD and n-Best. We establish an
order between them in accordance with their re-constructing efficiencies. §4
is devoted to a detailed study of POAFD over the complete Szegö dictionary.
In §5 we study convergence rates in relation to the multiple Szegö kernels
and the Laguerre systems. The main results include that, as a generalized
form of the Riemann-Lebesgue Lemma, ⟨f, ek,a⟩ tends to zero with the order
O(n−σ) for functions f in the Hardy-Sobolev space of order σ > 0; and as for
the Fourier series, the Fourier-Laguerre series in the σ-Hardy-Sobolev space
is of the same convergence rate O(n−σ). In §6 we prove existence of the n-
Best approximation with the complete Szegö kernel dictionary. The existence
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cannot be deducted from the existing results for RKHSs. We also discuss the-
oretical and practical algorithms of the n-Best solutions. §7 contains a great
number of experiments for comparison between the re-construction efficien-
cies of AFD, GA, OGA, POAFD, and n-Best over, respectively, the Szegö
and the complete Szegö dictionaries, as well as with the Unwinding Blaschke
expansion. They stand as a significant integration part of the paper. The
experiments may be divided into two types, of which one is to verify the the-
oretical ordering of strongness of the concerned matching pursuit algorithms;
and the other is to show strongness of the complete dictionary itself: The
complete Szegö dictionary with weaker algorithms may be stronger than the
Szegö dictionary used with stronger type algorithms. In §8 conclusions and
comments are drawn.

2. Mean-Frequency of signals in the Hardy space

It is basic knowledge that any Hardy space function f ∈ H2(D) has a
factorization f(z) = ϕ(z)s(z)o(z), where ϕ(z), s(z) and o(z) are, respectively,
the Blaschke product, the singular inner function, and the outer function
parts of f [13]. The factorization is unique up to unimodular constants. The
non-tangential boundary limits of the three functions have, respectively, the
forms (in almost everywhere sense on the boundary)

ϕ(eit) = eiθϕ(t), s(eit) = eiθs(t), o(eit) = ρo(t)e
iθo(t), (14)

where ρo(t) ≥ 0, and θϕ(t), θs(t) and θo(t) are real-valued. As proved in [26],

θ′ϕ ≥ 0, θ′s ≥ 0, a.e., (15)

and ∫ 2π

0

θ′ϕ(t)dt = N ≥ 0, (16)

where N is the number of zeros (can be zero or ∞) of the Blaschke product
ϕ. Moreover, with mild conditions on f to guarantee absolute continuity of
θo(t), there holds ∫ 2π

0

θ′o(t)dt = 0. (17)

The last equation shows that the frequency function of an outer function is
negative on a set of positive Lebesgue measures if the outer function itself is
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not identical to the zero function. Signals that have the property

θ′ϕ(t) + θ′s(t) + θ′o(t) ≥ 0, a.e., (18)

are called mono-components [26]. A Hardy space function may not be a
mono-component. However, any Hardy space function has a none-negative
mean-frequency, as defined in

Definition 3. For a Hardy space function f the quantity∫ 2π

0

θ′ϕ(t)dt+

∫ 2π

0

θ′s(t)dy (19)

is called the mean-frequency of f, denoted as MF(f).

We note that MF is additive in the sense MF(fg) = MF(f) + MF(g).
The phase derivative of a Möbius transform

τa(z) =
z − a

1− az

is easily computed. Let τ(eit) = eiψa(t). Then ψ′
a(t) is the Poisson kernel [13]

P|a|(e
i(s−t)), a = |a|eis.

Therefore,

MF(τa(z)) =
1

2π

∫ 2π

0

P|a|(e
s−t) = 1.

Due to the additivity, for n,m ≥ 0, MF(z
n) = n, and

MF(
m∏
k=1

z − ak
1− akz

) = m.

Since the Szegö kernel ka and Szegö dictionary elements ea, are outer func-
tions,

MF(ka(z)) = MF(ea(z)) = 0.

There exist standard models of functions in the Hardy space that form sys-
tems with increasing mean-frequencies. Let a = (a1, · · · , an) be an n-tuple
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of elements in the unit disc D. Associated with a there exists an order-n
Takenaka-Malmquist (TM) system,

{Bk}nk=1, Bk(z) = ek(z)
k−1∏
l=1

z − al
1− alz

.

Bk is also denoted as Ba1,··· ,ak to specify the dependence on a1, · · · , ak. The
n-tuple a can be extended to become an infinite sequence in D, and thus
define an order-∞ TM system {Bk}∞k=1. We use the notation {Bk} to denote
either a finite or an infinite TM system. In this paper, unless otherwise
specified, in an n-tuple or an infinite sequence of {ak}, multiplicities of a
number ak is allowed. A system {Bk} is, although not necessarily complete,
orthonormal in H2(D) = H2(∂D) with the inner product given by (3). It
is known that an infinite TM system is a basis of H2(D) if and only if the
sequence a satisfies the hyperbolic non-separability condition

∞∑
k=1

(1− |ak|) = ∞.

The Fourier basis {zk}∞k=0 is a particular case corresponding to all ak ≡ 0, k =
1, · · ·

We have the following result.

Theorem 1. MF(kn,a) = MF(en,a) = n, and MF(Bn) = n− 1.

Proof. We note that 1
(1−az)n+1 is an outer function. As a consequence of

the additivity, there holds

MF(kn,a) = MF(z
n) + MF

(
1

(1− az)n+1

)
= n.

As a consequence of MF(τal) = 1 and MF(ean) = 0, we have

MF(Bn) = MF

(
n−1∏
l=1

z − al
1− alz

)
= n− 1.
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Definition 4. A consecutive multiple Szegö kernel k̃a with respect to the m-
tuple (a1, · · · , am−1, a) is defined to be

k̃a(z) ≜ kl(a)−1,a(z),

where l(a), with a little abuse of notation, denotes the repeating number of a
in (a1, · · · , am−1, a). In particular, if there is no repeating, that is l(a) = 1,
then k̃a(z) = ka(z).

Computation gives

kl(a)−1,a = (−1)l(a)−1(l(a)− 1)!
zl(a)−1

(1− az)l(a)
.

In [27] the following result is proved.

Theorem 2. Let {Bk} be the TM system corresponding to any given finite or
infinite sequence (a1, · · · ). Then, up to unimodular multiplicative constants,
{Bk} is the consecutive Gram-Schmidt orthonormalization of the consecutive
multiple Szegö kernel k̃ak .

3. Algorithms Adopting Matching Pursuit Methodology: Analysis
and Comparison

Apart from n-Best approximation in Hilbert spaces with a BVC dictio-
nary, there exist a number of iterative type algorithms adopting the matching
pursuit methodology. These algorithms have common, as well as different
features and individual effectiveness in terms of the reconstruction of signals.
In this section, we review and analyze AFD, GA, OGA, and POAFD. With
a criterion, we compare them and give them an order in terms of their recon-
struction efficiencies. Among the four methods, AFD and POAFD belong to
the same class (the AFD type), and GA and OGA belong to another (the
greedy type). The AFD type is based on delicate complex and harmonic
analysis aiming at frequency decomposition and attainability of the supreme
energy matching pursuit, while the greedy type is mostly in the general func-
tional analysis context applicable to a Hilbert space with any dictionary. The
AFD type is a generalization of Fourier theory, applicable for the reproducing
kernel Hilbert space setting, having generalizations to multivariate functions
(several complex variables and Clifford algebra variables) with vector- and
matrix-values [6, 11, 12, 15]. We below concentrate on the basic unit disc
context.

12



3.1. Adeptive Fourier Decomposition: AFD [28]

Let (H,D) = (H2(D), {ea}a∈D). It is proved in [3] that D is a dictionary
in H2(D) satisfying BVC. For f ∈ H2(D), f1 = f, as a consequence of BVC,
one can find

a1 = argmax{|⟨f1, eb⟩| : b ∈ D},
and

∥f − ⟨f1, ea1⟩ea1∥2

is hence minimized over all one-dimensional linear spaces generated by eb, b ∈
D. Define Define, for k ≥ 2,

fk(z) =
fk−1(z)− ⟨fk−1, eak−1

⟩eak−1
(z)

z−ak−1

1−ak−1z

,

and select

ak = argmax{|⟨fk, eb⟩| : b ∈ D}. (20)

We call fk the reduced remainder, being the image of the ak-generalized back-
ward shift operator to fk−1. It can be shown, inductively, fk ∈ H2(D), and

f(z) =
k∑
l=1

⟨fl, eal⟩Bl(z) + fk+1(z)
k∏
l=1

z − al
1− alz

, (21)

where {Bl}kl=1 is the k-TM system defined by (a1, · · · , ak). We note that the
above procedure allows multiplicity of the parameter ak selection. We note
that the generalized backward shifts automatically generate the orthonormal
k-TM system {Bl}kl=1. The orthogonality relations imply the useful relations

⟨fl, eal⟩ = ⟨f †
l , Bl⟩ = ⟨f,Bl⟩, (22)

where

f †
l ≜ f −

l−1∑
j=1

⟨fj, eaj⟩Bj(z) = fl(z)
l−1∏
j=1

z − aj
1− ajz

(23)

is the l-th-(AFD) orthogonal remainder. We note that from the first identical
relation in (23) the l-th-(AFD) orthogonal remainder f †

l (z) is orthogonal with
all the terms Bj, j < l; and, from the second identical relation in (23),

l−1∑
j=1

⟨fj, eaj⟩Bj(z)

13



is an interpolation rational function of f at the points a1, · · · , al−1.

It turns out that the partial sums converge to the original function f [3].

f(z) =
∞∑
l=1

⟨fl, eal⟩Bl(z).

We will the convergence rates in the latter part of this section.

3.2. Greedy Algorithm: GA [1, 2, 29]

Greedy algorithm is applicable to a general Hilbert space H with a dic-
tionary D. To compare it with other matching pursuit algorithms we assume
that D satisfies BVC.

Let f ∈ H, and g1 = f. The first matching pursuit step is the same as
AFD: Owing to BVC we can select

q1 = argmax{|⟨g1, Ep⟩| : p ∈ E}. (24)

There holds
f = ⟨f1, Eq1⟩Eq1 + g2.

Since g2 is orthogonal with Eq1 , we have

∥f∥2 = |⟨f1, Eq1⟩|2 + ∥g2∥2.

Due to the maximal selection of q1 in (24) the remaining energy in g2 is
minimized. Iteratively, define gk to be the k-th iterative remainder given by

f =
k−1∑
l=1

⟨gl, Eql⟩Eql + gk, (25)

where

ql = argmax{|⟨gl, Ep⟩| : p ∈ E}, l = 1, · · · , k − 1. (26)

We note that for each l = 1, · · · , k, the remainder gl is orthogonal with the
last Eql−1

. There follows

∥f∥2 = |⟨g1, Eq1⟩|2 + |⟨g2, Eq2⟩|2 + ∥g3∥2

=
k−1∑
l=1

|⟨gl, Eql⟩|2 + ∥gk∥2.
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The energy of gk decays to zero, and, as a consequence,

f =
∞∑
l=1

⟨gk, Eqk⟩Eqk . (27)

3.3. Orthogonal Greedy Algorithm: OGA [1, 2, 29]

We are under the same assumptions as for GA: We have a pair (H,D),
where D = {Eq}, q ∈ E , is a dictionary of H satisfying BVC. Let f ∈ H and
h1 = f. The first parameter selection is the same as that for AFD and GA:
BVC implies that we are able to select

q1 = argmax{|⟨h1, Ep⟩| : p ∈ E}.

There follows then

h2 = f − Proj{Eq1}
(f) = g2 ⊥ Eq1 ,

where we adopt the notation ProjA(f) for the orthogonal projection of f
into the linear span of the functions in A. We also use the notation QA ≜
I − ProjA = ProjA⊥ . QA is also called the Gram-Schmidt orthogonalization
operator (GS operator) with respect to the function set A.

We select

q2 = argmax{|⟨h2, Ep⟩| : p ∈ E}. (28)

Since h2 = g2, this maximal selection principle is the same as for GA. Note
that Eq1 and Eq2 are not necessarily orthogonal. Define the 3rd orthogonal
remainder

h3 = f − Proj{Eq1 ,Eq2}
(f).

The Hilbert space property implies

∥h3∥ ≤ ∥g3∥. (29)

We will refer to this fact as “OGA is superior to GA”, or say that as a match-
ing pursuit algorithm “OGA is stronger than GA”. Proceeding like this, we
obtain the selections {Eq1 , · · · , Eqk−1

} and formulate the k-th remainder hk
with the relation

f = Proj{Eq1 ,··· ,Eqk−1
}(f) + hk, (30)

15



where

ql = argmax{|⟨hl, Ep⟩| : p ∈ E}, l = 1, · · · , k − 1. (31)

Consecutively, we select

qk = argmax{|⟨hk, Ep⟩| : p ∈ E}.

It may be proved that ∥hk∥ → 0 as k → ∞. As a consequence, there holds

f = lim
k→∞

Proj{Eq1 ,··· ,Eqk
}(f) =

∞∑
l=1

⟨f, Eq1,··· ,ql⟩Eq1,··· ,ql ,

where (Eq1 , Eq1,q2 , · · · , Eq1,··· ,ql) is the consecutive GS orthogonalization of
(Eq1 , Eq2 , · · · , Eql).We note that like GA under OGA the selected parameters
have no multiplicity.

3.4. Pre-Orthogonal Adaptive Fourier Decomposition: POAFD

As for GA and OGA we assume that H is a general Hilbert space with
a BVC dictionary D = {Eq}, q ∈ E . Since we will involve multiple kernels,
we assume Eq to be differentiable with respect to q up to the needed orders.
When q is a vector, existence of directional derivatives is assumed.

The first step matching pursuit is again the same as that for AFD, GA,
and OGA:

q1 = argmax{|⟨f, Ep⟩| : p ∈ E}.

The selection of the second parameter q2 now is different from that for GA
and OGA (the latter two being the same at the q2 selection):

q2 = arg sup{|⟨f, Eq1,q⟩| : q ∈ E}, (32)

where Eq1,q is defined by the relation that (Eq1 , Eq1,q) is the GS orthonormal-
ization of (Eq1 , Ẽq). The function Eq1,q is unique up to a unimodular complex
multiplicative constant. Owing to this step the algorithm is called “pre-
orthogonal”: The orthogonalization is done prior to the maximal selection.
In general, the POAFD maximal selection principle is

qn = arg sup{|⟨f, Eq1,··· ,qn−1,q⟩| : q ∈ E}, (33)

16



where (Eq1 , Eq1,q2 , · · · , Eq1,··· ,qn−1 , Eq1,··· ,qn−1,q), regarded as TM system gen-
erated by D in H, is the consecutive GS orthogonalization of

(Eq1 , Ẽq2 , · · · , Ẽqn−1 , Ẽq).

The k-th POAFD remainder denoted as hk†, is defined through

f =
k−1∑
l=1

⟨f, Eq1,··· ,ql⟩Eq1,··· ,ql + hk†, (34)

where the parameters are selected according to the POAFD maximal selec-
tion principle (33). Both being orthogonal remainders, the h†k’s are different
from the hk’s for the latter are orthogonal remainder for OGA defined by
(30) depending on the parameters selected according to OGA. POAFD was,
in fact, suggested by the relation (22) in AFD in the Hardy space setting. In
fact, writing QẼq1 ,··· ,Ẽql

briefly as Qq1,··· ,ql , due to its properties as a projec-

tion, there holds

⟨f, Eq1,··· ,ql⟩ = ⟨f,Qq1,··· ,ql−1
Eq1,··· ,ql⟩ = ⟨hl†, Eq1,··· ,ql⟩,

which is (22) in which h†l was written as f †
l to indicate its connection with

the reduced AFD remainder fl. The coefficients in (34) can also be written
in the following forms 〈

f,
Qq1,··· ,qk−1

(Ẽqk)

∥Qq1,··· ,qk−1
(Ẽqk)∥

〉

=

〈
Qq1,··· ,qk−1

(f),
Qq1,··· ,qk−1

(Ẽqk)

∥Qq1,··· ,qk−1
(Ẽqk)∥

〉

=

〈
Qq1,··· ,qk−1

(f)

∥Qq1,··· ,qk−1
(Ẽqk)∥

, Eqk

〉
. (35)

As a reformulation of (22) this exhibits that, in a general Hilbert space with
a BVC dictionary, POAFD is an analogous algorithm to Core AFD for the
Hardy space. In such formation, in particular,

Qq1,··· ,qk−1
(f)

∥Qq1,··· ,qk−1
(Ẽqk)∥

17



has the same role as the k-th reduced remainder, being obtained in the Hardy
space case through the generalized backward shift operators. Adopting the
notation for the classical TM system,

Bqk
k ≜

Qq1,··· ,qk−1
(Ẽqk)

∥Qq1,··· ,qk−1
(Ẽqk)∥

can be said from the TM system in the context. And

Qq1,··· ,qk−1
(f)

is the k-th orthogonal remainder with respect to the POAFD selected pa-
rameters q1, · · · , qk−1. The relation (35) in particular, shows that the POAFD
maximal selection principle corresponding to (33) is performable.

For all the four types of matching pursuit algorithms, we have the follow-
ing fundamental results [1, 2, 6, 29, 30].

Theorem 3. Corresponding to the four different types (or contexts) of pa-
rameter maximal selection principles, namely (20), (26), (31), and (33), the
four remainders f †

k , gk, hk and h
†
k defined respectively through (23), (25), (30),

and (34), all tend to zero in their respective Hilbert norms. Hence the corre-
sponding partial sums all converge to the originally given signal f. Moreover,
if f belongs to

HM = {f ∈ H : ∃{qk} ⊂ E , f =
∞∑
k=1

ckEqk ,
∞∑
k=1

|ck| ≤M},

then the norm of each of the above four types of k-remainders is dominated
by M√

k
.

Remark 2. The rate O( 1√
n
) of convergence is valid for all matching pursuit

algorithms [29]. The reference [29] constructs concrete examples to show
that the convergence rate cannot be improved. Existence of such examples
may also be asserted from the Karhunen-Loeve (KL) expansions. In fact,
the KL expansion of the Brownian bridge, as an example, can be precisely
estimated by

E
[
∥B − Sn∥2L2[0,1]

]
=

∞∑
j=n+1

1

π2j2
∼ 1

π2n

18



(page 206 of [31]). This estimation shows that there exist sample paths of
Brownian bridge whose eigenfunction expansions have convergence rates as
worse as O( 1√

n
). On the other hand, due to the optimality of the KL ex-

pansion over all orthonormal expansions, there must exist matching pursuit
expansions whose convergence rates are as worse as O( 1√

n
) as well.

Efficiencies of the individual matching pursuit algorithms cannot be well
compared in general. The parameters that give rise to the best matching
pursuit may not be unique. The step by step optimality does not accumu-
late, and finally may not result in the overall optimality. Nevertheless, we
can still draw a comparison under an intuitive criterion. We will first analyze
the optimality of POAFD.

By using the GS operator, there holds, for q ̸= q1,

Eq1,q =
Eq − ⟨Eq, Eq1⟩Eq1

∥Eq − ⟨Eq, Eq1⟩Eq1∥
=

QEq1
(Eq)√

1− |⟨Eq, Eq1⟩|2
.

Since QEq1
is self-adjoint, there follows

⟨f, Eq1,q⟩ =
⟨f,QEq1

(Eq)⟩√
1− |⟨Eq, Eq1⟩|2

=
⟨QEq1

f, Eq⟩√
1− |⟨Eq, Eq1⟩|2

.

Replacing h2 = QEq1
f, we have

sup
q

|⟨f, Eq1,q⟩| = sup
q

|⟨h2, Eq1,q⟩|

= sup
q

| ⟨h2, Eq⟩√
1− |⟨Eq, Eq1⟩|2

|

≥ sup
q

|⟨h2, Eq⟩|. (36)

Due to the continuity, this argument is also valid for the limiting case q = q1.
Recalling (32), the last inequality shows that the POAFD energy matching
is superior to that for OGA given in (28). As a consequence we have

∥h†3∥ ≤ ∥h3∥. (37)

In the analyzed cases with the convention f = f †
1 = g1 = h1 = h†1, we

have g2 = h2, f
†
k = h†k, k ≥ 3. It is observed that examples for which the
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strict inequality signs in (29) or (37) hold may be constructed. The above
argument may be generalized: For hk being in the orthogonal complement
of span{B1, · · · , Bk−1},

⟨f,Bq
k⟩ = ⟨hk,

Qq1,··· ,qk−1
Eq√

1−
∑k−1

l=1 |⟨Eq, Bl⟩|2
⟩

= ⟨hk,
Eq√

1−
∑k−1

l=1 |⟨Eq, Bl⟩|2
⟩

=
⟨hk, Eq⟩√

1−
∑k−1

l=1 |⟨Eq, Bl⟩|2
.

In the next inequality-equality chain the left-end is the maximal selection
principle of OGA, and right-end is for POAFD, showing that POAFD is
superior to OGA.

sup{|⟨hk, Eq⟩| | q ∈ E}

≤ sup{ |⟨hk, Eq⟩|√
1−

∑k−1
l=1 |⟨Eq, Bl⟩|2

| q ∈ E}

= sup{|⟨f,Bq
k⟩| | q ∈ E}.

Let, in general, Algorithm 1 and Algorithm 2 be among the concerned
algorithms AFD, GA, OGA and POAFD, etc. If there exists a positive
integer k0 such that

(i): for any signal f the energies of the l-remainders for l < k0 of the
two algorithms can be made to be the same through their respective
optimal matching pursuit selections; and

(ii): the energies of the k0th remainder of Algorithm 1 are not larger than
those of Algorithm 2, and for some particular signals f strictly less
than those of Algorithm 2,

then we say that Algorithm 1 is superior to (or stronger than) Algorithm
2. In this case we write Algorithm 1 ≥ Algorithm 2.
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Theorem 4. For any Hilbert space with a dictionary satisfying BVC the
associated algorithms satisfy

POAFD ≥ OGA ≥ GA.

When the n-Best approximation exists, there holds

n− Best ≥ any matching pursuit algorithm.

4. Pre-Orthogonal Adaptive Fourier Decomposition with the Com-
plete Szegö Dictionary

This section will be devoted to a detailed study of POAFD on the com-
plete Szegö dictionary. Recall that in (8) and (9) we defined the multiple
kernel kn,a and their normalizations, the dictionary elements en,a. The Szegö
complete dictionary is denoted D̃. The quantity of the norm of kn,a is com-
puted as follows.

Lemma 1. ∥∥∥∥( ∂

∂ā

)n
ka(z)

∥∥∥∥2
=

n∑
m=0

Cm
n n!

(2n−m)!

(n−m)!
(aā)n−m(1− āa)m−2n−1. (38)

Proof. ∥∥∥∥( ∂

∂ā

)n
ka(z)

∥∥∥∥2
=

〈(
∂

∂ā

)n
ka(z),

(
∂

∂ā

)n
ka(z)

〉
=

(
∂

∂a

)n〈(
∂

∂ā

)n
ka(z), ka(z)

〉
=

(
∂

∂a

)n(
∂

∂ā

)n
ka(a).
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Through induction, we can show(
∂

∂ā

)n
ka(a) =

n!an

(1− āa)n+1
.

Therefore, (
∂

∂a

)n(
∂

∂ā

)n
ka(a)

=

(
∂

∂a

)n(
n!an

(1− āa)n+1

)
=

n∑
m=0

Cm
n (n!a

n)(m)[(1− āa)−n−1](n−m)

=
n∑

m=0

Cm
n n!

(2n−m)!

(n−m)!
(aā)n−m(1− āa)m−2n−1

= (2n)!
|a|2n

(1− |a|2)2n+1
+ · · · . (39)

Lemma 2. Let f ∈ H2(D). There holds for all |a| < 1 uniformly

lim
n→∞

|⟨f, en,a⟩|(z) = 0. (40)

Proof. For any ε > 0, due to L2-convergence of Fourier series, there exists
a polynomial h(z) such that

∥f − h∥ < ε.

Denote by N the degree of the polynomial h. When n > N, in view of the
Cauchy-Schwarz inequality and (12), there holds for any a ∈ D

|⟨f, en,a⟩| ≤ |⟨f − h, en,a⟩|+ |⟨h, en,a⟩|
< ε+ |⟨h(z), en,a⟩|

= ε+

〈
h(z),

(
∂
∂ā

)n
ka(z)

∥
(
∂
∂ā

)n
ka(z)∥

〉
= ε+

1

∥
(
∂
∂ā

)n
ka(z)∥

〈
h(z)(n), ka(z)

〉
= ε.
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Lemma 3. For f ∈ H2(D) there holds uniformly for n ∈ N

lim
|a|→1

|⟨f, en,a⟩| = 0. (41)

Proof. Given ε > 0. Due to Lemma 2, we can restrict ourselves to verifying
the convergence for n ≤ N. Since the span of the parametrized Szegö kernels
is dense in the whole space, the verification is further reduced to a Szegö
kernel. For any but fixed b ∈ D,∣∣∣∣〈kb,

(
∂
∂ā

)n
ka

∥
(
∂
∂ā

)n
ka∥

〉∣∣∣∣
=

1

∥
(
∂
∂ā

)n
ka∥

〈
Kb,

(
∂

∂ā

)n
ka

〉
=

1

∥
(
∂
∂ā

)n
ka∥

∣∣∣∣( ∂

∂ā

)n
ka(b)

∣∣∣∣
≤ (1− |a|2)n+ 1

2√
(2n)!|a|n

n!|b|n

|(1− āb)|n+1

(using the m = 0 term in (39))

≤ (1− |a|2)n+ 1
2√

(2n)!|a|n
n!|b|n

(1− |b|)n+1
→ 0, as |a| → 1.

Lemma 2 and Lemma 3 together show that the complete dictionary sat-
isfies BVC:

Theorem 5. For f ∈ H2(D) there holds

lim
|a|→1 or n→∞

|⟨f, en,a⟩| = 0. (42)

In the last section, we deduced that in any Hilbert space with a BVC
differentiate dictionary GA, OGA and POAFD can be performed. Owing to
Theorem 5, taking H to be the Hardy space in the disc, and D̃ = {Eq}, q ∈ E ,
the complete Szegö dictionary, where

E = {q ∈ N×D = {(n, a) : n ∈ N, a ∈ D}

and
Eq = en,a,
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we conclude that GA, OGA, and POAFD can be performed with respect to
the Szegö complete dictionary.

The general theory of POAFD especially implies

Theorem 6. For any m− 1 previously given distinguished 2-tuples

(n1, a1), · · · , (nm−1, am−1),

each in N×D, there holds

lim
|a|→1 or n→∞

|⟨f,Bkn,a
m ⟩| = 0, (43)

where B
knm,am
m is the Hardy space function, unique up to unimodular multiple

constants, characterized by the condition that

(B
kn1,a1
1 , · · · , Bknm−1,am−1

m−1 , Bknm,am
m )

is the GS orthonormalization of (B
kn1,a1
1 , · · · , Bknm−1,am−1

m−1 , k̃nm,am). We note
that POAFD through the multiple kernel notion induces the completion of the
dictionary in use. In our case, the dictionary in use by itself is a complete
dictionary, whose completion, therefore, remains as just the same dictionary.
As a consequence, there exists (nm, am) ∈ N×D such that

(nm, am) = argmax{|⟨f,Bkn,a
m ⟩| | (n, a) ∈ N×D}. (44)

The system {Bkn,a
m } has the role as the TM system made by the multiple

Szegö kernels, where they can be further specified by

Bkn,a
m =

Q(n1,a1),··· ,(nm−1,am−1)kn,a
∥Q(n1,a1),··· ,(nm−1,am−1)kn,a∥

=
kn,a −

∑m−1
l=1 ⟨kn,a, Bl⟩Bl

∥kn,a −
∑m−1

l=1 ⟨kn,a, Bl⟩Bl∥

=
en,a −

∑m−1
l=1 ⟨en,a, Bl⟩Bl

∥en,a −
∑m−1

l=1 ⟨en,a, Bl⟩Bl∥
.
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5. Behaviour of Multiple Szegö Kernel and Laguerre System in
Hardy-Sobolev Space

For σ > 0, denoted by H2
σ(D) the order-σ Hardy-Sobolev space:

H2
σ(D) = {f(z) =

∞∑
n=0

cnz
n :

∞∑
n=0

|(1 + nσ)cn|2 <∞}.

The space is briefly denoted H2
σ. For f ∈ H2

σ, define

∥f∥H2
σ
≜

(
∞∑
n=0

|(1 + nσ)cn|2
) 1

2

.

H2
σ is a subset of H2, being, by itself, a reproducing kernel Hilbert space. We

will consider in this section expansions of f ∈ H2
σ by multiple Szegö kernels

in the norm of H2. By definition, f ∈ H2
σ means that f has up to the σ-th

derivatives (σ can be non-integer) of which all are of finite energy. Below we
restrict ourselves to the integer σ cases.

Theorem 7. If f ∈ H2
σ, where σ is a non-negative integer, then

|⟨f, kn,a
∥kn,a∥

⟩| ≤ C(σ, a)
1

nσ
∥f∥H2

σ
, (45)

where C(σ, a) is a constant depending only on σ and a.

If a = 0, then kn,a

∥kn,a∥ = zn, and the theorem reduces to a known classical

result. In the general multiple kernel case, the proof uses estimates of the
kernel function.

Proof. For f ∈ H2
σ,

|⟨f, kn,a
∥kn,a∥

⟩|

=
1

∥kn,a∥
|⟨f, kn,a⟩|

=
1

∥kn,a∥
|⟨f (σ), kn−σ,a⟩|

≤ ∥kn−σ,a∥
∥kn,a∥

∥f∥H2
σ
.
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By
(
∂
∂ā

)n
ka(a) =

n!an

(1−aa)n+1 , we get

∥kn−σ,a∥2

∥kn,a∥2

=
kn−σ,a(a)

kn,a(a)

=

(
∂
∂ā

)2(n−σ)
ka(a)(

∂
∂ā

)2n
ka(a)

=

[2(n−σ)]!a2(n−σ)

(1−aa)2(n−σ)+1

(2n)!a2n

(1−aa)2n+1

=
(2n− 2σ)!

(2n)!

(
1− aa

a

)2σ

.

By Stirling’s formula,

(2n− 2σ)!

(2n)!

(
1− aa

a

)2σ

=

√
2π(2n− 2σ)(2n−2σ

e
)2n−2σ√

2π(2n)(2n
e
)2n

(
1− aa

a

)2σ

=
1

22σ
(n− σ)2n−2σ+ 1

2

n2n+ 1
2

e2σ
(
1− aa

a

)2σ

≤ 1

22σ
e2σ
(
1− aa

a

)2σ

3−
σ
n
(2n+ 1

2
) 1

n2σ
.

Hence,

|⟨f, kn,a
∥kn,a∥

⟩|

≤ 1

2σ
eσ
(
1− aa

a

)σ
3−

σ
n
(n+ 1

4
) 1

nσ
∥f∥H2

σ

tending to zero with the rate 1
nσ .

When all the parameters an are identical to 0 the system of the normalized
multiple kernels is a half of the Fourier orthonormal system. When all an are

26



identical to some a ̸= 0, then the multiple kernels kn,a form a complete but
un-orthogonal system. The GS orthonormalization of such multiple kernels
forms the complete orthonormal Laguerre System

Bn,a(z) =

√
1− |a|2
1− āz

(
z − a

1− āz
)n−1, n = 1, · · ·

(see Appendix of [27]). A Laguerre System is a particular TM system in
which all an are equal to a non-zero a ∈ D.

It is a classical result that Fourier series of functions in the H2
σ have con-

vergence rate O(n−σ). This result is available for Laguerre Systems as well.

Theorem 8. For a function f in the Sobolev space H2
σ there holds

∥f −
∞∑
l≤n

⟨f,Bl,a⟩Bl,a∥ ≤ Ca
1

nσ
∥f∥H2

σ
. (46)

Proof. Performing change of variable eiθ = eit−a
1−āeit , simple computation gives

dt = |1−āeit|2
1−|a|2 dθ and

⟨f,Bn,a⟩

=
1

2π

∫ 2π

0

f(eit)

√
1− |a|2

1− ae−it
(
e−it − ā

1− ae−it
)n−1dt

=
1

2π

1√
1− |a|2

∫ 2π

0

f(eit)(1− āeit)e−i(n−1)θdθ

=
1

2π

1√
1− |a|2

∫ 2π

0

f(
eiθ + a

1 + āeiθ
)(1− ā

eiθ + a

1 + āeiθ
)e−i(n−1)θdθ

=
1

2π

1√
1− |a|2

∫ 2π

0

Fa(θ)e
−i(n−1)θdθ

=
1√

1− |a|2
⟨Fa, en,0⟩,

where Fa(θ) = f( e
iθ+a

1+āeiθ
)(1 − ā eiθ+a

1+āeiθ
). Since |a| has a positive distance to 1,
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we have ∥Fa∥H2
σ
≃ ∥f∥H2

σ
. Hence, through a brutal estimation,

∥
∞∑
l≥n

⟨f,Bl,a⟩Bl,a∥2

=
∞∑
l≥n

|⟨f,Bl,a⟩|2

=
1√

1− |a|2

∞∑
l≥n

|⟨Fa, en,0⟩|2

≤ 1√
1− |a|2

1

(1 + nσ)2

∞∑
l≥n

|(1 + lσ)⟨Fa, en,0⟩|2

=
1√

1− |a|2
1

(1 + nσ)2
∥Fa∥2H2

σ

⪅ Ca
1

(1 + nσ)2
∥f∥2H2

σ
.

Below we provide the explicit transformation matrices between the n-
Laguerre system and the corresponding first n multiple kernels.

Proposition 1. For arbitrary but fixed n and a ∈ D, a ̸= 0, denote by the
row matrix B = {Bl,a}nl=1 the n-Laguerre system, and the row matrix K =
{kl,a}nl=1 the corresponding n-tuple of multiple kernels. Then the invertible
transformation matrix T such that K = T B is given by T = {ckj}n×n,

ckj =


(j + 1)!

(k − j)!

ak−j

(1− |a|2)k+ 1
2

, j ≤ k ≤ n,

0, n ≥ j > k,

and B = T −1K with T −1 = {dkj}n×n,

dkj =

 (−a)k−j(1− |a|2)j− 1
2

k!(k − j)!
, j ≤ k ≤ n,

0, n ≥ j > k.
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Proof. Since span B = span K and Bl,a are orthonormal, we have kk,a =∑k
j=1 ckjBj,a , where ckj = ⟨kk,a, Bj,a⟩. For j ≤ k ≤ n,

ckj = ⟨Bj,a, kk,a⟩

=

〈√
1− |a|2
1− āz

(
z − a

1− āz
)j−1,

zk−1

(1− āz)k

〉
=

1

2π

∫ 2π

0

√
1− |a|2

1− āeit
(
eit − a

1− āeit
)j−1 e−i(k−1)t

(1− ae−it)k
dt

=
1

2π

√
1− |a|2

∫ 2π

0

(eit − a)j−1

(1− āeit)j
1

(eit − a)k
deit

=
1

2π

√
1− |a|2

∫
∂D

(ξ − a)j−1

(1− āξ)j
1

(ξ − a)k
dξ

=
1

2π

√
1− |a|2

∫
∂D

1

(1− āξ)j
1

(ξ − a)k+1−j dξ

=
j!

(k − j)!

āk−j

(1− |a|2)k− 1
2

.

For n ≥ j > k, Bj,a⊥span B = span K, and thus Bj,a⊥kk,a. We hence have
ckj = 0, j > k.

To compute the entries dkj of the inverse matrix T −1, by using mathe-

matical induction, we have dkj =
(−a)k−j(1−|a|2)j−

1
2

k!(k−j)! , j ≤ k, and dkj = 0, j > k.

6. n-Best Approximation With the Complete Szegö Kernel Dictio-
nary: Existence and Algorithm

Since derivatives of parameterized Szegö kernels and multiple Szegö ker-
nels are still multiple Szegö kernels, the completion of the Szegö complete
dictionary {em,a},m = 0, 1, 2, · · · , a ∈ D, is itself. Hence the n-Best problem
with (13) returns to one with (6).

Theorem 9. In the setting of the Hardy H2 space with the complete Szegö
dictionary there exist solutions to the n-Best approximation problem.

It is noted that the n-Best approximation with the complete Szegö dictio-
nary is different from that with the Szegö kernel dictionary. For the former,
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the total number of the involved multiple kernels is required not exceeding n,
and for the latter, the sum of all the multiples of the involved parameters is
required not exceeding n. The theorem cannot be proved by directly invoking
the existing n-Best results [7, 18, 24]. We outline a proof by referring to the
one in [7].

Proof. Let f be a fixed function in the Hardy space. We assume that f
is not identical to any j-Best approximation for j < n, and hence exactly
n parameters are necessary to get an n-Best approximation. In this case,
suppose that we have a sequence of n-tuples of parameter pairs(

(a
(l)
1 ,m

(l)
1 ), · · · , (a(l)n ,m(l)

n )
)
, l = 1, 2, · · · ,

such that the corresponding n-tuples of multiple kernels k
a
(l)
j ,m

(l)
j
, j = 1, · · · , n,

gives rise to, with the limit procedure l → ∞, the infimum of (6). We claim

that the integers m
(l)
j for j = 1, · · · , n and j = 1, 2, · · · , have to be bounded,

and the complex numbers a
(l)
j ’s for j = 1, · · · , n and j = 1, 2, · · · , have to be

in a compact disc contained in D. Once these claims are proved, by invoking
the Bolzano-Weierstrass Theorem on existence of a convergent subsequence
in the compact set we conclude existence of n-Best approximation in our
case.

The boundedness of m
(l)
j is assured through the argument employed in

the proof of Lemma 2. Next, by Proposition 1, each of the involved multiple
kernel k

a
(l)
j ,m

(l)
j

is a linear combination of the first m
(l)
j functions of the corre-

sponding Laguerre system. Then (a
(l)
1 ,m

(l)
1 ), · · · , (a(l)n ,m(l)

n ) altogether induce

n finite Laguerre systems of, respectively, the orders m
(l)
1 , · · · ,m

(l)
n . Put the

n finite Laguerre systems together and construct the equivalent orthonormal
system by using the GS process. The obtained orthonormal system is a fi-
nite TM system. The argument of the proof of the main result of [7] can be

adopted to obtain that any |a(l)j | tending to 1 along with l → ∞ will result in
that the sequence k

a
(l)
j ,m

(l)
j

having no contribution in the approximation, and

thus may be deleted. This concludes n parameters are unnecessary. This is
contradictory to the assumption at the beginning of the proof.

Remark 3. Since the Fourier system is contained in the complete Szegö dic-
tionary, the n-Best approximation to functions in H2

σ by the complete dictio-
nary has a convergence rate at least as good as O(n−σ). Taking into account
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the convergence rete O(n−1/2) for general matching pursuit algorithms, it is
natural to guess, but we are unable to prove so far, that the n-Best approxi-
mation in H2

σ by the complete dictionary has the convergent rate O(n−σ−1/2).

We hereby cite two types of algorithms for finding one or all the n-Best
solutions.

6.1. A global and theoretical algorithm for finding all the n-Best solutions

By a global method, we refer to finding all the global minimum solutions,
and, in particular, not being trapped in the local minimums. Such methods,
therefore, have to be theoretical. Since, as asserted, the m

(l)
j are altogether

bounded, say, by N, and all a
(l)
j are in a compact disc Dr, 0 < r < 1,

we reduce the problem to finding (km1,a1 , · · · , kmn,an) such that (mj, aj) ∈
{1, · · · , N} × Dr. This is to find all the global minimizers of the Lipschitz
target function defined in the compact set. There exist theoretical, as well as
practical methods to solve the type of problems in the optimization specialty.
See, for instance, [24, 32], and the references thereby.

6.2. A practical algorithm for finding an n-Best solution

Practically, by the Gaussian gradient type or other similar methods based
on local comparison of the target function values one may find an n-Best
solution. By local comparison, although there is no guarantee of finding a
global solution, it is practical and can often be used [20, 21, 22, 23]. We
hereby recommend a local comparison type method, Cyclic POAFD, with
theoretical clarity and computational simplicity. It can be used with any
dictionary [22].

Suppose we have an initial n-tuple of dictionary elements (e
q
(0)
1
, · · · , e

q
(0)
n
).

The n-tuple of parameters (q
(0)
1 , · · · , q(0)n ) may be obtained randomly, or

through an n-POAFD procedure. We rather use the kernels k
q
(0)
j

(pre-

dictionary) instead of using the dictionary elements e
q
(0)
j

to save the com-

putation of normalization. The idea is to improve the already obtained n-
tuple of parameters in one by one cyclic manner: At each iteration step we
replace a kernel already existing in the n tuple of kernels, and keep the other
n − 1 kernels unchanged. This cyclic procedure is performed continuously
until each of the n-tuple of parameters cannot be improved with respect to
a tolerant error threshold.
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7. Experiments

The experiments will select parameters in D which are expressed in polar
coordinates:

a =
x− 1

X
ei2π

y−1
Y , (49)

for x = 1, 2, . . . , X, and y = 1, 2, . . . , Y , where X, Y correspond to the radial
and angular discretization of the unit disc, respectively. We let X = 100,
Y = 100 in the following experiments. The abbreviations of the algorithms
with the specifications including the type of dictionary in use, the type of
matching pursuit algorithms, the iteration times, and whether it is n-Best
etc. are given in Table 1. For Complete POAFD as an example, we obtain
the partial sum series:

SK =
K∑
k=1

⟨gk, Bk⟩Bk, (50)

with the relative error given by

∥f − SK∥
∥f∥

. (51)

We take a similar definition to get the relative energy and relative error of
other methods. Below we use the following convention and notation: If for
a particular signal f the relative approximation error (51) of Algorithm 1 is
less than that of Algorithm 2, then we denote this fact by

Algorithm1(f) ≥ Algorithm2(f).

The simulations are performed in a MATLAB environment using the data
collected from the formula of the signal f(z), z = eit. The samples of f are

from tj =
2π(j−1)

100
, j = 1, 2, ..., 100. Six experiments are included.

Experiment 1. This experiment contains two lots of comparison of which
one is 3 iterations of, respectively, GA, OGA, POAFD and n-Best algorithm,
with respect to the Szegö kernel dictionary; and the other is the same but with
respect to the complete Szegö dictionary. The tested toy function f1 is given
by the finite Blaschke form

f1(z) =
5∑

k=1

ckB{b1,...,bk}(e
it), (52)
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p-GA p iterations of GA algorithm with the Szegö dictionary
p-OGA p iterations of OGA algorithm with the Szegö dictionary

p-POAFD p iterations of POAFD algorithm with the Szegö dictionary
p-Best p-Best approximation with the Szegö dictionary through some cycles

p-Complete GA p iterations of GA algorithm with the complete Szegö dictionary
p-Complete OGA p iterations of OGA algorithm with the complete Szegö dictionary

p-Complete POAFD p iterations of POAFD algorithm with the complete Szegö dictionary
p-Best Complete p-Best approximation with the complete Szegö dictionary through some cycles

p-unwinding p iterations of unwinding algorithm

Table 1:

Experiment 1
k bk ck
1 -0.4750 + 0.3050i -0.5861 - 0.04445i
2 -0.1800 + 0.7150i 0.2428 - 0.6878i
3 0.2600 - 0.7300i 0.4423 - 0.3309i
4 0.5400 + 0.3600i -0.2703 - 0.8217i
5 -0.4850 - 0.2150i -0.8085 + 0.3774i

Table 2:

Experiment 1 Fig.1.
3 iterations GA OGA POAFD 3-Best
relative error 0.4581 0.4314 0.4246 0.2613

Table 3: Relative error

Experiment 1 Fig.2.
3 iterations Complete GA Complete OGA Complete POAFD 3-Best Complete
relative error 0.2941 0.2733 0.2590 0.0671

Table 4: Relative error

where B{b1,...,bk} is the TM system

B{b1,...,bk} =

√
1− |ak|2
1− ākz

k−1∏
l=1

z − al
1− ālz

, a ∈ D, k = 1, 2, ...,

and t ∈ (0, 2π). The parameters (bk, ck), k = 1, 2, . . . , 5 are given in Table 2.
We note that 3-Best by using POAFD with the Szegö dictionary to create

the initial 3-tuple, and 3-Best Complete by using POAFD with the complete
Szegö dictionary to create the initial 3-tuple.

According to the relative error given in Table 3, and results in Figure 1,
we conclude that n-Best(f1) ≥ POAFD(f1) ≥ OGA(f1) ≥ GA(f1).

From Table 4, and result in Figure 2 we see that n-Best Complete(f1)
≥ Complete POAFD(f1) ≥ Complete OGA(f1) ≥ Complete GA(f1). The
order of superiority of the algorithms remains unchanged when using the
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Figure 1: 3 iterations with the Szegö dictionary.

complete dictionary, but by using the complete dictionary the approximation
is more accurate.

Comparing POAFD and Complete GA algorithm, results in Figure 3 and
from the relative error given in Table 3, 4 ,we conclude that Complete GA(f1)
≥ POAFD(f1).

Experiment 2. This experiment is to evaluate performs of POAFD with
the two dictionaries: the Szegö one and the complete Szegö one. The toy
function is still (52) but with the parameters (bk, ck), k = 1, 2, . . . , 5 given in
Table 4 that we note it f2.

From Table 6, and results in Figures 4, 5 we know that Complete POAFD
can give a good approximation to f through 9 iterations, while POAFD gives
an approximation at a similar level through 18 iterations. Hence, Complete
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Figure 2: 3 iterations with the complete Szegö dictionary.

Experiment 2
k bk ck
1 -0.5850+0.2930i -0.3861-0.0515i
2 0.4806+0.2513i -0.2802-0.7235i
3 0.2505-0.6823i 0.4505-0.4325i
4 -0.2005+0.6950i 0.2539-0.7136i
5 -0.4512-0.1825i -0.7562+0.4265i

Table 5:

Experiment 2
Fig.4. / Fig.5. POAFD Complete POAFD
K iterations K=1 K=4 K=18 K=1 K=4 K=9
relative error 0.7906 0.4259 0.0173 0.7306 0.1334 0.0173

Table 6: Relative error

POAFD(f2) ≥ POAFD(f2).
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Figure 3: 3 iterations of POAFD and Complete GA.

Experiment 3. This experiment is to evaluate performs of n-Best with the
two dictionaries: the Szegö one and the complete Szegö one. The toy function
is still (52) but with the parameters (bk, ck), k = 1, 2, . . . , 4 given in Table 5
that we note it f3.

We note that 8-Best by using POAFD with the Szegö dictionary to create
the initial 8-tuple, and 4-Best Complete by using POAFD with the complete
Szegö dictionary to create the initial 4-tuple.

From Table 6, and results in Figures 6, 7 we know that 4-Best Com-
plete POAFD can give a good approximation to f by 3 cycles, while 8-Best
POAFD gives an approximation at a similar level by 5 cycles. Hence, n-Best
Complete(f3) ≥ n-Best(f3).

Experiment 4. We note that unwinding Blaschke expansion is not a match-
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Figure 4: POAFD iterations with the Szegö dictionary.

Experiment 3
k bk ck
1 -0.4750+0.3050i -0.5861-0.4444i
2 0.3600-0.6300i 0.4423-0.3308i
3 0.5400+0.4600i -0.2702-0.8217i
4 -0.4850-0.2150i -0.7085+0.3773i

Table 7:

Experiment 3
Fig.6. / Fig.7. 8-Best POAFD 4-Best Complete POAFD
K iterations K=8 K=4
l cycles l=5 l=3

relative error 0.0224 0.0200

Table 8: Relative error
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Figure 5: POAFD iterations with the complete Szegö dictionary.

ing pursuit type algorithm, it, however, is of the same nature. As a very
effective signal analysis method we add it to the pool of comparison [33].
This experiment is to compare unwinding, Complete POAFD, and n-Best
algorithm, the signal is given by the samples of the following function

f4(z) =
(z4 − d1)(d2 − z)5

(d3 − z)3(d4 − z)2
,

where t ∈ (0, 2π). The parameters dk, k = 1, 2, . . . , 4 are given in Table 9.
We note that 2-Best Complete by using POAFD with the complete Szegö

dictionary to create the initial 2-tuple.
From Table 10, and results in Figure 8, it is seen that n-Best Complete(f4)

≥ Complete POAFD(f4) ≥ unwinding(f4).
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Figure 6: 8-Best approximation with the Szegö dictionary through 5 cycles.

Experiment 4
k dk
1 3.1017-2.5305i
2 -6.1205+2.3674i
3 -5.4678-2.2502i
4 -4.4217+7.6913i

Table 9:

Experiment 4 Fig.8.
2 iterations unwinding Complete POAFD 2-Best Complete
relative error 0.2113 0.0863 0.0082

Table 10: Relative error

Experiment 5. Using Complete POAFD algorithm to denoise a noisy sig-
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Figure 7: 4-Best approximation with the complete Szegö dictionary through 3 cycles.

nal, the data are collected from the chirp signal without noise

f(z) = ei
t2

π ,

where t ∈ (0, 2π). And the original signal is a noisy signal with additive
Gaussian white noise of f .

From the denoising effect given in Figure 9, we see Complete POAFD
may denoise noisy signals.

To summarize the experiments:

1. GA, OGA, POAFD (=AFD in HARDY), n-BEST with either the Szegö
or the complete Szegö dictionary, and unwinding have the signal recon-
struction efficiency following this order: n-Best Complete(f1) ≥ Complete

40



Figure 8: 2 iterations of unwinding, Complete POAFD and 2-Best Complete.

POAFD(f1) ≥ Complete OGA(f1) ≥ Complete GA(f1) ≥ POAFD(f1)
≥ OGA(f1) ≥ GA(f1), n-Best Complete (f3) ≥ n-Best(f3), and n-Best
Complete(f4) ≥ Complete POAFD(f4) ≥ unwinding(f4).

2. In spite of the ordering theoretically or experimentally proved, referring
to 1., experiments show that the differences between their efficiencies are
not much.

3. Experiments show that Complete GA(f1) ≥ POAFD(f1). A weaker al-
gorithm with the complete dictionary is usually stronger than a stronger
algorithm with a weaker dictionary, say the original Szegö dictionary. This
shows that it is the dictionary that is important.

4. Complete POAFD algorithm shows promising denoise effect.
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Figure 9: Denoising the chirp signal by Complete POAFD.

8. Conclusion

The necessity of the notion multiple kernels is justified by existence of
the natural question on n-Best kernel approximation, and by the desire for
principal frequency decomposition of signals. For the latter, the concept
mean-frequency is introduced. As the Fourier basis functions do, multiple
kernels can extract the same rates of decaying to zero of signals in the Sobolev
spaces. The work spells out the natural connections between the multiple
Szegö kernels and the Laguerre system. Well-posed-ness of n-Best approxi-
mation with the complete Szegö dictionary is proved. With any dictionary,
n-Best is the strongest, and POAFD is superior to all the other concerned
matching pursuit methods in the one by one manner. Precisely, it is proved
that the concerned matching pursuit methods from strong to weak are in the
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order n-Best, POAFD, OGA, and GA. Through concrete examples, we show
that the complete Szegö dictionary has great potential in sparse represen-
tation, for, especially, the weakest matching pursuit GA combined with the
complete dictionary can inspire greater efficiency than what POAFD with
the Szego dictionary does.

Future works include reducing the computational complexity and increas-
ing the speed of the algorithm process.
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