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ABSTRACT

Reputation plays a crucial role in social interactions by affecting the fitness of individuals
during an evolutionary process. Previous works have extensively studied the result of imitation
dynamics without focusing on potential irrational choices in strategy updates. We now fill this
gap and explore the consequence of such kind of randomness, or one may interpret it as an
autonomous thinking. In particular, we study how this extended dynamics alters the evolution of
cooperation when individual reputation is directly linked to collected payoff, hence providing a
general fitness function. For a broadly valid conclusion, our spatial populations cover different
types of interaction topologies, including lattices, small-world and scale-free graphs. By means
of intensive simulations we can detect substantial increase in cooperation level that shows a
reasonable stability in the presence of a notable strategy mutation.

1. Introduction
The emergence of cooperation in a group of self-interest actors is an intensively studied problem among

researchers originated from various academic fields [1, 2], including microbiology, ecology, economics, and social
sciences [3, 4, 5]. In natural world, both in animal kingdom and human societies, there are several exotic examples of
cooperation, such as food-sharing among vampire bats [6], or ’marine snow’ [7]. But cooperation is also essential to
address vital challenges of climate change or environmental protection [8, 9, 10, 11]. Despite of the collective benefit
for mutual cooperation, defection is still tempting in a social dilemma situation because it offers the highest individual
payoff for a defector [12].

Evolutionary game theory [13, 14] was proposed to address this problem where the various form of conflict
is described by some frequently studied games, including prisoner’s dilemma game (PDG) [15, 16, 17, 18, 19],
snowdrift game (SDG) [20, 21, 22], stag hunt game (SHG) [23, 24] and public goods game (PGG) [25, 26]. As
a key finding, the spatial setting of participants is an essential element to reach decent cooperation level even at
harsh conditions when defection is attractive otherwise. This observation launched a bloom of research activity where
different interaction graphs were studied systematically. Starting from the simplest lattice topology, the consequence
of random graph [27, 28, 29], small-world networks [30, 31, 32], scale-free networks [33, 34], or even more complex
interdependent and multiplex graphs were revealed [35, 36, 37, 38].

Beside spatial setting, alternative cooperation supporting elements are also identified, like various ways of
reciprocity, reputation [39, 40], punishment [41, 42, 43], exclusion [44, 45, 46, 47], reward [48], persistence [49, 50],
etc. Furthermore, to go beyond the simplest approach of binary strategy choice of unconditional strategies, more
sophisticated multi-strategy models enrich the diversity of individual actions. Just to mention a few, tit-for-tat [51, 52]
or win-stay-lose-shift strategy updates [53], but this research path also includes interactive diversity where the same
player behaves differently toward different neighbors [54].

We here focus on reputation, as a fruit of the most complex and distinctive activities in human society, that
extensively influences the individual and group choices during interactions [46, 55, 56, 57]. Bad reputation, for instance,
has serious consequences on individual success. The involved members are not popular in a society, but people with
low credit scores also have difficulties to apply for a loan in banks. In today’s increasingly digitized societies, personal
information has become more transparent, allowing people to access information about the reputation and social
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circles of their associates via social media, which allows people to gather reliable information about the willingness of
cooperation of others.

The other key element of our model is the microscopic dynamics, the way how a player changes strategy. A
reasonable choice is imitation which is a prevalent instinct observed among animals, and, of course, humans are no
exception [58]. Individuals often imitate those who surpass them in certain aspects, aiming to improve themselves
or reap greater rewards. In a particular example, students in modern societies diligently imitate the learning methods
and even lifestyle habits of high-achievers, aspiring to achieve academic success, just like their role models [59]. In a
recent related study, Zhang et al. investigated the influence of asymmetric comparison of fitness based on reputation
[60]. Undoubtedly, imitation serves as a common and representative rule for strategy updating, most of the literature
primarily focus on this aspect. However, it is important to acknowledge that human society is replete with “irrational
choices” or “sudden acts” where individuals do not rely solely on a single criterion to make strategic decisions[61, 62].
Hence, it remains unexplored how additional updating protocol, in parallel with the leading imitation process, affects
the collective behavior.

In previous works where the influence of reputation on cooperation was studied, researchers mostly focused on the
imitation rule without assuming additional microscopic effects. However, some earlier papers already highlighted that
individuals possess a certain probability of mutation or “exploration rate” besides inheriting the strategies of the parent
generation, to express the initiative and uncertainty in strategy selection [63, 64, 65]. Motivated by these observations,
we propose a new model to discuss the influence of reputation on the evolution of cooperation in spatial populations.
Initially, the reputation value of each individual is set to be a starting value which is then updated after each game
with neighbors. During microscopic dynamics, we combine the imitation process with a random individual strategy
mutation, which helps us to explore the potential consequences of irrational decision-making and psychological factors
in collective behavior.

The remaining of our paper is organized as follows. Section 2 describes our models and evolutionary dynamics in
detail. In Section 3, the simulation results showcase the influence of the imitation-mutation strategy update rule on the
evolution of cooperation compared to the traditional imitation rule. Section 4 gives comprehensive conclusions drawn
from this work.

2. Imitation-mutation model
Previous studies focusing on reputationmostly considered imitation as an individual strategy updating rule (referred

as IM in the following). To generalize and extend these microscopic dynamics, we propose an imitation-mutation
strategy update rule (referred as IM-MUTA). This protocol differs significantly from previous cases, as the introduced
mutation rate to some extent represents irrational choices made by humans. In this section, we mainly summarize the
details of our game model based on individuals with reputation mechanisms that is considered in individual’s payoff
which mostly determines strategy-updating process. First, we summarize those games where we study social dilemma
situations.

2.1. Social dilemma for PDG and SDG
In the PDG, each individual chooses between cooperation (C) or defection (D). In case of mutual cooperation, each

individual receives a payoff of R. For mutual defection, both players are punished by payoff P . When C andD players
meet, the former receives a payoff of S, while the latter enjoys the highest payoff of T . The rank T > R > P > S
defines a PDG, where defection is the better individual strategy independently of the other’s choice. In the context of
SDG, which uses the same strategies and payoff parametrization, the main difference is the T > R > S > P rank
of payoff elements. This subtle alteration in the payoff structure leads to an alternative Nash-equilibrium formed by a
C-D pair. In essence, a rational player adopts the opposite strategic stance represented by the partner in the realm of
SDG.

By following previous works we fixR = 1 and P = 0 parameter values and the remaining two free payoff elements
characterize the games. Without losing the essence of dilemmas we further reduce the number of free parameters and
we determine both T and S values by a single parameter. In particular, for PDG we use T = 1+ r1 and S = −r1, while
for SDG T = 1 + r2 and S = 1 − r2. Summing up, the corresponding payoff matrix is

M1 =
(

1 −r1
1 + r1 0

)

(1)
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Fig. 1: Schematic diagram of the imitation-mutation process and reputation mechanism. At t − 1 time, player ‘a‘ is a
cooperator while others, player ‘b‘, ‘c‘, and ‘d‘ are defectors. In the next step player ‘a‘ imitates the strategy of player ‘b‘
with probability 1 − m, while player ‘d‘ chooses random mutation with probability m. Meanwhile, the reputation index is
updated for both players as indicated.

for PDG, while theM2 matrix for SDG is

M2 =
(

1 1 − r2
1 + r2 0

)

. (2)

In both cases parameters r1 and r2 remain in 0 < r1 < 1, 0 < r2 < 1 interval. For both games the higher the r1 or r2
the greater the temptation to defect.

All individuals are arranged on a network where they interact with their neighbors and collect an accumulated
payoff Pi(t) at time t according to a payoff matrix described above.

2.2. Evolutionary dynamics
During an elementary step, we update not only the si strategy of individual i but also its Ri reputation. Suppose

that Ri = 0 at t = 0 time. Later this value may change depending on the actual strategy represented by the actor in the
latest step. In general, Ri is increased by a value � if player i becomes a cooperator and it is decreased by the same
amount in the reversed case. The time evolution of individual reputation can be summarized as

Ri(t) =

{

Ri(t − 1) + �, si(t) = C
Ri(t − 1) − �, si(t) = D .

(3)

Importantly, the above defined Ri value always remains in the 0 ≤ Ri ≤ 2 interval. Another key assumption of our
model is the reputation value affects the fitness level of players directly, hence it has straightforward impact on strategy
update. In particular, the total fitness of player i at time t is defined by

Fi(t) = Ri(t) × Pi(t) , (4)

where the accumulated Pi(t) payoff value is calculated from the interactions with neighbors according to the payoff
matrix defined by Eq. (1Social dilemma for PDG and SDGequation.2.1) or Eq. (2Social dilemma for PDG and
SDGequation.2.2).

The extended imitation-mutation dynamics is defined in the following way. With probability m the selected player
i will change its current strategy randomly independently of the state of the neighborhood, otherwise, with probability
1 − m, the player follows the standard imitation protocol and imitates the strategy of a randomly chosen neighbor j
with probabilityHi. This probability, as we noted, depends on the extended fitness values of involved partners:

Hi(t) =
1

1 + exp[(Fi(t) − Fj(t))∕K]
. (5)

HereFi(t),Fj(t) are the fitness of individual i and j, respectively and parameterK represents the noise level of imitation.
In the following, we use K = 0.7 value for the imitation process.
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To gain a more comprehensive view of the consequence of the extended dynamics and fitness function, we consider
two different social games, as described above, and apply various interaction topologies. In particular, to describe the
interactions between players we use square-lattice graphs with periodic boundary conditions, small-world (WS), and
scale-free (BA) networks. In the last two graphs, the average degree is <k> = 4 and <k> = 6, respectively. In all
cases, we consider a population ofN = 10000 individuals.

According to the standard protocol, we launch the evolution from a random initial state where players are
cooperators or defectors with equal weight. In each iteration step on average, all players have a chance to update
their strategy and reputation index. When reaching the final stationary state after 100000 steps we calculate different
quantities, like the fraction of cooperators or the average fitness level. For reliable statistics, each experiment was
repeated 10 times.

Figure 1Schematic diagram of the imitation-mutation process and reputation mechanism. At t − 1 time,
player ‘a‘ is a cooperator while others, player ‘b‘, ‘c‘, and ‘d‘ are defectors. In the next step player ‘a‘ imitates the
strategy of player ‘b‘ with probability 1−m, while player ‘d‘ chooses randommutation with probabilitym. Meanwhile,
the reputation index is updated for both players as indicated.figure.caption.1 summarizes the elementary steps of our
proposed model. As it is illustrated, players in the network have two ways to update their strategies. While player ‘a‘
applies imitation and adopts the defector strategy of neighboring ‘b‘, player ‘d‘ updates its current strategy randomly,
independently of the status of neighbors. The latter happens with probability m, while the former with probability
1 − m. In parallel, the reputation index of these players is also changed, increased, or decreased by � value, according
to their latest strategy.

3. Results
In this section, we first present the results obtained for PDG. The fC stationary portion of cooperators is measured

at different values of r1 which represent different strengths of the prisoner’s dilemma. Furthermore, we also check
the impact of parameters � and m on the fC level. The system behavior is analyzed for different graph structures,
as indicated. After we extend our study by considering SDG situation. For all experiments, in the initial state, the
proportion of cooperators and defectors in the network is both 50%, which means that half of the individuals in the
network are cooperators, and the other half are defectors.

3.1. Evolution of cooperation in PDG under IM-MUTA dynamics
To gain a first impression about the consequence of extended updating dynamics we first present the time evolution

of cooperation level obtained for different parameter values and conditions of topology. An overview can be seen in
Fig. 2The evolution of cooperation in PDG for different dynamics and topology. Curves show the time evolution
of fC starting from a random initial state for different r1 values as indicated in the legend. The top row illustrates
the evolution of the traditional model where players always follow imitation (IM) during strategy updates. Panel (a)
to (c) represent different interaction graphs, as shown in the labels. As a comparison, the bottom low depicts those
cases where the extended imitation-mutation (IM-MUTA) strategy update is applied. Other parameters are � = 0.05
and m = 0.2. Note that we used a semi-log plot to stress the time dependence faithfully. The time evolution of fC ,
“first down, later up”, demonstrates how network reciprocity works.figure.caption.2, where the typical evolution is
shown starting from a random initial state. In each case we used a broad variety of r1 parameters, ranging from 0.1
to 1.0, to span both weak and strong dilemma situations. To identify the robust system behavior we applied various
interaction topologies, such as lattice, panel (a) and (d), small-world random graph, panel (b) and (e), and last highly
heterogeneous scale-free network, shown in panel (c) and (f).

Most importantly, we compare the cases where the traditional and the extended updating dynamics are applied.
The first row of Fig. 2The evolution of cooperation in PDG for different dynamics and topology. Curves show
the time evolution of fC starting from a random initial state for different r1 values as indicated in the legend. The
top row illustrates the evolution of the traditional model where players always follow imitation (IM) during strategy
updates. Panel (a) to (c) represent different interaction graphs, as shown in the labels. As a comparison, the bottom low
depicts those cases where the extended imitation-mutation (IM-MUTA) strategy update is applied. Other parameters
are � = 0.05 andm = 0.2. Note that we used a semi-log plot to stress the time dependence faithfully. The time evolution
of fC , “first down, later up”, demonstrates how network reciprocity works.figure.caption.2 shows the evolution when
players always follow the imitation protocol. To reveal the details of time evolution we use semi-log plots for all panels
shown in this figure. It is a common feature for all networks that cooperators cannot survive if r1 is high enough because,
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(a) SL with IM (b) WS with IM (c) BA with IM

(d) SL with IM-MUTA (e) WS with IM-MUTA (f) BA with IM-MUTA

Fig. 2: The evolution of cooperation in PDG for different dynamics and topology. Curves show the time evolution of
fC starting from a random initial state for different r1 values as indicated in the legend. The top row illustrates the
evolution of the traditional model where players always follow imitation (IM) during strategy updates. Panel (a) to (c)
represent different interaction graphs, as shown in the labels. As a comparison, the bottom low depicts those cases where
the extended imitation-mutation (IM-MUTA) strategy update is applied. Other parameters are � = 0.05 and m = 0.2. Note
that we used a semi-log plot to stress the time dependence faithfully. The time evolution of fC , “first down, later up”,
demonstrates how network reciprocity works.

in this parameter region, the advantage of defection is overwhelming. For small r1 values, however, they can survive.
It is again a generally valid feature that in the latter case there are “first down, later up“ dynamics in the cooperation
level. This is a well-known indication of how network reciprocity works [66, 67]. Namely, cooperators are sensitive
in a randomized initial state, but surviving cooperators can form a compact domain and this domain can eventually
grow in the sea of defectors. The only difference between different graphs is cooperators and defectors can coexist at
appropriate values of r1 on lattices or in random graphs, while there is a sharp transition between dominant states in a
highly heterogeneous scale-free graph.

When mutation, or exploratory updating dynamics is also present, shown in the bottom row of Fig. 2The evolution
of cooperation in PDG for different dynamics and topology. Curves show the time evolution of fC starting from
a random initial state for different r1 values as indicated in the legend. The top row illustrates the evolution of the
traditional model where players always follow imitation (IM) during strategy updates. Panel (a) to (c) represent different
interaction graphs, as shown in the labels. As a comparison, the bottom low depicts those cases where the extended
imitation-mutation (IM-MUTA) strategy update is applied. Other parameters are � = 0.05 and m = 0.2. Note that
we used a semi-log plot to stress the time dependence faithfully. The time evolution of fC , “first down, later up”,
demonstrates how network reciprocity works.figure.caption.2, the time dynamics change significantly. Here we applied
� = 0.05 and m = 0.2 parameter values. The most striking difference is the extended dynamics provide a “safer”
trajectory for cooperators. More precisely, they can survive for all r1 values in all interaction graphs. We should stress
that this behavior is not a straightforward consequence of randomized strategy update because the stationary value of
fC is always higher than the one we would expect based on the value of m. Notably, the non-monotonous feature of
time evolution can be detected again, signaling that network reciprocity is still working. Therefore we can conclude
that there is synergy between imitation and exploratory mutation-based strategy updates which provide a more efficient
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Fig. 3: Stationary fraction of cooperators on r1 − � parameter plane. The results are obtained for WS interaction graph
by using m = 0.2. The impact of parameter � is ambiguous, while for low r1 values, it is better to use large � steps during
the reputation update, for larger r1 values smaller � provide a larger cooperation level. The largest cooperation level can
be reached in the low r1 - large � corner of the parameter plane. Note that cooperation level cannot reach 1 even for large
r1 due to mutation mechnaism.

protocol for cooperation even in very harsh conditions. The other generally valid observation is the usage of the IM-
MUTA protocol seems to mitigate some of the effects associated with network topology, leading to a convergence in
the cooperative evolution trends across all networks.

3.2. The effect of � on cooperation level
The next crucial point is to explore how parameter � affects our observations. More precisely, to clarify if there

is any significant consequence how drastically we change the reputation index of players during an elementary step.
One can argue that the answer may largely depend on the dilemma strength, namely on the value of r1. To answer this
question properly, in Fig. 3Stationary fraction of cooperators on r1 − � parameter plane. The results are obtained
forWS interaction graph by usingm = 0.2. The impact of parameter � is ambiguous, while for low r1 values, it is better
to use large � steps during the reputation update, for larger r1 values smaller � provide a larger cooperation level. The
largest cooperation level can be reached in the low r1 - large � corner of the parameter plane. Note that cooperation level
cannot reach 1 even for large r1 due to mutation mechnaism.figure.caption.3 we present the stationary cooperation level
on the r1 − � parameter plane. We here use WS small-world graph which practically represents all significant system
behavior, as we previously illustrated in Fig. 2The evolution of cooperation in PDG for different dynamics and
topology. Curves show the time evolution of fC starting from a random initial state for different r1 values as indicated
in the legend. The top row illustrates the evolution of the traditional model where players always follow imitation (IM)
during strategy updates. Panel (a) to (c) represent different interaction graphs, as shown in the labels. As a comparison,
the bottom low depicts those cases where the extended imitation-mutation (IM-MUTA) strategy update is applied.
Other parameters are � = 0.05 and m = 0.2. Note that we used a semi-log plot to stress the time dependence faithfully.
The time evolution of fC , “first down, later up”, demonstrates how network reciprocity works.figure.caption.2.

As we discussed in the model definition, parameter � characterizes the way how intensively we adjust the reputation
index due to the strategy change of an actor. When the value of � is small then the cooperator act is rewarded gently,
while large � values represent strong direct support for cooperation. Based on this interpretation we may expect
larger improvement for larger � values, but this expectation is just partly justified. As Fig. 3Stationary fraction of
cooperators on r1 − � parameter plane. The results are obtained for WS interaction graph by using m = 0.2. The
impact of parameter � is ambiguous, while for low r1 values, it is better to use large � steps during the reputation
update, for larger r1 values smaller � provide a larger cooperation level. The largest cooperation level can be reached
in the low r1 - large � corner of the parameter plane. Note that cooperation level cannot reach 1 even for large r1 due
to mutation mechnaism.figure.caption.3 highlights, we can reach significant improvement in cooperation for higher
� values, but only for smaller r1 values. This picture becomes the opposite if r1 exceeds r1 = 0.5 value. Above this
threshold level in the dilemma, it is detrimental to apply large steps when reputation is updated. Instead, we can reach
the highest cooperation level when � is small.
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The latter phenomenon can be explained by the fact that, under the highest temptation condition (r1 = 1.0), a higher
reputation update coefficient (�) rapidly diminishes individuals’ reputations in the network, rendering the strategy
update based on Eq. 4Evolutionary dynamicsequation.2.4 less effective. Consequently, cooperation is primarily
sustained through strategy updates based on Eq. 5Evolutionary dynamicsequation.2.5. Furthermore, when examining
the change in the cooperation frequency at � = 1, we observed consistent behavior with � = 0.5. Namely, under
high temptation values, the cooperation frequency curves exhibit a rapid fall that stabilizes at lower values without
exhibiting any local minima. However, when � is less than or equal to 0.3, in the context of high temptation, although the
cooperation frequency also decreases, after some early iterations (around 101), the cooperation frequency curve shows
a slight rebound and stabilizes. In this case, the overall cooperation curve exhibits a local minimum. In Fig. 4Time
evolution of cooperation onWS graph obtained for different � values. Panel (a) to (d) respectively shows the cases
for � = 0.05, 0.2, 0.3, and 0.4. In all cases, m = 0.2 was fixed. The applied r1 values are indicated in the legend for
each panel. The comparison of trajectories suggests that the impact of network reciprocity is practically diminished if
� exceeds 0.3.figure.caption.4(a), where � = 0.4, the trends of the cooperation differ from those shown in Figs. 4Time
evolution of cooperation onWS graph obtained for different � values. Panel (a) to (d) respectively shows the cases
for � = 0.05, 0.2, 0.3, and 0.4. In all cases, m = 0.2 was fixed. The applied r1 values are indicated in the legend for
each panel. The comparison of trajectories suggests that the impact of network reciprocity is practically diminished if
� exceeds 0.3.figure.caption.4(a), (b), and (c). In Figs. 4Time evolution of cooperation on WS graph obtained for
different � values. Panel (a) to (d) respectively shows the cases for � = 0.05, 0.2, 0.3, and 0.4. In all cases,m = 0.2was
fixed. The applied r1 values are indicated in the legend for each panel. The comparison of trajectories suggests that the
impact of network reciprocity is practically diminished if � exceeds 0.3.figure.caption.4(a) and (b), it is clear that the
curves initially decline, then rise, and finally saturate after a slight decrease. In Fig. 4Time evolution of cooperation
onWS graph obtained for different � values. Panel (a) to (d) respectively shows the cases for � = 0.05, 0.2, 0.3, and
0.4. In all cases,m = 0.2was fixed. The applied r1 values are indicated in the legend for each panel. The comparison of
trajectories suggests that the impact of network reciprocity is practically diminished if � exceeds 0.3.figure.caption.4(c),
although the trends of the curves are not as pronounced as in panels (a) and (b), they are still qualitatively similar.
However, when � = 0.4, in Fig. 4Time evolution of cooperation on WS graph obtained for different � values.
Panel (a) to (d) respectively shows the cases for � = 0.05, 0.2, 0.3, and 0.4. In all cases, m = 0.2 was fixed. The
applied r1 values are indicated in the legend for each panel. The comparison of trajectories suggests that the impact
of network reciprocity is practically diminished if � exceeds 0.3.figure.caption.4(d), the curves initially rise and then
saturate for smaller r1 values. As r1 increases, the cooperation level decays first and then saturates without showing
a local temporary minimum. Based on Fig. 3Stationary fraction of cooperators on r1 − � parameter plane. The
results are obtained for WS interaction graph by using m = 0.2. The impact of parameter � is ambiguous, while for
low r1 values, it is better to use large � steps during the reputation update, for larger r1 values smaller � provide a
larger cooperation level. The largest cooperation level can be reached in the low r1 - large � corner of the parameter
plane. Note that cooperation level cannot reach 1 even for large r1 due to mutation mechnaism.figure.caption.3 and
Fig. 4Time evolution of cooperation on WS graph obtained for different � values. Panel (a) to (d) respectively
shows the cases for � = 0.05, 0.2, 0.3, and 0.4. In all cases, m = 0.2 was fixed. The applied r1 values are indicated in
the legend for each panel. The comparison of trajectories suggests that the impact of network reciprocity is practically
diminished if � exceeds 0.3.figure.caption.4, we can conclude that there is no clear connection between cooperation
and evolving reputation mechanism because the consequence of � depends sensitively on the temptation level.

To gain a deeper understanding of the counter-intuitive phenomenon discussed above we also measured the
average fitness of competing strategies. To reveal the difference resulting in diverse system behavior we selected two
representative r1 values from the low- and large-temptation regions. Their comparison can be seen in Fig. 5The average
fitness of strategies at different temptation values in PDG on WS graph. With IM-MUTA, Panel (a) depicts how
fitness values change for different � for low temptation at r1 = 0.1. Panel (b) shows the same quantities for r1 = 0.7
which represents high temptation. The fitted lines indicate clearly that at low temptation cooperators benefit more
if we increase the reputation step �. At large temptation, however, cooperators suffer more from the usage of larger
�.figure.caption.5. The first panel summarizes the low temptation case, obtained at r1 = 0.1 for different � values,
as indicated. The increase of � leads to an increase in the average fitness both for cooperators and defectors, but in a
different way. In particular, the increment due to large � is significantly larger for cooperators, hence they can benefit
more from the intensive change of reputation index. As a result, the general cooperation level grows by increasing �
in the low-temptation region. Panel (b) illustrates what is happening when the temptation level is significant. In this
case, both defectors and cooperators gain less if we increase �. But the change in the general fitness of cooperators is
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Fig. 4: Time evolution of cooperation on WS graph obtained for different � values. Panel (a) to (d) respectively shows
the cases for � = 0.05, 0.2, 0.3, and 0.4. In all cases, m = 0.2 was fixed. The applied r1 values are indicated in the legend
for each panel. The comparison of trajectories suggests that the impact of network reciprocity is practically diminished if
� exceeds 0.3.

A
verage fitn

ess

(a)

A
verage fitn

ess

(b)

Fig. 5: The average fitness of strategies at different temptation values in PDG on WS graph. With IM-MUTA, Panel (a)
depicts how fitness values change for different � for low temptation at r1 = 0.1. Panel (b) shows the same quantities for
r1 = 0.7 which represents high temptation. The fitted lines indicate clearly that at low temptation cooperators benefit more
if we increase the reputation step �. At large temptation, however, cooperators suffer more from the usage of larger �.

significantly larger, compared to the change for defectors, where the decline is just moderate. Accordingly, the total
change is negative, leading to a low-cooperation state for the system. At this point, the drastic change in reputation
becomes a burden, causing cooperators to plunge into an abyss and triggering a chain reaction that leads to a state
mostly dominated by defection. Such situations are common in real life, e.g., when a large-scale bank experiences a
run, it can shake the entire country’s financial industry and subsequently trigger a credit crisis throughout society.

3.3. Effect of mutation rate m on the cooperation

To finish our study of PDG we last studied how the mutation rate m affects the general cooperation level in our
model with extended updating dynamics. To make the results comparable to previous cases we keepWS network as an
interaction graph and survey the cooperation level at different m values in the full range of r1 parameter. Figure 6Time
evolution of cooperation under different m values obtained for WS graph in PDG. Panel (a) to (d) shows the
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Fig. 6: Time evolution of cooperation under different m values obtained for WS graph in PDG. Panel (a) to (d) shows the
trajectories obtained at m = 0.1, 0.2, 0.3, and 0.4, respectively. Each curve corresponds to different r1 values, as indicated
in the legend. Even though the trend of each curve in the four pictures is similar, the stationary value of fC increases as
m increases and gradually approaches 0.5.

trajectories obtained at m = 0.1, 0.2, 0.3, and 0.4, respectively. Each curve corresponds to different r1 values, as
indicated in the legend. Even though the trend of each curve in the four pictures is similar, the stationary value of fC
increases as m increases and gradually approaches 0.5. figure.caption.6 summarizes our findings. Here we present the
time evolution of the cooperation level starting from a random initial state for m = 0.1, 0.2, 0.3, and 0.4.

The typical dynamics signaling network reciprocity can be seen for all cases, but the minimum values are gradually
lifted by increasing m. As expected, the largest difference in the stationary fC levels for different r1 values can be seen
for the smallest m value and these differences become marginal for very high m values in panel (d).

By comparing the four panels, we observe that as m increases, the fc value at steady state decreases for low r1
values (r1 = 0.1 or 0.3). It becomes evident that when m exceeds 0.2, the reputation mechanism becomes significantly
less effective, and fc approaches 0.5 after t = 102. Therefore, controlling the value ofm is crucial. An excessively high
value ofm can greatly diminish the effectiveness of the reputation mechanism. In Fig. 6Time evolution of cooperation
under differentm values obtained forWS graph in PDG. Panel (a) to (d) shows the trajectories obtained atm = 0.1,
0.2, 0.3, and 0.4, respectively. Each curve corresponds to different r1 values, as indicated in the legend. Even though
the trend of each curve in the four pictures is similar, the stationary value of fC increases as m increases and gradually
approaches 0.5. figure.caption.6(d), in contrast to Fig. 6Time evolution of cooperation under different m values
obtained for WS graph in PDG. Panel (a) to (d) shows the trajectories obtained at m = 0.1, 0.2, 0.3, and 0.4,
respectively. Each curve corresponds to different r1 values, as indicated in the legend. Even though the trend of each
curve in the four pictures is similar, the stationary value of fC increases as m increases and gradually approaches 0.5.
figure.caption.6(a) or (c), the amplitude of fluctuations in the fC curve decreases. During the descending phase, with
r1 = 1.0, the curve’s minimum value only reaches approximately 0.25. Furthermore, the cooperation frequency at the
equilibrium state reaches a notable value of 0.4, which exhibits minimal deviation compared to the curve at r1 = 0.1.

In sum, we can conclude that increasing m reduces the influence of r1 on the resulting cooperative level, hence
weakening the positive consequence of the reputation mechanism. Nevertheless, the final cooperation level is still
beyond the portion dictated by the näive estimation of m even at very large r1 values, hence the positive consequence
of the extended dynamics in collaboration with the generalized fitness function can still be detected.
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(a) SL with IM (b) WS with IM (c) BA with IM

(d) SL with IM-MUTA (e) WS with IM-MUTA (f) BA with IM-MUTA

Fig. 7: The evolution of cooperation in SDG for different dynamics and topology. Curves show the time evolution of fC
starting from a random initial state for different r1 values as indicated in the legend. The top row illustrates the evolution
of the traditional model where players always follow imitation (IM) during strategy updates. Panel (a) to (c) represent
different interaction graphs, as shown in the labels. As a comparison, the bottom low depicts those cases where the
extended imitation-mutation (IM-MUTA) strategy update is applied. Other parameters are � = 0.05 and m = 0.2. Similarly
to previous figures, we used a semi-log plot to stress the time-dependence more accurately.

3.4. Models in SDG game
Finally, we complete our study by checking the newly introduced dynamics in SDG. Conceptually similar to the

earlier discussed main section we now here apply three different types of interaction graphs, such as square lattice,
WS small-world graph, and BA scale-free network. Besides, again for better comparison, we present results obtained
by using the traditional and the extended dynamics. Our key observations are summarized in Fig. 7The evolution
of cooperation in SDG for different dynamics and topology. Curves show the time evolution of fC starting from
a random initial state for different r1 values as indicated in the legend. The top row illustrates the evolution of the
traditional model where players always follow imitation (IM) during strategy updates. Panel (a) to (c) represent different
interaction graphs, as shown in the labels. As a comparison, the bottom low depicts those cases where the extended
imitation-mutation (IM-MUTA) strategy update is applied. Other parameters are � = 0.05 and m = 0.2. Similarly
to previous figures, we used a semi-log plot to stress the time-dependence more accurately.figure.caption.7. The top
row denotes the time evolution in the traditional case when players always use imitation to update their strategies. The
bottom row illustrates the system behavior when IM-MUTA update is used. As a general observation, the extended
dynamics always provide a smaller cooperation level than the one we can reach by using solely imitation. The difference
is especially shocking in the low r2 interval where full cooperation can always be reached independently of the
applied interaction graph. If, however, IM-MUTA is used, fC cannot exceed 0.8. The smallest difference between the
cooperation levels obtained for different dynamics can be detected for lattice structure in the large r2 interval where
network reciprocity has no relevance even in the traditional case [68].

Evidently, the above-described observations were obtained at a specific � value, therefore we can ask how this
parameter changes the final outcome. The answer is given in Fig. 8Stationary fraction of cooperators on r2 − �
parameter plane in SDG. The results are obtained for WS interaction graph by using m = 0.2. The impact of
parameter � is clear, independently of r2 value, the cooperation level can always be increased by using larger � steps
during the reputation update. The largest cooperation level can be reached in the low r2 - high � corner of the parameter
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Fig. 8: Stationary fraction of cooperators on r2 − � parameter plane in SDG. The results are obtained for WS interaction
graph by using m = 0.2. The impact of parameter � is clear, independently of r2 value, the cooperation level can always
be increased by using larger � steps during the reputation update. The largest cooperation level can be reached in the low
r2 - high � corner of the parameter plane.

plane.figure.caption.8 where we plot the average cooperation level on the r2−� parameter plane. For a fair comparison
obtained for PDG in Fig. 3Stationary fraction of cooperators on r1 − � parameter plane. The results are obtained
forWS interaction graph by usingm = 0.2. The impact of parameter � is ambiguous, while for low r1 values, it is better
to use large � steps during the reputation update, for larger r1 values smaller � provide a larger cooperation level. The
largest cooperation level can be reached in the low r1 - large � corner of the parameter plane. Note that cooperation
level cannot reach 1 even for large r1 due to mutation mechnaism.figure.caption.3, we used WS interaction graph and
m = 0.2mutation rate again. In stark contrast to the previous case, here the increase of � always improves cooperation
independently of the applied r2 value. Naturally, as previously, at higher temptation when we increase r2 at a fixed �
value, the cooperation level always decreases. The difference between the system behavior observed in PDG and SDG
may be explained by the fact that SDG has different Nash-equilibrium hence the mixture of strategies provides the
best strategy arrangement for an optimal global state even in the case when only imitation is allowed. Therefore the
introduction of mutations does not really change the microscopic dynamics.

4. Conclusions and outlooks
Reputation has been extensively examined in prior studies to assess its influence on the dynamics of cooperation.

Nevertheless, existing literature predominantly focuses on the imitation of strategy update rules, often overlooking the
presence of “emergencies" or “irrationalities” in individual’s decision-making processes [69, 70]. This paper combines
two aspects and introduces the concept of a mutation rate to individuals, which can be considered as an element of
irrationality, allowing players to deviate from the pressure dictated by their neighborhood. The other key element of
our model is the extended fitness function where reputation affects the likelihood of strategy imitation directly.

For a comprehensive study, we tested different types of interaction graphs, including lattices, random small-world,
and scale-free topology. Furthermore, we also used alternative social dilemmas including prisoner’s dilemma (PDG)
and snow-drift game (SDG). In the former case, the usage of extended dynamics could be beneficial for cooperator
strategy, particularly in high-temptation regions. This mechanism reduces the fluctuations in cooperation frequency and
bolsters individuals’ resistance to temptation. Conversely, in the case of SDG the usage of extended strategy updates is
detrimental. As we noted, the difference can be explained in the diverse Nash-equilibrium characterizing these games.

The practical significance of these experimental results is noteworthy. When investigating the reputation growth
coefficient, we have observed that a high reputation growth rate does not necessarily assist individuals in maintaining
cooperation when faced with high-temptation situations. A rapid growth of reputation involves increased risks. When
accumulated reputation becomes excessively high, any erroneous strategy choice can lead to a sharp decline in an
individual’s fitness, triggering widespread defection. This phenomenon mirrors real-life experience, where highly
esteemed individuals, when embroiled in a scandal or controversy, incur significant costs and resource depletion,
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impacting both themselves and society at large. Unlike prior studies, networks employing our model may not achieve
full cooperation. However, this outcome aligns more closely with the complexities of human society.

However, the mutation mechanism employed in this study still has certain drawbacks. When the mutation rate m
is excessively high, the strategy updating of individuals tends to converge to a fixed probability. The mutation rate m
considered in this study acts as a global regulatory parameter that uniformly applies to all individuals in the network.
Experimental results indicate that high values of m inhibit the effectiveness of the reputation mechanism, transforming
strategic selection into a pure probabilistic process. Hence, the cooperation frequency curve during the evolutionary
process stabilizes, rendering the experimental results less realistic. To better simulate individual strategic decision-
making in real-world social contexts, an improvement to the model could involve assigning a unique mutation rate
within the network. Also, generating a new mutation rate for each individual in each round is a good method. As a
result, our model would achieve a higher level of realism, making it better suited for simulating and understanding the
evolution of cooperation. Also, we could address this limitation by incorporating expectation dynamics and combining
different strategy updating rules to simulate human autonomous reasoning. Ultimately, we hope that our research can
contribute to the field of evolutionary game theory involving self-awareness, group psychology, reputationmechanisms,
and other related factors, thereby enhancing the practical relevance of these topics.
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