VICTORIA UNIVERSITY MELBOURNE AUSTRALIA

Inequalities for Stieltjes Integrals with Convex Integrators and Applications

This is the Published version of the following publication

Dragomir, Sever S (2005) Inequalities for Stieltjes Integrals with Convex Integrators and Applications. Research report collection, 8 (4).

The publisher's official version can be found at
Note that access to this version may require subscription.

INEQUALITIES FOR STIELTJES INTEGRALS WITH CONVEX INTEGRATORS AND APPLICATIONS

SEVER S. DRAGOMIR

Abstract

Inequalities for a Grüss type functional in terms of Stieltjes integrals with convex integrators are given. Applications to the Čebyšev functional are also provided.

1. Introduction

In [3], the authors have considered the following functional:

$$
\begin{equation*}
D(f ; u):=\int_{a}^{b} f(x) d u(x)-[u(b)-u(a)] \cdot \frac{1}{b-a} \int_{a}^{b} f(t) d t \tag{1.1}
\end{equation*}
$$

provided that the Stieltjes integral $\int_{a}^{b} f(x) d u(x)$ and the Riemann integral $\int_{a}^{b} f(t) d t$ exist.

In [3], the following result in estimating the above functional has been obtained:
Theorem 1. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is Lipschitzian on $[a, b]$, i.e.,

$$
\begin{equation*}
|u(x)-u(y)| \leq L|x-y| \quad \text { for any } \quad x, y \in[a, b] \quad(L>0) \tag{1.2}
\end{equation*}
$$

and f is Riemann integrable on $[a, b]$.
If $m, M \in \mathbb{R}$ are such that

$$
\begin{equation*}
m \leq f(x) \leq M \quad \text { for any } x \in[a, b] \tag{1.3}
\end{equation*}
$$

then we have the inequality

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{2} L(M-m)(b-a) \tag{1.4}
\end{equation*}
$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller quantity.
In [2], the following result complementing the above has been obtained:
Theorem 2. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is of bounded variation on $[a, b]$ and f is Lipschitzian with the constant $K>0$. Then we have

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{2} K(b-a) \bigvee_{a}^{b}(u) . \tag{1.5}
\end{equation*}
$$

The constant $\frac{1}{2}$ is sharp in the above sense.

[^0]For a function $u:[a, b] \rightarrow \mathbb{R}$, define the associated functions Φ, Γ and Δ by:

$$
\begin{align*}
& \Phi(t):=\frac{(t-a) u(b)+(b-t) u(a)}{b-a}-u(t), \quad t \in[a, b] ; \tag{1.6}\\
& \Gamma(t):=(t-a)[u(b)-u(t)]-(b-t)[u(t)-u(a)], \quad t \in[a, b]
\end{align*}
$$

and

$$
\Delta(t):=\frac{u(b)-u(t)}{b-t}-\frac{u(t)-u(a)}{t-a}, \quad t \in(a, b) .
$$

In [1], the following subsequent bounds for the functional $D(f ; u)$ have been pointed out:

Theorem 3. Let $f, u:[a, b] \rightarrow \mathbb{R}$.
(i) If f is of bounded variation and u is continuous on $[a, b]$, then

$$
|D(f ; u)| \leq\left\{\begin{array}{l}
\sup _{t \in[a, b]}|\Phi(t)| \bigvee_{a}^{b}(f) \tag{1.7}\\
\frac{1}{b-a} \sup _{t \in[a, b]}|\Gamma(t)| \bigvee_{a}^{b}(f), \\
\frac{1}{b-a} \sup _{t \in(a, b)}[(t-a)(b-t)|\Delta(t)|] \bigvee_{a}^{b}(f) .
\end{array}\right.
$$

(ii) If f is L-Lipschitzian and u is Riemann integrable on $[a, b]$, then

$$
|D(f ; u)| \leq\left\{\begin{array}{l}
L \int_{a}^{b}|\Phi(t)| d t \tag{1.8}\\
\frac{L}{b-a} \int_{a}^{b}|\Gamma(t)| d t \\
\frac{L}{b-a} \int_{a}^{b}(t-a)(b-t)|\Delta(t)| d t
\end{array}\right.
$$

(iii) If f is monotonic nondecreasing on $[a, b]$ and u is continuous on $[a, b]$, then

$$
|D(f ; u)| \leq\left\{\begin{array}{l}
\int_{a}^{b}|\Phi(t)| d f(t) \tag{1.9}\\
\frac{1}{b-a} \int_{a}^{b}|\Gamma(t)| d f(t), \\
\frac{1}{b-a} \int_{a}^{b}(t-a)(b-t)|\Delta(t)| d f(t) .
\end{array}\right.
$$

The case of monotonic integrators is incorporated in the following two theorems [1]:
Theorem 4. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that f is L-Lipschitzian on $[a, b]$ and u is monotonic nondecreasing on $[a, b]$, then

$$
\begin{align*}
|D(f ; u)| & \leq \frac{1}{2} L(b-a)[u(b)-u(a)-K(u)] \tag{1.10}\\
& \leq \frac{1}{2} L(b-a)[u(b)-u(a)]
\end{align*}
$$

where

$$
\begin{equation*}
K(u):=\frac{4}{(b-a)^{2}} \int_{a}^{b} u(x)\left(x-\frac{a+b}{2}\right) d x \geq 0 . \tag{1.11}
\end{equation*}
$$

The constant $\frac{1}{2}$ in both inequalities is sharp.
Theorem 5. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is monotonic nondecreasing on $[a, b], f$ is of bounded variation on $[a, b]$ and the Stieltjes integral $\int_{a}^{b} f(x) d u(x)$ exists. Then

$$
\begin{align*}
|D(f ; u)| & \leq[u(b)-u(a)-Q(u)] \bigvee_{a}^{b}(f) \tag{1.12}\\
& \leq[u(b)-u(a)] \bigvee_{a}^{b}(f)
\end{align*}
$$

where

$$
\begin{equation*}
Q(u):=\frac{1}{b-a} \int_{a}^{b} \operatorname{sgn}\left(x-\frac{a+b}{2}\right) u(x) d x \geq 0 . \tag{1.13}
\end{equation*}
$$

The first inequality in 1.12) is sharp.
The main aim of this paper is to establish new sharp inequalities for the functional $D(\cdot ; \cdot)$ in the assumption that the integrator u in the Stieltjes integral $\int_{a}^{b} f(x) d u(x)$ is convex on $[a, b]$. Applications for the Čebyšev functional of two Lebesgue integrable function are also given.

2. Inequalities for Convex Integrators

The following result may be stated:
Theorem 6. Let $u:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R} a$ monotonic nondecreasing function on $[a, b]$. Then

$$
\begin{align*}
0 & \leq D(f ; u) \tag{2.1}\\
& \leq 2 \cdot \frac{u_{-}^{\prime}(b)-u_{+}^{\prime}(a)}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right] \max \{|f(a)|,|f(b)|\}(b-a) \\
\frac{1}{(q+1)^{\frac{1}{q}}}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]\|f\|_{p}(b-a)^{\frac{1}{q}} \\
\text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
{\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]\|f\|_{1} .}
\end{array}\right.
\end{align*}
$$

Proof. Integrating by parts in the Stieltjes integral, we have

$$
\begin{align*}
\int_{a}^{b} \Phi(t) d f(t)= & {\left.\left[\frac{(t-a) u(b)+(b-t) u(a)}{b-a}-u(t)\right] f(t)\right|_{a} ^{b} } \tag{2.2}\\
& \quad-\int_{a}^{b} f(t) d\left[\frac{(t-a) u(b)+(b-t) u(a)}{b-a}-u(t)\right] \\
& =[u(b)-u(b)] f(b)-[u(a)-u(a)] f(a) \\
& \quad-\int_{a}^{b} f(t)\left[\frac{u(b)-u(a)}{b-a} d t-d u(t)\right] \\
= & \int_{a}^{b} f(t) d u(t)-\frac{u(b)-u(a)}{b-a} \int_{a}^{b} f(t) d t=D(f ; u)
\end{align*}
$$

for any u a continuous function on $[a, b]$ and f of bounded variation on $[a, b]$.
This identity has been established in [1]. In equation (56) in [1], there is a typographical error in the first equation. The definition of Φ is provided in 1.6).

The fact that $D(f ; u) \geq 0$ for u convex and f monotonic nondecreasing on $[a, b]$ has been proven earlier in [1]. For the sake of completeness we give here a different and simpler proof as well.

Since u is convex, then

$$
\begin{aligned}
\frac{t-a}{b-a} \cdot u(b)+\frac{b-t}{b-a} \cdot u(a) & \geq u\left[\frac{(t-a) b+(b-t) a}{b-a}\right] \\
& =u(t)
\end{aligned}
$$

for any $t \in[a, b]$. Thus, $\Phi(t) \geq 0$ for $t \in[a, b]$ and since f is monotonic nondecreasing, then $\int_{a}^{b} \Phi(t) d f(t) \geq 0$.

Now, for any convex function $\Phi:[a, b] \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\Phi(x)-\Phi(y) \geq \Phi_{ \pm}^{\prime}(y)(x-y) \quad \text { for any } \quad x, y \in(a, b) \tag{2.3}
\end{equation*}
$$

where $\Phi_{ \pm}^{\prime}$ are the lateral derivatives of the convex function Φ. Then, on using $\sqrt{2.3}$, we have

$$
u^{\prime}(t)-u(b) \geq u_{-}^{\prime}(b)(t-b)
$$

If we multiply this inequality by $t-a \geq 0$, we get

$$
\begin{equation*}
(t-a) u(t)-(t-a) u(b) \geq u_{-}^{\prime}(b)(t-b)(t-a) . \tag{2.4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
(b-t) u(t)-(b-t) u(a) \geq u_{+}^{\prime}(a)(t-a)(b-t) . \tag{2.5}
\end{equation*}
$$

Adding 2.4 with 2.5 and dividing by $b-a$, we deduce:

$$
u(t)-\frac{(t-a) u(b)+(b-t) u(a)}{b-a} \geq \frac{(b-t)(t-a)}{b-a}\left[u_{+}^{\prime}(a)-u_{-}^{\prime}(b)\right]
$$

giving the inequality:

$$
\begin{equation*}
0 \leq \frac{(t-a) u(b)+(b-t) u(a)}{b-a}-u(t) \leq \frac{(b-t)(t-a)}{b-a}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right] \tag{2.6}
\end{equation*}
$$

Integrating this inequality, we get

$$
\int_{a}^{b} \Phi(t) d f(t) \leq \frac{\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]}{b-a} \int_{a}^{b}(b-t)(t-a) d f(t)
$$

On the other hand

$$
\begin{aligned}
\int_{a}^{b}(b-t)(t-a) d f(t) & =\left.f(t)(b-t)(t-a)\right|_{a} ^{b}-\int_{a}^{b} f(t)[-2 t+(a+b)] d t \\
& =2 \int_{a}^{b} f(t)\left(t-\frac{a+b}{2}\right) d t
\end{aligned}
$$

giving the second inequality in 2.1 .

Utilising Hölder's inequality, we have

$$
\begin{aligned}
\int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t \leq & \left\{\begin{array}{l}
\sup _{t \in[a, b]}|f(t)| \int_{a}^{b}\left|t-\frac{a+b}{2}\right| d t \\
\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|t-\frac{a+b}{2}\right|^{q} d t\right)^{\frac{1}{q}} \\
\text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right. \\
& =\left\{\begin{array}{l}
\sup _{t \in[a, b]}\left|t-\frac{a+b}{2}\right| \int_{a}^{b}|f(t)| d t \\
\frac{1}{2} \cdot \frac{1}{(q+1)^{\frac{1}{q}}}\|f\|_{p}(b-a)^{1+\frac{1}{q}} \\
\text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\frac{1}{2}\|f\|_{1}(b-a),
\end{array}\right.
\end{aligned}
$$

and the last part of 2.1 is proved.
Now, for the best possible constant.
Assume that (2.1) holds with a constant C instead of 2, i.e.,

$$
\begin{equation*}
D(f ; u) \leq C \cdot \frac{u_{-}^{\prime}(b)-u_{+}^{\prime}(a)}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t \tag{2.7}
\end{equation*}
$$

where u is convex on $[a, b]$ and f is monotonic nondecreasing on $[a, b]$.
Consider $u(t):=\left|t-\frac{a+b}{2}\right|$ and $f(t)=\operatorname{sgn}\left(t-\frac{a+b}{2}\right)$. Then u is convex on $[a, b]$ and f is monotonic nondecreasing on $[a, b]$. We have

$$
\begin{aligned}
D(f ; u)= & \int_{a}^{\frac{a+b}{2}}(-1) d\left(\frac{a+b}{2}-t\right)+\int_{\frac{a+b}{2}}^{b}(+1) d\left(t-\frac{a+b}{2}\right) \\
= & \int_{a}^{b} d t=(b-a) \\
& \quad u_{-}^{\prime}(b)-u_{+}^{\prime}(a)=2
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t & =\int_{a}^{b}\left(t-\frac{a+b}{2}\right) \operatorname{sgn}\left(t-\frac{a+b}{2}\right) d t \\
& =\int_{a}^{b}\left|t-\frac{a+b}{2}\right| d t=\frac{(b-a)^{2}}{4}
\end{aligned}
$$

Therefore, from 2.7 we get

$$
b-a \leq \frac{C(b-a)}{2}
$$

giving that $C \geq 2$. The fact that $\frac{1}{2}$ is best possible goes likewise and we omit the details.

The following result may be stated as well:

Theorem 7. Let $u:[a, b] \rightarrow \mathbb{R}$ be a continuous convex function on $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ a function of bounded variation on $[a, b]$. Then

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{4}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right](b-a) \bigvee_{a}^{b}(f), \tag{2.8}
\end{equation*}
$$

where $\bigvee_{a}^{b}(f)$ denotes the total variation of f on $[a, b]$.
The constant $\frac{1}{4}$ is best possible in 2.8.
Proof. It is well known that if $p:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and $v:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$, then the Stieltjes integral $\int_{a}^{b} p(t) d v(t)$ exists and

$$
\begin{equation*}
\left|\int_{a}^{b} p(t) d v(t)\right| \leq \sup _{t \in[a, b]}|p(t)| \bigvee_{a}^{b}(f) \tag{2.9}
\end{equation*}
$$

Utilising the inequality (2.6) we have

$$
\begin{aligned}
& \sup _{t \in[a, b]}\left|\frac{(t-a) u(b)+(b-t) u(a)}{b-a}-u(t)\right| \\
& \leq \frac{u_{-}^{\prime}(b)-u_{+}^{\prime}(a)}{b-a} \sup _{t \in[a, b]}[(b-t)(t-a)] \\
& =\frac{1}{4}(b-a)\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right] .
\end{aligned}
$$

Now, utilising the identity (2.2) and the property (2.9), we have

$$
\begin{aligned}
|D(f ; u)| & \leq \sup _{t \in[a, b]}|\Phi(t)| \bigvee_{a}^{b}(f) \\
& \leq \frac{1}{4}(b-a)\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]
\end{aligned}
$$

and the inequality $\sqrt{2.8}$ is proved.
Now, for the best constant.
Assume that there exists $D>0$ such that

$$
\begin{equation*}
|D(f ; u)| \leq D\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right](b-a) \bigvee_{a}^{b}(f) \tag{2.10}
\end{equation*}
$$

provided that u is continuous convex and f is of bounded variation on $[a, b]$.
If we choose $u(t)=\left|t-\frac{a+b}{2}\right|$ and $f(t)=\operatorname{sgn}\left(t-\frac{a+b}{2}\right)$, then (see the proof of Theorem 6)

$$
D(f ; u)=b-a, \quad u_{-}^{\prime}(b)-u_{+}^{\prime}(a)=2 \quad \text { and } \quad \bigvee_{a}^{b}(f)=2
$$

giving in 2.10 that $b-a \leq 4 D(b-a)$ which implies $D \geq \frac{1}{4}$.
The following result may be stated.
Theorem 8. Let $u:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R} a$ Lipschitzian function with the constant $L>0$, i.e.,

$$
\begin{equation*}
|f(t)-f(s)| \leq L|t-s| \quad \text { for each } \quad t, s \in[a, b] \tag{2.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{6} L(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right] \tag{2.12}
\end{equation*}
$$

Proof. It is well known that if $p:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ and $v:[a, b] \rightarrow \mathbb{R}$ is Lipschitzian with the constant $L>0$, then the Stieltjes integral $\int_{a}^{b} p(t) d u(t)$ exists and

$$
\begin{equation*}
\left|\int_{a}^{b} p(t) d v(t)\right| \leq L \int_{a}^{b}|p(t)| d t \tag{2.13}
\end{equation*}
$$

Utilising the identity (2.6) and the property (2.13), we have

$$
\begin{aligned}
|D(f ; u)| & \leq L \int_{a}^{b}\left|\frac{(b-t)(t-a)\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]}{b-a}\right| d t \\
& =\frac{L}{b-a}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right] \int_{a}^{b}(b-t)(t-a) d t \\
& =\frac{1}{6} L(b-a)^{2}\left[u_{-}^{\prime}(b)-u_{+}^{\prime}(a)\right]
\end{aligned}
$$

and the theorem is proved.
Remark 1. It is an open problem if the constant $\frac{1}{6}$ above is sharp.

3. Applications for the Čebyšev Functional

For the Lebesgue integrable functions $f, g:[a, b] \rightarrow \mathbb{R}$ with $f g$ an integrable function, consider the Čebyšev functional C, defined by

$$
C(f, g)=\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} g(x) d x
$$

The following result may be stated.
Proposition 1. If f, g are monotonic nondecreasing functions, then

$$
\begin{align*}
0 & \leq C(f, g) \tag{3.1}\\
& \leq 2 \cdot \frac{g(b)-g(a)}{b-a} \cdot \frac{1}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}[g(b)-g(a)] \max \{|f(a)|,|f(b)|\} ; \\
\frac{1}{(q+1)^{\frac{1}{q}}}[g(b)-g(a)]\|f\|_{p}(b-a)^{\frac{1}{q}-1} \\
\text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
\frac{g(b)-g(a)}{b-a}\|f\|_{1} .
\end{array}\right.
\end{align*}
$$

The constants 2 and $\frac{1}{2}$ are best possible.
The proof is obvious by Theorem 6 on choosing $u:[a, b] \rightarrow \mathbb{R}, u(t):=\int_{a}^{t} g(s) d s$. The sharpness of the constant follows as in the proof of Theorem 6 for $f, g:[a, b]=$ $1, f(t)=g(t)=\operatorname{sgn}\left(t-\frac{a+b}{2}\right)$.

The following result may be stated as well:

Proposition 2. If g is monotonic nondecreasing on $[a, b]$ and f is of bounded variation on $[a, b]$, then

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{4}[g(b)-g(a)] \bigvee_{a}^{b}(f) \tag{3.2}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in (3.2).
The proof follows by Theorem 7 and the details are omitted.
Finally, on utilising Theorem 8, we can state
Proposition 3. If g is monotonic nondecreasing and f is L-Lipschitzian on $[a, b]$, then

$$
|C(f, g)| \leq \frac{1}{6} L(b-a)[g(b)-g(a)]
$$

References

[1] S.S. DRAGOMIR, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math., 26 (2004), 89-112.
[2] S.S. DRAGOMIR and I. FEDOTOV, A Grüss type inequality for mappings of bounded variation and applications to numerical analysis, Non. Funct. Anal. \& Appl., 6(3) (2001), 425-433.
[3] S.S. DRAGOMIR and I. FEDOTOV, An inequality of Grüss type for Riemann-Stieltjes integral and applications for special means, Tamkang J. Math., 29(4) (1998), 287-292.

School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, Melbourne, VIC 8001, Australia

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.vu.edu.au

[^0]: Date: June 25, 2005.
 2000 Mathematics Subject Classification. Primary 26D15, 26D10.
 Key words and phrases. Stieltjes integral, Grüss inequality, Čebyšev inequality, Convex functions.

