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INEQUALITIES FOR STIELTJES INTEGRALS WITH CONVEX
INTEGRATORS AND APPLICATIONS

SEVER S. DRAGOMIR

Abstract. Inequalities for a Grüss type functional in terms of Stieltjes inte-

grals with convex integrators are given. Applications to the Čebyšev functional
are also provided.

1. Introduction

In [3], the authors have considered the following functional:

(1.1) D (f ;u) :=
∫ b

a

f (x) du (x)− [u (b)− u (a)] · 1
b− a

∫ b

a

f (t) dt,

provided that the Stieltjes integral
∫ b

a
f (x) du (x) and the Riemann integral

∫ b

a
f (t) dt

exist.
In [3], the following result in estimating the above functional has been obtained:

Theorem 1. Let f, u : [a, b] → R be such that u is Lipschitzian on [a, b] , i.e.,

(1.2) |u (x)− u (y)| ≤ L |x− y| for any x, y ∈ [a, b] (L > 0)

and f is Riemann integrable on [a, b] .
If m,M ∈ R are such that

(1.3) m ≤ f (x) ≤ M for any x ∈ [a, b] ,

then we have the inequality

(1.4) |D (f ;u)| ≤ 1
2
L (M −m) (b− a) .

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.

In [2], the following result complementing the above has been obtained:

Theorem 2. Let f, u : [a, b] → R be such that u is of bounded variation on [a, b]
and f is Lipschitzian with the constant K > 0. Then we have

(1.5) |D (f ;u)| ≤ 1
2
K (b− a)

b∨
a

(u) .

The constant 1
2 is sharp in the above sense.
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For a function u : [a, b] → R, define the associated functions Φ,Γ and ∆ by:

Φ (t) :=
(t− a) u (b) + (b− t) u (a)

b− a
− u (t) , t ∈ [a, b] ;(1.6)

Γ (t) := (t− a) [u (b)− u (t)]− (b− t) [u (t)− u (a)] , t ∈ [a, b]

and

∆ (t) :=
u (b)− u (t)

b− t
− u (t)− u (a)

t− a
, t ∈ (a, b) .

In [1], the following subsequent bounds for the functional D (f ;u) have been pointed
out:

Theorem 3. Let f, u : [a, b] → R.
(i) If f is of bounded variation and u is continuous on [a, b] , then

(1.7) |D (f ;u)| ≤



sup
t∈[a,b]

|Φ (t)|
∨b

a
(f) ,

1
b−a sup

t∈[a,b]

|Γ (t)|
∨b

a
(f) ,

1
b−a sup

t∈(a,b)

[(t− a) (b− t) |∆ (t)|]
∨b

a
(f) .

(ii) If f is L−Lipschitzian and u is Riemann integrable on [a, b] , then

(1.8) |D (f ;u)| ≤



L
∫ b

a
|Φ (t)| dt,

L
b−a

∫ b

a
|Γ (t)| dt,

L
b−a

∫ b

a
(t− a) (b− t) |∆ (t)| dt.

(iii) If f is monotonic nondecreasing on [a, b] and u is continuous on [a, b] , then

(1.9) |D (f ;u)| ≤



∫ b

a
|Φ (t)| df (t) ,

1
b−a

∫ b

a
|Γ (t)| df (t) ,

1
b−a

∫ b

a
(t− a) (b− t) |∆ (t)| df (t) .

The case of monotonic integrators is incorporated in the following two theorems
[1]:

Theorem 4. Let f, u : [a, b] → R be such that f is L−Lipschitzian on [a, b] and u
is monotonic nondecreasing on [a, b] , then

|D (f ;u)| ≤ 1
2
L (b− a) [u (b)− u (a)−K (u)](1.10)

≤ 1
2
L (b− a) [u (b)− u (a)] ,

where

(1.11) K (u) :=
4

(b− a)2

∫ b

a

u (x)
(

x− a + b

2

)
dx ≥ 0.
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The constant 1
2 in both inequalities is sharp.

Theorem 5. Let f, u : [a, b] → R be such that u is monotonic nondecreasing on
[a, b] , f is of bounded variation on [a, b] and the Stieltjes integral

∫ b

a
f (x) du (x)

exists. Then

|D (f ;u)| ≤ [u (b)− u (a)−Q (u)]
b∨
a

(f)(1.12)

≤ [u (b)− u (a)]
b∨
a

(f) ,

where

(1.13) Q (u) :=
1

b− a

∫ b

a

sgn
(

x− a + b

2

)
u (x) dx ≥ 0.

The first inequality in (1.12) is sharp.

The main aim of this paper is to establish new sharp inequalities for the func-
tional D (·; ·) in the assumption that the integrator u in the Stieltjes integral∫ b

a
f (x) du (x) is convex on [a, b] . Applications for the Čebyšev functional of two

Lebesgue integrable function are also given.

2. Inequalities for Convex Integrators

The following result may be stated:

Theorem 6. Let u : [a, b] → R be a convex function on [a, b] and f : [a, b] → R a
monotonic nondecreasing function on [a, b] . Then

0 ≤ D (f ;u)(2.1)

≤ 2 ·
u′− (b)− u′+ (a)

b− a

∫ b

a

(
t− a + b

2

)
f (t) dt

≤



1
2

[
u′− (b)− u′+ (a)

]
max {|f (a)| , |f (b)|} (b− a) ;

1

(q+1)
1
q

[
u′− (b)− u′+ (a)

]
‖f‖p (b− a)

1
q

if p > 1, 1
p + 1

q = 1;[
u′− (b)− u′+ (a)

]
‖f‖1 .

Proof. Integrating by parts in the Stieltjes integral, we have∫ b

a

Φ (t) df (t) =
[
(t− a) u (b) + (b− t)u (a)

b− a
− u (t)

]
f (t)

∣∣∣∣b
a

(2.2)

−
∫ b

a

f (t) d

[
(t− a) u (b) + (b− t) u (a)

b− a
− u (t)

]
= [u (b)− u (b)] f (b)− [u (a)− u (a)] f (a)

−
∫ b

a

f (t)
[
u (b)− u (a)

b− a
dt− du (t)

]
=

∫ b

a

f (t) du (t)− u (b)− u (a)
b− a

∫ b

a

f (t) dt = D (f ;u) ,
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for any u a continuous function on [a, b] and f of bounded variation on [a, b] .
This identity has been established in [1]. In equation (56) in [1], there is a

typographical error in the first equation. The definition of Φ is provided in (1.6).
The fact that D (f ;u) ≥ 0 for u convex and f monotonic nondecreasing on [a, b]

has been proven earlier in [1]. For the sake of completeness we give here a different
and simpler proof as well.

Since u is convex, then

t− a

b− a
· u (b) +

b− t

b− a
· u (a) ≥ u

[
(t− a) b + (b− t) a

b− a

]
= u (t) ,

for any t ∈ [a, b] . Thus, Φ (t) ≥ 0 for t ∈ [a, b] and since f is monotonic nondecreas-
ing, then

∫ b

a
Φ (t) df (t) ≥ 0.

Now, for any convex function Φ : [a, b] → R we have

(2.3) Φ (x)− Φ (y) ≥ Φ′
± (y) (x− y) for any x, y ∈ (a, b)

where Φ′
± are the lateral derivatives of the convex function Φ. Then, on using (2.3),

we have

u′ (t)− u (b) ≥ u′− (b) (t− b) .

If we multiply this inequality by t− a ≥ 0, we get

(2.4) (t− a) u (t)− (t− a) u (b) ≥ u′− (b) (t− b) (t− a) .

Similarly, we have

(2.5) (b− t) u (t)− (b− t) u (a) ≥ u′+ (a) (t− a) (b− t) .

Adding (2.4) with (2.5) and dividing by b− a, we deduce:

u (t)− (t− a) u (b) + (b− t) u (a)
b− a

≥ (b− t) (t− a)
b− a

[
u′+ (a)− u′− (b)

]
giving the inequality:

(2.6) 0 ≤ (t− a) u (b) + (b− t)u (a)
b− a

− u (t) ≤ (b− t) (t− a)
b− a

[
u′− (b)− u′+ (a)

]
.

Integrating this inequality, we get∫ b

a

Φ (t) df (t) ≤
[
u′− (b)− u′+ (a)

]
b− a

∫ b

a

(b− t) (t− a) df (t) .

On the other hand∫ b

a

(b− t) (t− a) df (t) = f (t) (b− t) (t− a)
∣∣∣∣b
a

−
∫ b

a

f (t) [−2t + (a + b)] dt

= 2
∫ b

a

f (t)
(

t− a + b

2

)
dt,

giving the second inequality in (2.1).
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Utilising Hölder’s inequality, we have

∫ b

a

(
t− a + b

2

)
f (t) dt ≤



sup
t∈[a,b]

|f (t)|
∫ b

a

∣∣t− a+b
2

∣∣ dt;

(∫ b

a
|f (t)|p dt

) 1
p

(∫ b

a

∣∣t− a+b
2

∣∣q dt
) 1

q

if p > 1, 1
p + 1

q = 1;

sup
t∈[a,b]

∣∣t− a+b
2

∣∣ ∫ b

a
|f (t)| dt,

=



1
4 max {|f (a)| , |f (b)|} (b− a)2 ;

1
2 ·

1

(q+1)
1
q
‖f‖p (b− a)1+

1
q

if p > 1, 1
p + 1

q = 1;

1
2 ‖f‖1 (b− a) ,

and the last part of (2.1) is proved.
Now, for the best possible constant.
Assume that (2.1) holds with a constant C instead of 2, i.e.,

(2.7) D (f ;u) ≤ C ·
u′− (b)− u′+ (a)

b− a

∫ b

a

(
t− a + b

2

)
f (t) dt,

where u is convex on [a, b] and f is monotonic nondecreasing on [a, b] .
Consider u (t) :=

∣∣t− a+b
2

∣∣ and f (t) = sgn
(
t− a+b

2

)
. Then u is convex on [a, b]

and f is monotonic nondecreasing on [a, b] . We have

D (f ;u) =
∫ a+b

2

a

(−1) d

(
a + b

2
− t

)
+

∫ b

a+b
2

(+1) d

(
t− a + b

2

)
=

∫ b

a

dt = (b− a) ,

u′− (b)− u′+ (a) = 2

and ∫ b

a

(
t− a + b

2

)
f (t) dt =

∫ b

a

(
t− a + b

2

)
sgn

(
t− a + b

2

)
dt

=
∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ dt =
(b− a)2

4
.

Therefore, from (2.7) we get

b− a ≤ C (b− a)
2

,

giving that C ≥ 2. The fact that 1
2 is best possible goes likewise and we omit the

details.

The following result may be stated as well:
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Theorem 7. Let u : [a, b] → R be a continuous convex function on [a, b] and
f : [a, b] → R a function of bounded variation on [a, b] . Then

(2.8) |D (f ;u)| ≤ 1
4

[
u′− (b)− u′+ (a)

]
(b− a)

b∨
a

(f) ,

where
∨b

a
(f) denotes the total variation of f on [a, b] .

The constant 1
4 is best possible in (2.8).

Proof. It is well known that if p : [a, b] → R is continuous on [a, b] and v : [a, b] → R
is of bounded variation on [a, b] , then the Stieltjes integral

∫ b

a
p (t) dv (t) exists and

(2.9)

∣∣∣∣∣
∫ b

a

p (t) dv (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

|p (t)|
b∨
a

(f) .

Utilising the inequality (2.6) we have

sup
t∈[a,b]

∣∣∣∣ (t− a) u (b) + (b− t)u (a)
b− a

− u (t)
∣∣∣∣

≤
u′− (b)− u′+ (a)

b− a
sup

t∈[a,b]

[(b− t) (t− a)]

=
1
4

(b− a)
[
u′− (b)− u′+ (a)

]
.

Now, utilising the identity (2.2) and the property (2.9), we have

|D (f ;u)| ≤ sup
t∈[a,b]

|Φ (t)|
b∨
a

(f)

≤ 1
4

(b− a)
[
u′− (b)− u′+ (a)

]
and the inequality (2.8) is proved.

Now, for the best constant.
Assume that there exists D > 0 such that

(2.10) |D (f ;u)| ≤ D
[
u′− (b)− u′+ (a)

]
(b− a)

b∨
a

(f)

provided that u is continuous convex and f is of bounded variation on [a, b] .
If we choose u (t) =

∣∣t− a+b
2

∣∣ and f (t) = sgn
(
t− a+b

2

)
, then (see the proof of

Theorem 6)

D (f ;u) = b− a, u′− (b)− u′+ (a) = 2 and
b∨
a

(f) = 2

giving in (2.10) that b− a ≤ 4D (b− a) which implies D ≥ 1
4 .

The following result may be stated.

Theorem 8. Let u : [a, b] → R be a convex function on [a, b] and f : [a, b] → R a
Lipschitzian function with the constant L > 0, i.e.,

(2.11) |f (t)− f (s)| ≤ L |t− s| for each t, s ∈ [a, b] .
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Then

(2.12) |D (f ;u)| ≤ 1
6
L (b− a)2

[
u′− (b)− u′+ (a)

]
.

Proof. It is well known that if p : [a, b] → R is Riemann integrable on [a, b] and
v : [a, b] → R is Lipschitzian with the constant L > 0, then the Stieltjes integral∫ b

a
p (t) du (t) exists and

(2.13)

∣∣∣∣∣
∫ b

a

p (t) dv (t)

∣∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt.

Utilising the identity (2.6) and the property (2.13), we have

|D (f ;u)| ≤ L

∫ b

a

∣∣∣∣∣ (b− t) (t− a)
[
u′− (b)− u′+ (a)

]
b− a

∣∣∣∣∣ dt

=
L

b− a

[
u′− (b)− u′+ (a)

] ∫ b

a

(b− t) (t− a) dt

=
1
6
L (b− a)2

[
u′− (b)− u′+ (a)

]
,

and the theorem is proved.

Remark 1. It is an open problem if the constant 1
6 above is sharp.

3. Applications for the Čebyšev Functional

For the Lebesgue integrable functions f, g : [a, b] → R with fg an integrable
function, consider the Čebyšev functional C, defined by

C (f, g) =
1

b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx.

The following result may be stated.

Proposition 1. If f, g are monotonic nondecreasing functions, then

0 ≤ C (f, g)(3.1)

≤ 2 · g (b)− g (a)
b− a

· 1
b− a

∫ b

a

(
t− a + b

2

)
f (t) dt

≤



1
2 [g (b)− g (a)]max {|f (a)| , |f (b)|} ;

1

(q+1)
1
q

[g (b)− g (a)] ‖f‖p (b− a)
1
q−1

if p > 1, 1
p + 1

q = 1;

g(b)−g(a)
b−a ‖f‖1 .

The constants 2 and 1
2 are best possible.

The proof is obvious by Theorem 6 on choosing u : [a, b] → R, u (t) :=
∫ t

a
g (s) ds.

The sharpness of the constant follows as in the proof of Theorem 6 for f, g : [a, b] =
1, f (t) = g (t) = sgn

(
t− a+b

2

)
.

The following result may be stated as well:
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Proposition 2. If g is monotonic nondecreasing on [a, b] and f is of bounded
variation on [a, b] , then

(3.2) |C (f, g)| ≤ 1
4

[g (b)− g (a)]
b∨
a

(f) .

The constant 1
4 is best possible in (3.2).

The proof follows by Theorem 7 and the details are omitted.
Finally, on utilising Theorem 8, we can state

Proposition 3. If g is monotonic nondecreasing and f is L−Lipschitzian on [a, b] ,
then

|C (f, g)| ≤ 1
6
L (b− a) [g (b)− g (a)] .
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