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Abstract

In this paper, we shall consider higher order nonlinear neutral delay differential
equation of the type

[x(t) + p(t)x(τ(t))](n) + q(t) [x(σ(t))]α = 0, t ≥ t0, n ∈ N, (*)

wherep ∈ C ([t0,∞) , R) is oscillatory andlim
t→∞

p(t) = 0, q ∈ C
(
[t0,∞) , R+

)
,

τ, σ ∈ C ([t0,∞) , R), τ(t), σ(t) < t, lim
t→∞

τ(t) = lim
t→∞

σ(t) =∞ andα ∈ (0,∞)

is a ratio of odd positive integers. Ifα ∈ (0, 1), equation (*) is called a sublinear
equation, whenα ∈ (1,∞), it is called a superlinear equation. We obtain sufficient
conditions for the oscillation of all solutions of this equation.
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1 Introduction

We consider the following higher order nonlinear neutral delay differential equation:

[x(t) + p(t)x(τ(t))](n) + q(t) [x(σ(t))]α = 0, t ≥ t0, n ∈ N, (1.1)

wherep ∈ C ([t0,∞) , R) is oscillatory andlim
t→∞

p(t) = 0, q ∈ C
(
[t0,∞) , R+

)
, τ, σ ∈

C ([t0,∞) , R), τ(t), σ(t) < t, lim
t→∞

τ(t) = lim
t→∞

σ(t) = ∞ andα ∈ (0,∞) is a ratio of
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odd positive integers. Ifα ∈ (0, 1), equation (1.1) is called a sublinear equation, when
α ∈ (1,∞), it is called a superlinear equation.

Recently, there have been a lot of studies concerning the oscillatory behavior of
differential equations, see [1–10] and the references cited therein. In [3, 5, 7, 9] several
authors have investigated the following first order nonlinear delay differential equation,

x′(t) + q(t) [x(σ(t))]α = 0, t ≥ t0, (1.2)

whereq ∈ C
(
[t0,∞) , R+

)
, σ ∈ C ([t0,∞) , R), σ(t) < t, lim

t→∞
σ(t) = ∞ andα ∈

(0,∞) is a ratio of odd positive integers.
Whenα ∈ (0, 1), it is shown that every solution of the sublinear equation (1.2)

oscillates if and only if ∫ ∞

t0

q(s)ds =∞. (1.3)

Whenα = 1, (1.2) reduces to the linear delay differential equation

x′(t) + q(t)x(σ(t)) = 0, t ≥ t0. (1.4)

Recently, the oscillatory behavior of (1.4) has been discussed extensively in the litera-
ture. A classical result is (see [3–5]) that every solution of (1.4) oscillates if

lim inf
t→∞

∫ t

σ(t)

q(s)ds >
1

e
.

In [9], whenα ∈ (1,∞), Tang obtained the oscillatory behavior of equation (1.2). The
following is shown: Letσ be continuously differentiable andσ′ ≥ 0. Further, suppose
that there exists a continuously differentiable functionϕ such that

ϕ′(t) > 0 and lim
t→∞

ϕ(t) =∞,

lim sup
t→∞

αϕ′(σ(t))σ′(t)

ϕ′(t)
< 1,

and

lim inf
t→∞

q(t)e−ϕ(t)

ϕ′(t)
> 0.

Then every solution of the superlinear equation (1.2) oscillates. Furthermore, Tang
considered the special form of (1.2),

x′(t) + q(t) [x(t− σ)]α = 0, t ≥ t0 (1.5)

for which the following results was obtained: If there existsλ ∈
(
σ−1 ln α,∞

)
such

that
lim inf

t→∞
q(t)e−λt > 0, (1.6)
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then every solution of (1.5) oscillates. In [10], Zein and Abu-Kaff have investigated the
higher order nonlinear delay differential equation,

[x(t) + p(t)x(τ(t))](n) + f(t, x(t), x(σ(t))) = s(t), (1.7)

where p ∈ C ([t0,∞) , R), lim
t→∞

p(t) = 0, σ, τ ∈ C ([t0,∞) , R), τ(t), σ(t) < t,

lim
t→∞

τ(t) = lim
t→∞

σ(t) = ∞, f : R+ × R× R→ R is continuous,yf(t, x, y) > 0

for xy > 0, there exists an oscillatory functionr ∈ Cn(R+, R), such thatr(n) = s,
lim
t→∞

r(t) = 0.

In [1] Agarwal and Grace, in [4] Grace and Lalli studied oscillatory behavior of
certain higher order differential equations.

Our aim in this paper is to obtain sufficient conditions for the oscillation of all solu-
tions of (1.1).

We need the following result for our subsequent discussion.

Lemma 1.1 (See [9]).Assume that for larget

q(s) 6= 0 for all s ∈ [t, t∗] ,

wheret∗ satisfiesσ (t∗) = t. Then

x′(t) + q(t) [x(σ(t))]α = 0, t ≥ t0

has an eventually positive solution if and only if the corresponding inequality

x′(t) + q(t) [x(σ(t))]α ≤ 0, t ≥ t0

has an eventually positive solution.

Lemma 1.2 (See [6]).Letz be a positive andn-times differentiable function on[t0,∞).
If z(n) is of constant sign fort ≥ t0 and not identically zero on any interval[t∗,∞) for
somet∗ ≥ t0, then there exists atz ≥ t0 and an integerm, 0 ≤ m ≤ n with (n + m)
odd forz(n)(t) ≤ 0, or (n + m) even forz(n)(t) ≥ 0, and such that for everytz ≥ t0,

m ≤ n− 1 implies(−1)m+kz(k)(t) > 0, k = m, m + 1, . . . , n− 1,

and
m > 0 impliesz(k)(t) > 0, k = 0, 1, . . . ,m− 1.

Lemma 1.3 (See [8]).Let z be as in Lemma 1.2. If in additionlim
t→∞

z(t) 6= 0 and

z(n−1)(t)z(n)(t) ≤ 0 for everyt ≥ tz, then for everyλ ∈ (0, 1), the following holds:

z(t) ≥ λ

(n− 1)!
tn−1z(n−1)(t), for all large t.
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2 Sufficient Conditions for Oscillation of (1.1)

Theorem 2.1.Letn be even andlim
t→∞

p(t) = 0. If the differential equation

w′(t) + c(t) [w(σ(t))]α = 0, (2.1)

where

c(t) = q(t)

(
1

2

λ

(n− 1)!
(σ(t))n−1

)α

, λ ∈ (0, 1). (2.2)

is oscillatory, then every bounded solutionx of equation(1.1) is oscillatory.

Proof. Let x be a bounded nonoscillatory solution of (1.1). Without loss in the general-
ity we may assume that

x(t), x(τ(t)), x(σ(t)) > 0

for all t ≥ t1 wheret1 ≥ t0. Set

z(t) = x(t) + p(t)x(τ(t)), (2.3)

and
z(n)(t) = −q(t) [x(σ(t))]α ≤ 0, (2.4)

for all t ≥ t0. It follows that z(i) (i = 0, 1, . . . , n − 1) is strictly monotonic and of
constant sign eventually. Sincex is bounded, and using the fact thatlim

t→∞
p(t) = 0, it

follows from (2.3) thatz is also bounded. Becausen is even, we have by Lemma 1.2
thatm = 1 (otherwise,z is not bounded) there exists at2 ≥ t1 such that fort ≥ t2

(−1)k+1z(k)(t) > 0 , (k = 1, . . . , n− 1) . (2.5)

In particular, sincez′(t) > 0 for all t ≥ t2 and soz is increasing. Sincex is bounded,
lim
t→∞

p(t)x(τ(t)) = 0. Then there exists at3 ≥ t2 by (2.3),

x(t) = z(t)− p(t)x(τ(t)) ≥ 1

2
z(t) > 0

for all t ≥ t3. Also note thatz does not tend to zero since it is increasing. We may find
a t4 ≥ t3 such that

x(σ(t)) ≥ 1

2
z(σ(t)) > 0 and [x(σ(t))]α ≥

[
1

2
x(σ(t))

]α

hold for all t ≥ t4. From (2.4) and (2.6), we obtain the result of

z(n)(t) + q(t)

[
1

2
z(σ(t))

]α

≤ 0 (2.6)
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for all t ≥ t4. By Lemma 1.3, inequality (2.6) can be written as

z(n)(t) + q(t)

[
1

2

λ

(n− 1)!
(σ(t))n−1

]α [
z(n−1)(σ(t))

]α ≤ 0 (2.7)

for all t ≥ t4. If we chosez(n−1) = w, then

w′(t) + q(t)

(
1

2

λ

(n− 1)!
(σ(t))n−1

)α

[w(σ(t))]α ≤ 0, for t ≥ t4. (2.8)

Therefore by Lemma 1.1, (2.8) has an eventually positive solution. This is a contradic-
tion. The proof is complete.

Theorem 2.2.Letn be odd andlim
t→∞

p(t) = 0. If the differential equation

w′(t) + c(t) [w(σ(t))]α = 0, (2.9)

where

c(t) = q(t)

(
1

2

λ

(n− 1)!
(σ(t))n−1

)α

, λ ∈ (0, 1) (2.10)

is oscillatory, then every bounded solutionx of equation(1.1) is either oscillatory or
tends to zero ast→∞.

Proof. Let x be a bounded nonoscillatory solution of (1.1), with

x(t), x(τ(t)), x(σ(t)) > 0

for all t ≥ t1 wheret1 ≥ t0. Further, we assume thatx does not tend to zero ast→∞.
Setz(t) = x(t)+p(t)x(τ(t)), and by (2.4),z(i) (i = 0, 1, . . . , n−1) is strictly monotonic
and of constant sign eventually. Sincep is an oscillating function,lim

t→∞
p(t) = 0, andx

is bounded, there exists at2 ≥ t1 such thatz(t) > 0 for all t2 ≥ t1. Sincex is bounded,
by using lim

t→∞
p(t) = 0, it follows from (2.3) thatz is also bounded. Becausen is odd,

by Lemma 1.2, sincem = 0, there exists at3 ≥ t2 such that

(−1)kz(k)(t) > 0, k = 0, 1, . . . , n− 1 (2.11)

for all t ≥ t3. In particular, sincez′(t) < 0 for all t ≥ t3, z is decreasing. Sincex is
bounded,lim

t→∞
p(t)x(τ(t)) = 0 by lim

t→∞
p(t) = 0. Then there exists at4 ≥ t3 such that

x(t) = z(t)− p(t)x(τ(t)) ≥ 1

2
z(t) > 0

for t ≥ t4. Also note thatz does not tend to zero ast → ∞ sincex does not tend to
zero ast→∞. We may find at5 ≥ t4 such that for allt ≥ t5 we have

x(σ(t)) ≥ 1

2
z(σ(t)) > 0 and [x(σ(t))]α ≥

[
1

2
z(σ(t))

]α

. (2.12)
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From (2.4) and (2.12), we obtain

z(n)(t) + q(t)

[
1

2
z(σ(t))

]α

≤ 0

for all t ≥ t5. By Lemma 1.3, inequality (2.12) can be written as

z(n)(t) + q(t)

(
1

2

λ

(n− 1)!
[σ(t)]n−1

)α [
z(n−1)(σ(t))

]α ≤ 0 (2.13)

for all t ≥ t5. If we chosez(n−1) = w, then

w′(t) + q(t)

(
1

2

λ

(n− 1)!
[σ(t)]n−1

)α

[w(σ(t))]α ≤ 0, for t ≥ t5. (2.14)

Therefore by Lemma 1.1, (2.14) has an eventually positive solution. This is a contra-
diction. The proof is complete.
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