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a b s t r a c t

In this sequel to our recent note [D. Cvijović, Values of the derivatives of the cotangent
at rational multiples of π , Appl. Math. Lett. http://dx.doi.org/10.1016/j.aml.2008.03.013]
it is shown, in a unified manner, by making use of some basic properties of certain special
functions, such as the Hurwitz zeta function, Lerch zeta function and Legendre chi function,
that the values of all derivatives of four trigonometric functions at rational multiples of π
can be expressed in closed form as simple finite sums involving the Bernoulli and Euler
polynomials. In addition, some particular cases are considered.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, Adamchik [1, p. 4, Eq. 26] solved completely a long-standing problem of finding a closed-form expression for
the higher derivatives of the cotangent function [1–3]. In a recent note [4], we have deduced closed-form expressions for
the values of the higher derivatives of the cotangent function at rational multiples ofπ , which are considerably simpler than
those found by Kölbig [3, Theorem 4].
In this sequel, by using different arguments,weprovide anothermore direct and shorter proof of this result (Theorem1(i))

and also derive corresponding (and previously unknown) simple closed-form formulae for the cosecant, tangent and secant
functions (Theorems 1(ii) and 2). More specifically, we show in a unified manner (by making use of the properties of certain
special functions, such as the Hurwitz zeta function, Lerch zeta function and Legendre chi function) that the values of all
derivatives of these trigonometric functions at rationalmultiples ofπ can be expressed as finite sums involving the Bernoulli
and Euler polynomials.

2. Statement and proof of the results

In what follows, we set ı :=
√
−1, an empty sum is interpreted as zero, and the classical Bernoulli and Euler polynomials,

Bn(x) and En(x), are defined by [5, pp. 59 and 63]:

t etx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π) and

2 etx

et + 1
=

∞∑
n=0

En(x)
tn

n!
(|t| < π)

(n ∈ N0 := N ∪ 0;N := 1, 2, 3, . . .).

(2.1)
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Our main results are as follows.

Theorem 1. If n, p, q ∈ N and p and q are such that 1 ≤ p < q, then, in terms of the Bernoulli polynomials Bn(x), we have:

(i)
dn

dxn
cot(πx)

∣∣∣∣
x= pq

= ın+1
2 (2πq)n

n+ 1

q∑
α=1

e
2π ıαp
q Bn+1

(
α

q

)
;

(ii)
dn

dxn
csc(πx)

∣∣∣∣
x= pq

= ın+1
2 (2πq)n

n+ 1

q∑
α=1

e
π ı(2α−1)p

q Bn+1

(
2α − 1
2 q

)
.

Theorem 2. If n, p ∈ N, q ∈ N \ {1, 2} and p and q are such that 1 ≤ p < q/2, then, in terms of the Bernoulli and Euler
polynomials, Bn(x) and En(x), we have:

(i)
dn

dxn
tan(πx)

∣∣∣∣
x= pq

= ın+1 (2πq)n
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q
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−En
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q is odd

2
n+ 1
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(
α

q
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(ii)
dn

dxn
sec(πx)
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x= pq

= ın(2πq)n ·
q∑

α=1

(−1)α−1e
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q
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2
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(
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)
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Remark 1. As the following examples show, the above formulae can be rewritten in a somewhat different form:

csc(πx)(2n−1)
∣∣
x= pq
=
(−1)n(2πq)2n−1

n
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α=1

B2n
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2 q

)
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)
,
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x= pq
=
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)
.

Further, it should be noted that a number of simpler expressions could be obtained by specializing the results for x =
1
2 ,
1
3 ,
2
3 ,
1
4 ,
3
4 ,
1
6 and

5
6 . For instance:

csc(πx)(2n−1)
∣∣
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= 0, csc(πx)(2n)
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)
;
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B2n(0)
n
;
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.

Let ζ (s, a) and ζ ∗(s, a) denote, respectively, the Hurwitz (or generalized) zeta function defined by [5, p. 96]:

ζ (s, a) :=
∞∑
k=0

1
(k+ a)s

(a 6∈ Z−0 := {0,−1,−2,−3, . . .}; R(s) > 1) (2.2)

and its alternating counterpart defined by (see e.g. [6, p. 761]):

ζ ∗(s, a) :=
∞∑
k=0

(−1)k

(k+ a)s
(a 6∈ Z−0 ; R(s) > 0), (2.3)

and observe that the following relationships hold [5, p. 85, Eq. 17]:

ζ (1− n, a) = −
Bn(a)
n

(n ∈ N) (2.4)

and [6, p. 761, Eq. 2.3]

ζ ∗(−n, a) =
1
2
En(a) (n ∈ N0). (2.5)
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Proof of Theorem 1. Our proof requires the use of the Lerch zeta function and the Legendre chi function which are defined,
respectively, by the series [5, p. 89, Eq. 7]:

`s(ξ) :=

∞∑
k=1

e2π ıkξ

ks
(ξ ∈ R;R(s) > 1), (2.6)

and (see, for instance, [7]):

χs(z) :=
∞∑
k=0

z2k+1

(2k+ 1)s
(|z| ≤ 1;R(s) > 1), (2.7)

and their meromorphic continuations over the whole s-plane. First, we shall show that

`0(ξ) = −
1
2
+
ı
2
cot(πξ), `1−n(ξ) =

ı
2(2π ı)n−1

dn−1

dξ n−1
cot(πξ) (ξ ∈ R \ Z; n ∈ N \ {1}) (2.8)

and

χ1−n(eπ ı ξ ) =
ı

2(π ı)n−1
dn−1

dξ n−1
csc(πξ) (ξ ∈ R \ Z; n ∈ N). (2.9)

To prove (2.8) note that

∂

∂ξ
`s(ξ) = 2π ı `s−1(ξ), (2.10)

which, in turn, follows from (2.6) for R(s) > 2 and by analytic continuation for all s. The definition in (2.6) also yields
`1(ξ) = − log

(
1− e2π ı ξ

)
(ξ ∈ R \ Z) and from this we obtain `0(ξ) by (2.10). Using (2.10) repeatedly with initial value

`0(ξ) leads to `1−n(ξ) given by (2.8). Likewise, we have (2.9) by making use of

∂

∂ξ
χs(eπ ı ξ ) = π ıχs−1(eπ ı ξ ) (2.11)

and

χ0(eπ ı ξ ) =
ı
2
csc(πξ) (ξ ∈ R \ Z). (2.12)

Second, from (2.6), we obtain (cf. [8, p. 1531])

`s

(
p
q

)
=

∞∑
k= 0

e2π ı (k+1)p/q

(k+ 1)s
=

q−1∑
α= 0

∞∑
k= 0

e2π ıkp e2π ı(α+1)p/q

qs(k+ (α + 1)/q)s
,

so that, in view of the definition in (2.2), we have (see [8, p. 1530, Eq. 8(a)])

`s

(
p
q

)
=
1
qs

q∑
α=1

ζ

(
s,
α

q

)
e
2π ıαp
q (p, q ∈ N; p = 1, . . . , q). (2.13)

Similarly, starting from (2.7), we find that

χs

(
e
π ıp
q
)
=

1
(2q)s

q∑
α=1

ζ

(
s,
2α − 1
2q

)
e
π ı(2α−1)p

q (p, q ∈ N; p = 1, . . . , q). (2.14)

It should be noted that (2.13) and (2.14) are derived for R(s) > 1 but, by the principle of analytic continuation, they hold
true for any complex s, s 6= 1.
Lastly, set s = 1 − n (n ∈ N \ {1}). Part (i) now follows at once by applying (2.13) in conjunction with (2.8) and (2.4).

Also, Eq. (2.14), in conjunction with (2.9) and (2.4), gives part (ii). �

Proof of Theorem 2. Instead of the functions `s(ξ) and χs(z) used above, we now introduce the functions `∗s (ξ) and χ
∗
s (z)

by means of the series

`∗s (ξ) :=

∞∑
k=1

(−1)k−1
e2π ıkξ

ks
(ξ ∈ R;R(s) > 0) (2.15)
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and

χ∗s (z) :=
∞∑
k=0

(−1)k
z2k+1

(2k+ 1)s
(|z| ≤ 1;R(s) > 0), (2.16)

and their meromorphic continuations over the whole s-plane.
The proof follows precisely along the same lines as that of Theorem 1: We first show that

`∗0(ξ) =
1
2
+
ı
2
tan(πξ), `∗1−n(ξ) =

ı
2(2π ı)n−1

dn−1

dξ n−1
tan(πξ)(

ξ ∈ R \
{
(2k+ 1)

1
2
|k ∈ Z

}
; n ∈ N \ {1}

)
(2.17)

and

χ∗1−n(e
π ı ξ ) =

ı
2(π ı)n−1

dn−1

dξ n−1
sec(πξ)

(
ξ ∈ R \

{
(2k+ 1)

1
2
|k ∈ Z

}
; n ∈ N

)
. (2.18)

We next establish the following formulae valid for p, q ∈ N (p = 1, . . . , q):

`∗s

(
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q

)
=
1
qs
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(−1)α−1e
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q


ζ ∗
(
s,
α

q

)
q is odd
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(
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α

q
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(2.19)

χ∗s

(
p
q

)
=
1
qs

q∑
α=1

(−1)α−1e
π ı(2α−1)p

q


ζ ∗
(
s,
2α − 1
2q

)
q is odd

ζ

(
s,
2α − 1
2q

)
q is even

(2.20)

and finally set s = 1− n (n ∈ N \ {1}). It is straightforward to see that part (i) is obtained by (2.19) together with (2.15) and
either (2.4) or (2.5). Also, Eq. (2.20), together with (2.16) and either (2.4) or (2.5), yields part (ii). �
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