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a b s t r a c t

In this work, in the light of the Razumikhin stability theorem combined with the
Newton–Leibniz formula, a new delay-dependent exponential stability condition is
first derived for linear non-autonomous time delay systems without using model
transformation and bounding techniques on the derivative of the time-varying delay
function. The condition is presented in terms of the solution of Riccati differential
equations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, special interest has been devoted to the exponential stability problem for linear time delay systems [1–4]. For
example, stability conditions for the systems where the time-varying delay function h(t) satisfies

h(t) ≤ h, ḣ(t) ≤ δ < 1,

are given in [5,6]. In [7], the stability conditions have been improved by removing the condition δ < 1. A Razumikhin
approach is used in [8,7] for studying the stability of linear autonomous systems without a differentiability assumption on
the time delay function and the conditions are presented in terms of linear matrix inequalities (LMIs). It is obvious that the
results of these works cannot be extended to non-autonomous time delay systems due to the unsolved infinite systems of
LMIs. Some results in [5,6] are extended to linear non-autonomous systems with time-varying delays. Although the results
in [5,6] are shown to be less conservative than some existing ones, they still require some restriction on the derivative of
the time-varying delay function. To the best of the authors’ knowledge, the issue of exponential stability for linear non-
autonomous systems without restriction on the derivative of the time delay function remains open, which motivated this
work.
In this work, wewill consider the problem of exponential stability for linear non-autonomous systemswith time-varying

delay. The restriction on the derivative of the time delay function is removed, which means that a fast time-varying delay
is allowed. On the basis of the Razumikhin theorem combined with the Newton–Leibniz formula, a new delay-dependent
exponential stability condition for the system is first derived in terms of the solution of Riccati differential equations, which
allow us to compute simultaneously the two bounds that characterize the stability rate of the solution.
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2. Preliminaries

We start by introducing some notation and definitions that will be employed throughout the work. R+ denotes the
set of all real non-negative numbers; Rn denotes the n-dimensional space; 〈x, y〉 or xTy denotes the scalar product of
two vectors x, y; ‖x‖ denotes the Euclidean norm of x; Rn×r denotes the space of all (n × r) matrices; λ(A) denotes
the set of all eigenvalues of A; λmax(A) = max{Reλ : λ ∈ λ(A)};µ(A) denotes the matrix measure of A defined by
µ(A) = 1

2λmax(A + A
T); C([−h, 0], Rn) denotes the Banach space of all Rn valued continuous functions mapping [−h, 0]

into Rn; BM+(0,∞) denotes the set of all symmetric positive semi-definite matrix functions bounded in t ≥ 0.
Consider a linear non-autonomous system with time-varying delay of the form

ẋ(t) = A(t)x(t)+ A1(t)x(t − h(t)), t ≥ 0,
x(t) = φ(t), t ∈ [−h, 0],

(2.1)

where h ≥ 0, x(t) ∈ Rn, A(t), A1(t) ∈ Rn are given matrix functions, which are continuous and bounded in t ≥ 0;φ(t) ∈
C([−h, 0], Rn) is the initial function with the norm ‖φ‖ = sups∈[−h,0] ‖φ(s)‖. The time delay function h(t) is continuous and
satisfies

0 ≤ h(t) ≤ h, ∀t ≥ 0.

The condition on h(t)means that the upper bound for the time-varying delay is available, and no restriction on the derivative
of h(t) is needed, which allows the time delay to be a fast time-varying function.

Definition 2.1. The zero solution of system (2.1) is said to be exponentially stable if there exist positive numbers N, α such
that every solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤ N‖φ‖e−α(t−t0), ∀t ≥ t0 ≥ 0.

The following results are needed for the proof of the main result.

Proposition 2.1 (Cauchy Inequality). For any symmetric positive definite matrix W ∈ Rn×n and x, y ∈ Rn, we have

+2〈x, y〉 ≤ 〈Wx, x〉 + 〈W−1y, y〉.

Proposition 2.2 (Razumikhin Stability Theorem [9]). Assume that u, v, w : R+ → R+ are nondecreasing, and u(s), v(s) are
positive for s ≥ 0, v(0) = u(0) = 0, and q > 1. If there is a function V (t, x) : R+ × Rn → R+ such that:

(i) u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), t ∈ R+, x ∈ Rn,
(ii) V̇ (t, x(t)) ≤ −w(‖x(t)‖) if V (t + s, x(t + s)) ≤ qV (t, x(t)),∀s ∈ [−h, 0], t ≥ 0,

then the zero solution of system (2.1) is asymptotically stable.

Proposition 2.3 ([10]). For any matrices A, P, E, F ,H with appropriate dimensions and P > 0, F TF ≤ I and scalar ρ > 0, we
have:

(i) EFH + HTF TET ≤ ρ−1EET + ρHTH;
(ii) if ρI − HPHT > 0 then

(A+ EFH)P(A+ EFH)T ≤ APAT + APHT(ρI − HPHT)−1HPAT + ρ−1EET.

3. Main result

In this section, sometimes for the sake of brevity, we will omit the arguments of matrix functions if it does not cause any
confusion. Given positive numbers λ, h, β, ε we set

Pβ(t) = P(t)+ βI, p = sup
t∈R+
‖P(t)‖,

a = sup
t∈R+
‖A(t)AT(t)‖, a1 = sup

t∈R+
‖A1(t)AT1(t)‖,

µ(A) = sup
t∈R+

µ(A(t)), A(t) = A(t)+ A1(t),

A(t) = A(t)+ 2hβA1(t)AT1(t)+ 2hλ
−1I,

γ = 2βµ(A)+ 2hβ2a1 + 2hλ−1 + ε.
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Theorem 3.1. The zero solution of system (2.1) is exponentially stable if there exist positive numbers β, λ, ε where λ−1β ≥
max{a, a1}, and a matrix function P ∈ BM+(0,∞) such that the following Riccati differential equation holds:

Ṗ(t)+AT(t)P(t)+ P(t)A(t)+ 2hP(t)A1(t)AT1(t)P(t)+ γ I = 0. (RDE)

Moreover, the solution x(t, φ) satisfies the condition

‖x(t, φ)‖ ≤

√
p+ β
β
e−

ε
2(p+β) t‖φ‖, t ≥ 0.

Proof. We use the Newton–Leibniz formula

x(t)− x(t − h(t)) =
∫ t

t−h(t)
ẋ(s)ds,

and the system (2.1) leads to a new system

ẋ(t) = [A(t)+ A1(t)]x(t)− A1(t)
∫ t

t−h(t)
A(s)x(s)ds− A1(t)

∫ t

t−h(t)
A1(s)x(s− h(s))ds,

x(t) = ψ(t), t ∈ [−2h, 0].
(3.1)

Note that the system (3.1) requires an initial function ψ(t) on [−2h, 0] : ψ(s) = φ(s + h(0)),−h − h(0) ≤ s ≤
−h(0), ψ(s) = x(t + s),−h(0) ≤ s ≤ 0, and A(t) = A(0), A1(t) = A1(0), B(t) = B(0), t ∈ [−h, 0], and as shown
in [9], it is a special case of the system (2.1) such that the stability property of the system (3.1) will ensure the stability
property of the system (2.1). Therefore, we will consider the stability of the system (3.1) in order to ascertain the stability
of system (2.1). For the system of (3.1), we consider the following Lyapunov–Krasovskii functional:

V (t, x) = 〈P(t)x, x〉 + β‖x‖2,

where P(t) is a solution of (RDE). It is easy to see that

β‖x‖2 ≤ V (t, x) ≤ (p+ β)‖x‖2, ∀t ∈ R+, x ∈ Rn. (3.2)

The time derivative of V (t, x) along the trajectory of the system (3.1) is given by

V̇ (t, x(t)) = 〈(Ṗ + A
T
Pβ + PβA)x(t), x(t)〉 − 2〈Pβ(t)A1(t)

∫ t

t−h(t)
A(s)x(s)ds, x(t)〉

− 2〈Pβ(t)A1(t)
∫ t

t−h(t)
A1(s)x(s− h(s))ds, x(t)〉.

For the chosen number λ > 0, we have λa ≤ β, λa1 ≤ β; we get

λ〈A(t)AT(t)x, x〉 ≤ 〈Pβ(t)x, x〉, λ〈A1(t)AT1(t)x, x〉 ≤ 〈Pβ(t)x, x〉, ∀t ≥ 0, x ∈ R
n.

Therefore, the following estimates hold by applying Proposition 2.1 withW = I:

−2〈Pβ(t)A1(t)
∫ t

t−h(t)
A(s)x(s)ds, x(t)〉 =

∫ t

t−h(t)
−2〈Pβ(t)A1(t)A(s)x(s), x(t)〉ds

=

∫ t

t−h(t)
−2〈A(s)x(s), AT1(t)Pβ(t)x(t)〉ds

≤

∫ t

t−h(t)
〈Pβ(t)A1(t)AT1(t)Pβ(t)x(t), x(t)〉ds+

∫ t

t−h(t)
〈A(s)AT(s)x(s), x(s)〉ds

≤ h〈Pβ(t)A1(t)AT1(t)Pβ(t)x(t), x(t)〉 + λ
−1
∫ t

t−h(t)
〈Pβ(s)x(s), x(s)〉ds

≤ h〈Pβ(t)A1(t)AT1(t)Pβ(t)x(t), x(t)〉 + λ
−1
∫ 0

−h(t)
〈Pβ(t + s)x(t + s), x(t + s)〉ds.

Similarly,

−2〈Pβ(t)A1(t)
∫ t

t−h(t)
A1(s)x(s− h(s))ds, x(t)〉 ≤ h〈Pβ(t)A1(t)AT1(t)Pβ(t)x(t), x(t)〉

+ λ−1
∫ 0

−h(t)
〈Pβ(t + s− h(t + s))x(s− h(s)), x(s− h(s))〉ds
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Since 〈Pβ(t)x(t), x(t)〉 = V (t, x(t)), in the light of the Razumikhin theorem, we assume that for any real number q > 1 such
that

V (t + s, x(t + s)) < qV (t, x(t)), ∀s ∈ [−2h, 0],∀t ≥ 0

and using the condition (3.2), it is easy to obtain

V̇ (t, x(t)) ≤ 〈(Ṗ + A
T
Pβ + PβA)x(t), x(t)〉 + 2h〈PβA1AT1Pβx(t), x(t)〉 + 2hqλ

−1
〈Pβ(t)x(t), x(t)〉

≤ 〈(Ṗ + A
T
Pβ + PβA+ 2hPβA1AT1Pβ + 2hqλ

−1I)x(t), x(t)〉. (3.3)

Now taking q→ 1+, (3.3) leads to

V̇ (t, x(t)) ≤ 〈(Ṗ + A
T
Pβ + PβA+ 2hPβA1AT1Pβ + 2hλ

−1I)x(t), x(t)〉.

Therefore,

V̇ (t, x(t))〈(Ṗ +ATP + PA+ 2hPAT1A1P + γ I)x(t), x(t)〉.

Since P(t) is the solution of (RDE), we have

V̇ (t, x(t)) ≤ −ε‖x(t)‖2, ∀t ≥ 0, (3.4)

which, by the Razumikhin stability theorem, Proposition 2.2, implies the asymptotic stability of the system (3.1). To find the
exponential factor of the solution, integrating both sides of the inequality, due to of (3.4), V̇ (t, x(t)) ≤ 0 in t and using the
condition (3.2), we have

β‖x(t, φ)‖ ≤ V (t, x(t)) ≤ V (0, x(0))e−
ε
p+β t

and hence

‖x(t, φ)‖ ≤

√
p+ β
β
‖φ‖e−

ε
2(p+β) t , ∀t ≥ 0.

This completes the proof of the theorem. �

Remark 3.1. Note that from theproof of Theorem3.1, the condition (RDE) can be relaxed via the followingmatrix inequality:

Ṗ(t)+AT(t)P(t)+ P(t)A(t)+ 2hP(t)A1(t)AT1(t)P(t)+ γ I ≤ 0.

As an application, we apply the result obtained to the exponential stability of linear uncertain systems with time-varying
delay considered in [11,12]:

ẋ(t) = (A+ H∆(t)E)x(t)+ (A1 + H∆1(t)E1)x(t − h(t)), t ≥ 0,
x(t) = φ(t), t ∈ [−h, 0],

(3.5)

where 0 ≤ h(t) ≤ h, A, A1,H, E, E1 are constant matrices of appropriate dimensions and ∆(t),∆1(t) are unknown time-
varying uncertain matrices that satisfy

∆T(t)∆(t) ≤ I, ∆T1(t)∆1(t) ≤ I.

We have the following corollary.

Corollary 3.1. The system (3.5) is exponentially stable if there exist a symmetric positive definite matrix X and positive numbers
β, λ, εi, i = 1, 2, 3, 4, such that λ−1β ≥ max{a, a1}, ε4I − E1ET1 > 0 and the following LMI hold:

Ω γ X XET XET1 2
√
hA1ET1

γ X −γ I 0 0 0
EX 0 −ε2I 0 0
E1X 0 0 −ε3I 0

2
√
hE1AT1 0 0 0 −

(
ε4I − E1ET1

)
 ≤ 0, (3.6)

where

A = A+ A1; γ = 2βµ(A)+ 4hβ2a1 + 2hλ−1 + ε1;

Ω = X
(
A+ 2hλ−1I

)T
+

(
A+ 2hλ−1I

)
X +

(
ε2 + ε3 + 4hε4

)
HHT + 4hA1AT1.
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Moreover, the solution x(t, φ) of the system (3.5) satisfies

‖x(t, φ)‖ ≤ Ne−σ t‖φ‖, t ≥ 0,

where N =

√
λ−1min(X)+β

β
, σ =

ε1
2(λ−1min(X)+β)

.

Proof. Define A(t) = A+ H∆(t)E, A1(t) = A1 + H∆1(t)E1 and P = X−1; then we have

AT(t)P + PA(t) = P(A+ 2hλ−1I)+ (A+ 2hλ−1I)TP + PH(∆(t)E +∆1(t)E1)+ (∆(t)E +∆1(t)E1)THTP

+ 2hβ(PA1(t)AT1(t)+ A1(t)A
T
1(t)P). (3.7)

Applying Proposition 2.3 implies

PH∆(t)E + ET∆T(t)HTP ≤ ε2PHHTP + ε−12 E
TE;

PH∆1(t)E1 + ET1∆
T
1(t)H

TP ≤ ε3PHHTP + ε−13 E
T
1E1;

2hβ(A1(t)AT1(t)P + PA1(t)A
T
1(t)) ≤ 2hPA1(t)A

T
1(t)P + 2hβ

2A1(t)AT1(t)
≤ 2hPA1(t)AT1(t)P + 2hβ

2a1I.

Therefore, from (3.7) we obtain

AT(t)P + PA(t) ≤ P(A+ 2hλ−1I)+ (A+ 2hλ−1I)TP + ε2PHHTP + ε3PHHTP + ε−12 E
TE + ε−13 E

T
1E1

+ 2hPA1(t)AT1(t)P + 2hβ
2a1I. (3.8)

Applying Proposition 2.3 again we have

A1(t)AT1(t) ≤ A1A
T
1 + A1E

T
1(ε4I − E1E

T
1)
−1E1AT1 + ε4HH

T.

Hence, taking (3.8) into account, we have

AT(t)P + PA(t)+ 2hPA1(t)AT1(t)P + γ I ≤ P(A+ 2hλ
−1I)+ (A+ 2hλ−1I)TP + 4hPA1AT1P

+ (ε2 + ε3 + 4hε4)PHHTP + ε−12 E
TE + ε−13 E

T
1E1 + 4hPA1E

T
1(ε4I − E1E

T
1)
−1E1AT1P + γ I. (3.9)

By pre-multiplying and post-multiplying the right hand side of (3.9) with X and using Schur complement theorem, it follows
that

AT(t)P + PA(t)+ 2hPA1(t)AT1(t)P + γ I ≤ 0.

By Theorem 3.1 and Remark 3.1, the system (3.5) is exponentially stable, which completes the proof of the corollary. �

Remark 3.2. Note that the stability conditionswere proposed in [2,5–7] under the assumption on the differentiability of the
delay function. Moreover, the use of the Newton–Leibniz formula in our method allows us to get less conservative stability
conditions. In the sequel, we shall show that the uncertain linear system (3.5)with fast-varying delay is exponentially stable,
while the nominal undelayed system is unstable.

Example 3.1. Consider uncertain linear system (3.5) where

h(t) =
{
0.03 sin t, if t ∈ I = [2kπ, (2k+ 1)π ], k = 0, 1, 2, . . .
0if t ∈ R+ \ I,

A =
(
1 −1
0 1

)
, A1 =

(
−4 1
0 −3

)
, H = I, E = 0.2I, E1 = 0.

It is easy to verify that the nominally undelayed system

ẋ(t) = Ax(t)

is unstable and the delay function h(t) is non-differentiable and thus the results of [2,5–7] are not applicable. However, for
λ = 0.25, β = 4, ε1 = 0.1, ε2 = ε3 = 0.5, ε4 = 1.04, then all conditions in Corollary 3.1 and LMI (3.6) are satisfied with

X =
(
0.8355 −0.0977
−0.0977 0.9549

)
.

By Corollary 3.1, the system is exponentially stable and the solution x(t, φ) satisfies

‖x(t, φ)‖ ≤ 1.149e−0.0095t‖φ‖, t ≥ 0.
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Remark 3.3. The sufficient stability condition in Theorem3.1 is given in terms of the solution of RDEs. Although the problem
of solving of RDEs is in general still not easily addressed, various effective approaches for finding the solutions of RDEs can
be found in [13,14].

4. Conclusions

This work has been concerned with the problem of exponential stability for linear non-autonomous systems with time-
varying delay. In the light of the Razumikhin stability theorem combined with the Newton–Leibniz formula, exponential
stability conditions are derived in terms of the solution of Riccati differential equations without assumption on the
differentiability of the time delay function.
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