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CHARACTERIZING PHYLOGENETICALLY DECISIVE TAXON

COVERAGE

MIKE STEEL AND MICHAEL J. SANDERSON

Abstract. Increasingly, biologists are constructing evolutionary trees on large numbers of
overlapping sets of taxa, and then combining them into a ‘supertree’ that classifies all the
taxa. In this paper, we ask how much coverage of the total set of taxa is required by these
subsets in order to ensure we have enough information to reconstruct the supertree uniquely.
We describe two results - a combinatorial characterization of the covering subsets to ensure
that at most one supertree can be constructed from the smaller trees (whatever trees these
may be) and a more liberal analysis that asks only that the supertree is highly likely to be
uniquely specified by the tree structure on the covering subsets.

1. Introduction

The scale of phylogenetic analysis has been growing steadily both in the number of taxa and
the number of loci. Data from different loci are combined either directly into a single inference or
indirectly by first building trees from each locus and combining trees as a “supertree”. Regardless
of approach, large-scale phylogenetic data sets derived from genome resources [3] or mining
databases like GenBank [4, 6, 10] tend to exhibit a high proportion of missing entries (taxa
missing from taxa sets for different loci or input trees) – 55% to 96% in the papers just cited.
Wiens [14] has argued that the effect of missing data on the accuracy of tree inference is minimal
as long as these missing data are randomly distributed and counterbalanced by enough data
overall.

However, the pattern of missing entries is highly nonrandom, especially in the data mining
studies, as the pattern is determined by numerous sample biases in the databases (for exam-
ples, see the PhyLoTA Browser database [7]). Moreover, few analytic results are available to
complement simulation based studies of this problem.

In this paper, we mathematically address the question of whether a given collection of subsets
of taxa would suffice to reconstruct a tree uniquely for all the taxa, if we can infer a tree correctly
on each of the subsets. Our study is also motivated by some recent mathematical work concerning
supertree construction under various taxon coverage conditions, [1, 8, 13].

1.1. Definitions. We begin by recalling some basic definitions from phylogenetic theory. Fol-
lowing [9], given a set X of taxa, a binary phylogenetic X–tree is a tree T in which the degree 1
vertices (leaves of T ) consist of the set X and all the remaining vertices of T are unlabelled and of
degree 3. Fig. 1 shows two of the 15 distinct binary phylogenetic X–trees for X = {1, 2, 3, 4, 5}.
For a binary phylogenetic tree T and a subset Y ofX , let T |Y denote the induced binary phyloge-
netic tree on leaf set Y (the tree obtained from the minimal subtree connecting Y by suppressing
any vertices of degree 2). A quartet tree is a binary phylogenetic tree on four leaves. For such
a tree, with leaves a, b, c, d, we write ab|cd if the interior edge of the tree separates the pair a, b
from c, d.
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Let S be a collection of subsets of a set X , and let n = |X | throughout. We say that S is
phylogenetically decisive if it satisfies the following property: If T and T ′ are binary phylogenetic
X–trees, with T |Y = T ′|Y for all Y ∈ S, then T = T ′. In other words, for any binary phylogenetic
X–tree T , the collection of induced subtrees {T |Y : Y ∈ S} uniquely determines T (up to
isomorphism).

Let QS be the set of all quartets from X that lie in at least one set in S. That is:

QS :=
⋃

Y ∈S

(

Y

4

)

.

Note that S is phylogenetically decisive if and only if QS is phylogenetically decisive since T |Y =

T ′|Y if and only if T |q = T ′|q for all q ∈
(

Y
4

)

[12]. It is easily shown that if S is phylogenetically
decisive then:

(

X

3

)

⊆
⋃

Y ∈S

(

Y

3

)

.

In other words, all three–taxon subsets of X must be present as a subset of some element Y of
S (this is Lemma 6.2.1 of [5]). However, this necessary condition for phylogenetic decisiveness
can be shown to be insufficient (an example is provided in [5]). One sufficient condition has been
known since 1992 [12]; namely if QS contains all quartets of the form {x0, x, y, z} for some fixed
x0 ∈ X , and all distinct x, y, z ∈ X − {x0}, then S is phylogenetically decisive. However, this
sufficient condition is not necessary, as the following example shows.

1.2. Example. Let S = {{1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5}, {1, 3, 4, 5}}. Then S is a phylogeneti-
cally decisive collection of subsets ofX = {1, 2, 3, 4, 5, }, that is, each of the 15 binary phylogenetic
X–trees is determined by the collection T |Y for Y ∈ S. For example, for the two trees T, T ′

in Fig. 1., we have different induced quartet trees T |Y = 12|34, T ′|Y = 13|24 by selecting the
taxon set Y = {1, 2, 3, 4} from S.. Notice that in this example, no element of X lies in every set
in S. Theorem 2 below will allow us to easily verify that S is phylogenetically decisive.

1

2
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5

4

2

T T ′

Figure 1. Two binary phylogenetic X–trees for X = {1, 2, 3, 4, 5}. If we take
Y = {1, 2, 3, 4} then T |Y = 12|34 and T ′|Y = 13|24.

2. Characterizing decisiveness

Our first result provides a purely combinatorial characterization for phylogenetic decisiveness,
and this is provided as follows. We say that a collection S of subsets of X satisfies the four–way
partition property (for X) if, for all partitions of X into four (disjoint) sets A1, A2, A3, A4 (with
A1 ∪A2 ∪A3 ∪A4 = X) there exists ai ∈ Ai for i = 1, 2, 3, 4 for which {a1, a2, a3, a4} ∈ QS . We
begin with a useful lemma. Recall that a cherry of a tree is a pair of leaves that are adjacent to
the same vertex.

Lemma 1. Suppose that T is a binary phylogenetic X–tree, and a, b ∈ X.



PHYLOGENETIC DECISIVENESS 3

(i) If a, b forms a cherry of T , then for every pair of subsets C,D that partition X − {a, b},
and every c ∈ C, d ∈ D, we have T |{a, b, c, d} = ab|cd.

(ii) Conversely, if a, b does not form a cherry of T , then there exists a pair of subsets C,D
that partition X − {a, b}, such that, for every c ∈ C and every d ∈ D, T |q is different to
ab|cd.

Proof: Part (i) of the claim is clear. For part (ii), we show that if a, b is not a cherry of T
then we can construct a partition of X − {a, b} that satisfies the property described. Consider
the path in T connecting a and b. If a, b is not a cherry, this path has at least two trees hanging
off it. Let C be the leaf set of the hanging tree that is closest to a, and let D = X −C − {a, b}.
Then, regardless of which element c we select in C and which element d we select in D, we have
T |{a, b, c, d} = ac|bd. ✷

Theorem 2. A collection S of subsets of X is phylogenetically decisive if and only if S satisfies
the four–way partition property for X.

Proof: We first show that the condition is necessary. Suppose, to the contrary, that a four–
way partition of X exists as described, but without a quartet {a1, a2, a3, a4} ∈ QS with ai ∈ Ai.
Let T be any binary phylogenetic tree, obtained by taking arbitrary binary rooted phylogenetic
trees on leaf sets A1, A2, A3, A4, and identifying the roots of these four trees with the leaves of a
quartet tree. Let T ′ be one of the two trees obtained from T by performing a nearest neighbor
interchange about the central edge of the quartet (to which the four rooted trees were attached).
The only quartets from X that T ′ resolves differently from T are quartets that contain one leaf
from each of the sets A1, A2, A3, A4 and we have assumed there is no such quartet in QS . This
shows that S is not phylogenetically decisive.

We next show that the condition is sufficient. Suppose that T is any binary phylogenetic X–
tree. We must show that no other binary tree displays the collection of quartet trees QT :=
{T |q : q ∈ QS}. We will use induction on |X |. The result clearly holds for |X | = 4. Now suppose
T has n > 4 leaves and that T ′ is a phylogenetic tree that displays QT . We will show that
T ′ = T .

Lemma 1 allows us to use QS to identify when a pair a, b is a cherry of T . The argument
is as follows. For each pair a, b, consider all choices of C,D that partition X − {a, b}. By our
assumption concerning S (taking A1 = {a}, A2 = {b}, A3 = C,A4 = D), it follows that there
exists c ∈ C, d ∈ D such that {a, b, c, d} ∈ QS , and so some resolution of a, b, c, d is in QT . If
this resolution is different from ab|cd then we discard a, b as a candidate for being a cherry of
any tree that displays QT , including T and T ′ (by Lemma 1(i)). On the other hand, if for every
choice of C,D, we have the resolution ab|cd in QT then a, b must be a cherry of every tree that
displays QT , including T and T ′ (by Lemma 1(ii)).

Now, consider the set X ′ obtained from X by deleting b, and let S ′ be the collection of subsets
of X obtained from S by replacing each occurrence of b in Y ∈ S by a (if a, b appear together
in some set Y , then we simply delete b from that set). We claim that if S satisfies the four–way
partition property forX then S ′ satisfies this property forX ′. Consider a partition A1, A2, A3, A4

of X ′. The element a lies in one of these sets - let us say A1. Consider the four–way partition ofX
given by: A1∪{b}, A2, A3, A4. Then, by assumption, there exists a1 ∈ A1∪{b}, ai ∈ Ai(i = 2, 3, 4)
with {a1, a2, a3, a4} ∈ QS . Now, b is not one of a2, a3, a4, and so, regardless of whether a1 is a,
or b or neither, we have {a1, a2, a3, a4} ∈ Q′

S
(Note that if Y is a set in S of size 4 containing

a, b then this set will not produce a quartet in Q′
S
, since on deleting b, we obtain a set of size 3

– however this does not create a problem since we have at least three elements of X − {a, b} in
{a1, a2, a3, a4}).

Let Tb = T |X ′ be the binary phylogenetic X ′–tree obtained from T by deleting leaf b (and
its incident edge), and let QTb

= {Tb|q : q ∈ QS′}. By induction (noting that |X ′| < |X | and
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that S ′ satisfies the four–way partition property for X ′), Tb is the unique tree that displays QTb
.

However, the tree T ′
b obtained from T ′ by deleting leaf b also displays QTb

since T ′ displays QS

and a, b is a cherry of T ′. Thus T ′
b = Tb and thus, T ′ = T as required ✷

2.1. Remarks.

• The fact that if S is phylogenetically decisive then every element subset {a, b, c} ofX must
be contained in a quartet within some set Y ∈ S follows immediately from Theorem 2
by taking A = {a}, B = {b}, C = {c} and D = X − {a, b, c}.

• The argument in the proof suggests an algorithm for building a tree based on identifying
a cherry and recursion.

• The computational complexity of determining whether an arbitrary collection of S of
subsets of X is phylogenetically decisive seems an interesting question, since the number
of all four–way partitions is exponential. For practical applications, a simple but fast
measure for quantifying the degree of phylogenetic decisiveness of a set S would be to
generate uniformly at random a large number of four-way partitions of X and ask for
what proportion of the resulting 4-way partitions (A1, A2, A3, A4) there exists ai ∈ Ai

for i = 1, . . . , 4 with {a1, a2, a3, a4} ∈ QS . If this proportion is strictly positive then
S is not phylogenetically decisive but it may still be of interest to know how ‘close’ to
phylogenetically decisive it is by this measure.

• The concept of phylogenetic decisiveness is related to, but different from, the weaker
concept of a phylogenetic ‘grove’ from [1, 8].

3. Decisive sets for random trees

The combinatorial condition for phylogenetic decisiveness is very strong, and in this section
we describe a condition that reflects the fact although all trees might not be determined by
how they resolve certain sets of taxa that cover X , nearly all trees will be. For a collection
S = {Y1, . . . , Yk}, we say that S is decisive for a tree T provided T is the only tree that displays
T |Y1, . . . , T |Yk. Thus if S is decisive then it is decisive for every tree T , but the converse is
certainly not true - for instance, for every binary phylogenetic tree T , there is a set of just n− 3
quartets for which S is decisive for T [12]. For example, in Fig. 1, the set {{1, 2, 3, 4}, {1, 3, 4, 5}}
is decisive for T but not for T ′.

By a random tree, we mean a binary phylogenetic X–tree chosen uniformly at random from
the set of (2n− 5)!! binary phylogenetic X–trees. Thus we can talk about the probability that a
given S is decisive for a random tree (it is simply the proportion of binary phylogenetic X–trees
for which S is decisive). Note that if S consists of two sets Y1, Y2 and each of these sets contains
a taxon that is not in the intersection Y1 ∩ Y2 then S is not decisive, even if just one taxon is
unique to Y1 and to Y2 (provided the intersection contains at least two elements). However, the
following result shows that S is very likely to be decisive for a random tree, even when several
(but not too many) taxa lie outside the intersection.

Theorem 3. Let S = {Y1, Y2} where k = |Y1 ∩ Y2| and λ1 = |Y1 − Y1 ∩ Y2|, λ2 = |Y2 − Y1 ∩ Y2|.
Let p := P[S is decisive for a random tree T ]. Then:

(i) p ≥ 1− 3λ1λ2

(2k−3) ;

(ii) p ≤ exp
(

− λ1λ2

λ1+λ2+k−5/2

)

.

In particular, if λ1λ2 = o(k) then p = 1− o(1).

Proof: First observe that if λ1 = 0 or λ2 = 0 then p = 1, and both (i) and (ii) apply (as tight
bounds), so we will henceforth assume that λ1, λ2 > 0.
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Let Y := Y1 ∩ Y2, and consider T |Y . If T is a random tree with leaf set X , then T |Y is a
random tree with leaf set Y . Moreover, we can generate a binary phylogenetic X–tree uniformly
at random by the following randomized leaf-attachment process [11]. Take a given ordering of
the taxa (note that this ordering is not necessarily selected randomly). We construct a sequence
of trees beginning with a tree consisting of the first two taxa in the ordering, connected by an
edge, and ending with the tree T . The process of constructing the next tree in the sequence from
the previous is as follows: Select one of the edges of the tree so far constructed uniformly at
random, subdivide this edge and make the midpoint adjacent to a new leaf (via a new edge) that
is labelled by the next taxon in the ordering that has not appeared in the tree so far constructed.

With reference to Y, Y1, Y2, we will select an ordering where the taxa in Y come first, then those
in Y1−Y and finally those in Y2−Y (any such ordering satisfying this constraint is adequate) to
obtain a random binary tree (with uniform probability) on leaf set X := Y1 ∪Y2. Note that each
element of y of Y1 − Y or of Y2 − Y has a unique nearest edge e of T |Y , which we will denote
by e(y). Moreover, the condition for T to be the only tree that displays the induced trees T |Y1

and T |Y1 is that the sets of edges E1 := {e(y) : y ∈ Y1 − Y } and E2 = {e(y) : y ∈ Y2 − Y } are
disjoint subsets of the total set of edges of T |Y (by Theorem 1 of [2]). Conditional on T |Y and
E1, consider the probability p′ = p′(T |Y,E1) of the event that the leaf attachment of the leaves
in Y2 − Y results in E2 being disjoint from E1 (and, as noted, this event implies that T is the
only tree that displays T |Y1 and T |Y2). We have:

(1) p′ =
x

(λ+ 2λ1)
·

(x+ 2)

(λ+ 2λ1 + 2)
· · ·

(x+ 2(λ2 − 1))

(λ+ 2λ1 + 2(λ2 − 1))
,

where λ = 2k − 3 is the number of edges of T |Y , and x = λ− |{e(y) : y ∈ E1}|.
Proof of (i): From Eqn. (1) we have:

(2) p′ ≥

(

x

λ+ 2λ1

)λ2

Now, the smallest possible value of the right-hand side term in (2) over all choices of T |Y,E1, is
realized when x takes its smallest possible value – or, equivalently, when E1 takes its maximal
possible value of λ1 (i.e. e(y) is a different edge of T |Y for each y ∈ Y1 − Y ), in which case
x = λ− λ1. Substituting this into (1) gives:

p′ ≥

(

λ− λ1

λ+ 2λ1

)λ2

=

(

1− λ1/λ

1 + 2λ1/λ

)λ2

≥

(

1−
3λ1

λ

)λ2

≥ 1− 3λ1λ2/λ.

This lower bound is conditional on the two random variables T |Y and E1; however, it depends
only on these only via the quantities λ and λ1, λ2 which are fixed in advance, and so the bound
applies also without conditioning. This completes the proof of (i).

Proof of (ii): From Eqn. (1), we have:

(3) p′ ≤

(

x+ 2λ2 − 2

λ+ 2λ1 + 2λ2 − 2

)λ2

and since x ≤ λ− 1 < λ, we have:

p′ <

(

1−
2λ1

λ+ 2λ1 + 2λ2 − 2

)λ2

≤ exp

(

−
λ1λ2

λ1 + λ2 + λ/2− 1

)

,

from which (ii) now follows for similar reasons to the conclusion of the proof of part (i).
✷
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3.1. Remark. Using the theory of Polya Urn models, one could, in principle, obtain an exact
but complex expression for p in Theorem 3. However, a more interesting problem would be to
obtain bounds for the probability that S is decisive for a random tree, when S consists of more
than two sets.
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