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1. Introduction

Recently, the authors have derived several new summation formulas for hypergeometric-type series containing the
digamma or psi function 1 (z). The summation formula [1]
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where z 11es in the domain |z| < 1, R(z) < 1/2, was employed to obtain a reduction formula for the Kampé de Fériet
(hereafter KdF) function that we shall in Section 2 extend to a much more general result. In Eq. (1.1) and below, all parameters
and variables are complex unless otherwise noted or it is obvious from the context. The Pochhammer symbol («),, where n
is an integer (positive, negative or zero) is defined simply by («), = I'(«¢ + n) /" («).

In the sequel, the sequence (a1, .. ., o) is denoted simply by («;,) and the product of p Pochhammer symbols ((«p)) is
defined by ((ctp))n = (@1)n - - - (0¢p)n, Where an empty product p = 0 reduces to unity. The KdF function is a generalized
hypergeometric function in two variables defined by the double series
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See for example [2,3] for an introduction to the KdF function and its properties including its convergence criteria.
In [1,4] we showed that
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This result shows that a generalized hypergeometric-type series containing the digamma function may essentially be
represented by a specialization of the KdF function in two equal variables.
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2. Reduction formula

As a byproduct of efficiently deriving closed form representations for certain series due to Miller [4] Cvijovi¢[1, equation
(3.3)] employed Egs. (1.1) and (1.3) to obtain the reduction formula for the KdF function
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where z lies in the domain |z| < 1,and R(z) < 1/2.

The KdF function has proved of practical utility in representing solutions to a wide range of problems in pure and applied
mathematics and mathematical physics. See the books by Exton [2,5]; for additional examples of applications, see [6,7].
Reduction formulas such as Eq. (2.1) essentially represent the KdF function as a generalized hypergeometric function of
lower order or some other function in one variable. Obviously, identifying such reductions have great value in simplifying
solutions. Thus, compilations of them such as [3, pp. 28-32] and [8] are especially important, since there is no a priori way
of knowing their existence.

It is the purpose here to augment the known results intimated above by showing that the formula (2.1) is a specialization
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of the much more general result
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which we derive below. Clearly, when y = 1,¢ = 1and § = S, Eq. (2.2) reduces to Eq. (2.1). Convergence for the KdF
function occurs when |z| < 1 (see [3, p. 27]); convergence for 3F, function obviously occurs when |z/(z — 1)| < 1. Thus,
Eqgs. (2.1) and (2.2) are valid for z in the domain |z|] < 1, %(z) < 1/2.

We recall the identity

(@) mtn = (@) + m)y. (2.3)

For brevity calling the left side of Eq. (2.2) F(z, z), we have upon recalling the definition of the KdF function (see Eq. (1.2))
and utilizing (2.3)
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Now, applying Euler’s transformation (see e.g. [9, p. 33, equation (19)])
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witha = o« +m,b = €, and c = B + m we see upon again utilizing Eq. (2.3) that
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Assuming absolutely convergent series for an arbitrary function B(m, n) by invoking series rearrangement via
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we see from the latter result for F(z, z) that
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However, since (—1)"/(n — m)! = (—n),,/n!, we may write
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Now, utilizing the Vandermonde-Chu identity (see, for instance, [9, p. 30, equation (8)])
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since the latter finite m-summation may be written as
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we obtain finally
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which is a restatement of Eq. (2.2). This completes our proof of Eq. (2.2).
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