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Abstract

We prove the Euler-Lagrange delta-differential equations for problems of the calculus of variations
on arbitrary time scales with delta-integral functionals depending on higher-order delta derivatives.
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1. Introduction

In recent years numerous works have been dedicated to the calculus of variations on time scales
and their generalizations — see [7, 12, 13, 18, 21, 22, 23, 24, 26] and the references therein. Most
of them deal with delta or nabla derivatives of first-order [2, 3, 4, 5, 6, 9, 11, 16, 19, 20], only a few
with higher-order derivatives [10, 25]. Depending on the type of the functional being considered,
different time scale Euler-Lagrange type equations are obtained. For variational problems of first-
order the Euler-Lagrange equations are valid for an arbitrary time scale T, while for the problems
with higher-order delta (or nabla) derivatives they are only valid in a certain class of time scales,
more precisely, the ones for which the forward (or backward) jump operator is a polynomial of
degree one [10, 25]. Here we consider variational problems involving Hilger derivatives of higher
order, and prove a necessary optimality condition of the Euler-Lagrange type on an arbitrary time
scale, i.e., without imposing any restriction to the jump operators.

2. Preliminaries

Here we recall some basic results and notation needed in the sequel. For the theory of time
scales we refer the reader to [1, 8, 14, 15].

A time scale T is an arbitrary nonempty closed subset of the real numbers R. The func-
tions σ : T→T and ρ : T→T are, respectively, the forward and backward jump operators:
σ(t) = inf {s ∈ T : s > t} with inf ∅ = supT (i.e., σ(M) = M if T has a maximum M); ρ(t) =
sup {s ∈ T : s < t} with sup ∅ = inf T (i.e., ρ(m) = m if T has a minimum m). The symbol ∅
denotes the empty set. The graininess function on T is defined by µ(t) := σ(t) − t. For T = R

one has σ(t) = t = ρ(t) and µ(t) ≡ 0 for any t ∈ R. For T = Z one has σ(t) = t + 1, ρ(t) = t− 1,
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and µ(t) ≡ 1 for every t ∈ Z. A point t ∈ T is called right-dense, right-scattered, left-dense, or
left-scattered, if σ(t) = t, σ(t) > t, ρ(t) = t, or ρ(t) < t, respectively.

Let T = [a, b] ∩ T0 with a < b and T0 a time scale. We define T
κ := T\(ρ(b), b], and T

κ0

:= T,

T
κn

:=
(

T
κn−1

)κ

for n ∈ N. The following standard notation is used for σ (and ρ): σ0(t) = t,

σn(t) = (σ ◦ σn−1)(t), n ∈ N.
We say that a function f : T → R is delta-differentiable at t ∈ T

κ if there is a number f∆(t)
such that for all ε > 0 there exists a neighborhood U of t such that

∣
∣f(σ(t)) − f(s) − f∆(t)(σ(t) − s)

∣
∣ ≤ ε|σ(t) − s|, for all s ∈ U.

We call f∆(t) the delta-derivative of f at t. We note that if the number f∆(t) exists then it is
unique in T

κ (see [14, 15]). In the special cases T = R and T = Z, f∆ reduces to the standard
derivative f ′(t) and the forward difference ∆f(t) = f(t + 1) − f(t), respectively. Whenever f∆

exists, the following formula holds: fσ(t) = f(t)+µ(t)f∆(t), where we abbreviate f ◦σ by fσ. Let

f∆0

= f . We define the rth-delta derivative of f : Tκr

→ R, r ∈ N, to be the function
(

f∆r−1
)∆

,

provided f∆r−1

is delta differentiable on T
κr

.
A function f : T → R is called rd-continuous if it is continuous at the right-dense points in T

and its left-sided limits exist at all left-dense points in T. A function f : T → R
n is rd-continuous

if all its components are rd-continuous. The set of all rd-continuous functions is denoted by Crd.
Similarly, Cr

rd will denote the set of functions with delta derivatives up to order r belonging to

Crd. A function f is of class f ∈ Cr
prd if f∆i

is continuous for i = 0, . . . , r− 1, and f∆r

exists and

is rd-continuous for all, except possibly at finitely many t ∈ T
κr

.
A piecewise rd-continuous function f : T → R possess an antiderivative F∆ = f , and in this

case the delta integral is defined by
∫ d

c
f(t)∆t = F (d) − F (c) for all c, d ∈ T. It satisfies

∫ σ(t)

t

f(τ)∆τ = µ(t)f(t).

If T = R, then
b∫

a

f(t)∆t =
b∫

a

f(t)dt, where the integral on the right hand side is the usual Riemann

integral; if T = Z and a < b, then
b∫

a

f(t)∆t =
b−1∑

k=a

f(k).

3. Main results

Consider the following higher-order problem of the calculus of variations up to order r, r ≥ 1:

L(y(·)) =

∫ ρr−1(b)

a

L(t, y(t), y∆(t), . . . , y∆
r

(t))∆t −→ min, (1)

subject to boundary conditions

y(a) = y0a, y
(
ρr−1(b)

)
= y0b , · · · , y

∆r−1

(a) = yr−1
a , y∆

r−1 (
ρr−1(b)

)
= yr−1

b , (2)

where T is a bounded time scale with a := minT and b := maxT, L : [a, ρr(b)]T × R
r+1 → R is

a given function, where we use the notation [c, d]T := [c, d] ∩ T, and yia, y
i
b ∈ R, i = 0, . . . , r − 1.

The results of the paper are trivially generalized for functions y : [a, b]T → R
n, but for simplicity

of presentation we restrict ourselves to the scalar case n = 1.
A function y(·) ∈ Cr

prd is said to be admissible if it is satisfies condition (2). An admissible
y(·) is a weak local minimizer for (1)–(2) if there exists δ > 0 such that L(y(·)) ≤ L(ȳ(·)) for any
admissible ȳ ∈ Cr

prd with ‖y − ȳ‖r,∞ < δ, where

||y||r,∞ :=

r∑

i=0

∥
∥
∥y

∆i
∥
∥
∥
∞

,
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y∆
0

= y and ||y||∞ := supt∈[a,ρr(b)]T |y(t)|. For simplicity of notation we introduce the operator

[y] defined by [y](t) =
(
t, y(t), y∆(t), . . . , y∆

r

(t)
)
. Then, functional (1) can be written as

L(y(·)) =

∫ ρr−1(b)

a

L[y](t)∆t.

We assume that (t, u1, . . . , ur+1) → L(t, u1, . . . , ur+1) has continuous partial derivatives ∂L
∂ui

for

all t ∈ [a, ρr(b)]T, i = 1, . . . , r+1, and t → L[y](t) and t → ∂L
∂ui

[y](t), i = 1, . . . , r+1, are piecewise
rd-continuous for all admissible functions y(·).

3.1. The higher-order Euler-Lagrange equation

We now prove the Euler-Lagrange equation for problem (1)–(2).

Remark 1. In order for the problem to be nontrivial we require the time scale T to have at
least 2r + 1 points. Indeed, if the time scale has only 2r points, then it can be written as
T = {a, σ(a), . . . , σ2r−1(a)} and

∫ ρr−1(b)

a

L(t, y(t), y∆(t), . . . , y∆
r

(t))∆t

=

∫ σr(a)

a

L(t, y(t), y∆(t), . . . , y∆
r

(t))∆t =
r−1∑

i=0

∫ σi+1(a)

σi(a)

L(t, y(t), y∆(t), . . . , y∆
r

(t))∆t

=
r−1∑

i=0

(σi+1(a) − σi(a))L(σi(a), y(σi(a)), y∆(σi(a)), . . . , y∆
r

(σi(a))). (3)

Having in mind the boundary conditions and the formula f∆(t) = f(σ(t))−f(t)
µ(t) , we can conclude

that the sum in (3) is constant for every admissible function y(·).

Theorem 1. If y(·) is a weak local minimizer for the problem (1)–(2), then y(·) satisfies the

Euler-Lagrange equation

∂L

∂y∆
r [y](t) −

∫ σ(t)

a

∂L

∂y∆
r−1 [y](τr)∆τr

+

r−3∑

i=0

(−1)i
∫ σ(t)

a

∫ σ(τr)

a

· · ·

∫ σ(τr−i)

a

∂L

∂y∆
r−2−i

[y](τr−1−i)∆τr−1−i · · ·∆τr−1∆τr

(−1)r
∫ σ(t)

a

{
∫ σ(τr)

a

[

· · ·

∫ σ(τ2)

a

∂L

∂y
[y](τ1)∆τ1 + c1 · · ·

]

∆τr−1 − (−1)r−1cr−1

}

∆τr − cr = 0

(4)

for some constants c1, . . . , cr and all t ∈ [a, ρr(b)]T.

Proof. We first introduce some notation: y0(t) = y(t), y1(t) = y∆(t), . . . , yr−1(t) = y∆
r−1

(t),
u(t) = y∆

r

(t). Then problem (1)–(2) takes the following form:

L[y(·)] =

∫ ρr−1(b)

a

L(t, y0(t), y1(t), . . . , yr−1(t), u(t))∆t −→ min,

{
y∆i (t) = yi+1(t), i = 0, . . . , r − 2,
y∆r−1(t) = u(t),

yj(a) = yja, yj
(
ρr−1(b)

)
= y

j
b , j = 0, . . . , r − 1 .
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With the notation x = (y0, y1, . . . , yr−1), our problem (1)–(2) can be written as the optimal control
problem

L[x(·)] =

∫ ρr−1(b)

a

L(t, x(t), u(t))∆t −→ min,

x∆(t) = Ax(t) + Bu(t) ,

ϕ(x(a), x(ρr−1(b)) =

[
x(a) − xa

x(ρr−1(b)) − xb

]

= 0 ,

(5)

where

A =










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0










, B =






0
...
1




 .

Note that assumption (A1) of [17, Theorem 9.4] holds: matrix I + µ(t)A is invertible, and the
matrix ∇ϕ(x(a), x(ρr−1(b)) has full rank. Therefore, if (x(·), u(·)) is a weak local minimum for
(5), then there exists a constant λ and a function p : [a, ρr−1(b)]T → R

r, p ∈ C1
prd, such that

(λ, p(·)) 6= 0 and the following conditions hold:

−p∆(t) = AT pσ(t) + λ

[
∂L

∂x
(t, x(t), u(t))

]T

,

BT pσ(t) + λ
∂L

∂u
(t, x(t), u(t)) = 0 (6)

for all t ∈ [a, ρr(b)]T. Consequently, if y(·) is a weak local minimizer for (1)–(2), then

pσr−1(t) = −λ
∂L

∂u
[y](t) (7)

holds for all t ∈ [a, ρr(b)]T, where pσr−1(t) is defined recursively by

pσ0 (t) = −

∫ σ(t)

a

λ
∂L

∂y0
[y](τ1)∆τ1 − c1 , (8)

pσi (t) = −

∫ σ(t)

a

[

λ
∂L

∂yi
[y](τi+1) + pσi−1(τi+1)

]

∆τi+1 − ci−1, i = 1, . . . , r − 1 , (9)

with ci, i = 0, . . . , r − 1, constants. From (7)–(9) we obtain that equation

λ
∂L

∂u
[y](t) −

∫ σ(t)

a

λ
∂L

∂yr−1
[y](τr)∆τr

+
r−3∑

i=0

(−1)i
∫ σ(t)

a

∫ σ(τr)

a

· · ·

∫ σ(τr−i)

a

λ
∂L

∂yr−2−i

[y](τr−1−i)∆τr−1−i · · ·∆τr−1∆τr

(−1)r
∫ σ(t)

a

{
∫ σ(τr)

a

[

· · ·

∫ σ(τ2)

a

λ
∂L

∂y0
[y](τ1)∆τ1 + c1 · · ·

]

∆τr−1 − (−1)r−1cr−1

}

∆τr − cr = 0

(10)

holds for all t ∈ [a, ρr(b)]T. We show next that λ 6= 0. First observe that if f ∈ C1
prd and fσ(t) = 0

for all t ∈ [a, b]κ
T
, then f(t) = 0 for all t ∈ [σ(a), b]T. Suppose, contrary to our claim, that λ = 0 in

equation (6) and (7). Then, we can write the system of equations






p∆0 (t) = 0 ,
p∆i (t) = −pσi−1(t), i = 1, . . . , r − 1 ,
pσr−1(t) = 0,

(11)
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for all t ∈ [a, ρr(b)]T. From the last equation we have pr−1(t) = 0, ∀t ∈ [σ(a), ρr−1(b)]T. This
implies that p∆r−1(t) = 0, ∀t ∈ [σ(a), ρr(b)]T, and consequently pσr−2(t) = 0, ∀t ∈ [σ(a), ρr(b)]T.
Therefore, pr−2(t) = 0, ∀t ∈ [σ2(a), ρr−1(b)]T. Repeating this procedure we have p1(t) = 0 for
all t ∈ [σr−1(a), ρr−1(b)]T. Hence, 0 = p∆1 (t) = −pσ0 (t) = −p∆0 (t)µ(t) − p0(t) = −p0(t) for all
t ∈ [σr−1(a), ρr(b)]T. Note that the first equation of (11) implies p0(t) = c for some constant
c and all t ∈ [a, ρr−1(b)]T. Since the time scale has at least 2r + 1 points (see Remark 1), the
set t ∈ [σr−1(a), ρr−1(b)]T is nonempty and we conclude that p0(t) = 0 for all t ∈ [a, ρr−1(b)]T.
Substituting this into the second equation we get p∆1 (t) = d for some constant d and all t ∈
[a, ρr−1(b)]T. Having in mind that p1(t0) = 0 for some t0 ∈ [a, ρr−1(b)]T we obtain p1(t) = 0 for
all t ∈ [a, ρr−1(b)]T. Repeating this procedure we conclude that pi(t) = 0, i = 1, . . . , r − 1, for all
t ∈ [a, ρr−1(b)]T. This contradicts the fact that (λ, p(·)) 6= 0. Hence, equation (10) can be divided
by λ and (4) is proved.

3.2. Corollaries

For illustrating purposes we consider now the two simplest situations, i.e., r = 1 and r = 2.

Corollary 1 (cf. [6, 16]). If y(·) is a weak local minimizer for the problem

L(y(·)) =

∫ b

a

L(t, y(t), y∆(t))∆t −→ min

subject to boundary conditions y(a) = ya and y(b) = yb, then y(·) satisfies the Euler-Lagrange

equation

∂L

∂y∆

(
t, y(t), y∆(t)

)
=

∫ σ(t)

a

∂L

∂y

(
τ, y(τ), y∆(τ)

)
∆τ + c1

for some constant c1 and all t ∈ [a, b]κ
T
.

Corollary 2 (cf. [10, 25]). If y(·) is a weak local minimizer for the problem

L(y(·)) =

∫ ρ(b)

a

L(t, y(t), y∆(t), y∆∆)∆t −→ min

subject to boundary conditions y(a) = y0a, y(ρ(b)) = yb, y
∆(a) = y1a, and y∆(ρ(b)) = y1b , then y(·)

satisfies the Euler-Lagrange equation

∂L

∂y∆∆

(
t, y(t), y∆(t), y∆∆(t)

)
−

∫ σ(t)

a

∂L

∂y∆

(
τ2, y(τ2), y∆(τ2), y∆∆(τ2)

)
∆τ2

+

∫ σ(t)

a

[
∫ σ(τ2)

a

∂L

∂y

(
τ1, y(τ1), y∆(τ1), y∆∆(τ1)

)
∆τ1 + c1

]

∆τ2 − c2 = 0

for some constants c1 and c2 and all t ∈ [a, ρ(b)]κ
T
.

3.3. An example

Let T = [a, b] ∩ hZ, where hZ := {hz|z ∈ Z}, h > 0. Then for any f ∈ Cr
prd we have

[
∫ σ(t)

a

(∫ σ

a

· · ·

∫ σ

a

f

)

∆τ

]

︸ ︷︷ ︸

j−i integrals

∆j

= f∆iσj−i

, i ∈ {0, . . . , j − 1} , (12)

where f∆iσj−i

(t) stands for f∆i

(σj−i(t)). We will show this by induction. For j = 1

∫ σ(t)

a

f(ξ)∆ξ =

∫ t

a

f(ξ)∆ξ +

∫ t+h

t

f(ξ)∆ξ =

∫ t

a

f(ξ)∆ξ + hf(t),

5



and then
[∫ σ(t)

a
f(ξ)∆ξ

]∆

= f(t)+hf∆(t) = fσ. Now assume that (12) is true for all j = 1, . . . , k.

Then for j = k + 1

[
∫ σ(t)

a

(∫ σ

a

· · ·

∫ σ

a

f

)

∆τ

]

︸ ︷︷ ︸

k+1−i integrals

∆k+1

=








∫ t

a

∫ σ

a

· · ·

∫ σ

a
︸ ︷︷ ︸

k+1−i

f∆τ + h

∫ σ(t)

a

· · ·

∫ σ

a
︸ ︷︷ ︸

k−i

f∆τ








∆k+1

=








∫ σ(t)

a

· · ·

∫ σ

a
︸ ︷︷ ︸

k−i

f∆τ








∆k

+









h








∫ σ(t)

a

· · ·

∫ σ

a
︸ ︷︷ ︸

k−i

f∆τ








∆k







∆

= f∆iσk−i

+
(

hf∆iσk−i
)∆

= f∆iσk+1−i

.

Delta differentiating r times both sides of equation (4) and in view of (12), we obtain the h-Euler-
Lagrange equation in delta differentiated form:

L∆r

y∆r (t, y, y∆, . . . , y∆
r

) +

r−1∑

i=0

(−1)r−iL∆iσr−i

y∆i (t, y, y∆, . . . , y∆
r

) = 0.
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