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Abstract—The Cramer-Rao product of the Fisher information This work, which has been motivated by the recent findings
F[p] and the variance (x®) = [ x g x)dx of a probability density  jn [3], provides the best Cramér-Rao lower bound for gelnera
p(x), defined on a domamA C R, is found to have a minimum  1_dimensional systems on unbounded domains in Sefion II.

value reached by the density associated with the ground statof . . . .
the harmonic oscillator in A, when A is an unbounded domain. Itis shown that this lower bound is reached for the probapili

If A is bounded, the minimum value of the Fisher information density characterizing the oscillator ground state, asad itis

is achieved by the ground state of the quantum box described value is controlled by the corresponding ground state gnerg

itself by this domain. Next, in SectiorIll, we show that the minimal value of the

Fisher information of generdD-dimensional systems defined

on bounded domains is achieved for the ground state of the
The Cramér-Rao inequality belongs to a natural family Q{uantum box described by this region.

information-theoretic inequalities[1]4[3] which play elevant

role in a great variety of scientific and technological fields [l. UNBOUNDED D-DIMENSIONAL DOMAINS

ranging from probability theory [4]| [5], communicatiorettry A, Notations and problem

[6], signal processingl [7] and approximation theory [8] to

guantum physics ofD-dimensional systems with a finite

number of particles[|9]£[11]. Recently the general Crame

Rao inequality[[1], [[6]

I. INTRODUCTION

Let us consider an unbounded domatn in R”. The
[?roblem consists in finding the normalized probability dgns
(x) = w?(x), with x € A, that minimizes the Fisher
|nformat|0n with the constraints that the variange) has a
F(x*) > D? (1) given value, and thai(x) = 0 Vx € D(A), the frontier ofA.
The Fisher information will be denoted &p] or simply F’

valid for all ground and excited states of afy-dimensional \\hen there is no ambiguity about the considered distribgtio
quantum system, has been substantially improved [10] in theg Jefined as

case of centrally-symmetric potentials as

2|m)| D\? Flp| = 4/ |V u(x)|?dx.
FxH>4(1-—" ) (1+=
& = ( 2Z+D—2)<+2> _ A _
. The Lagrangian of this problem is

where the integer number$, m) denote the hyperquantum
orbital and magnetic quantum numbers.having the_values 524/ IVu(x)2dx + o [/ u2(x)dx—1}
0 <l <n-—1and-Il < m < +I, the integern being A A
the hyperguantum principal number. It is worth pointing out
that the lower bound to the Cramér-Rao product is equal to +6 A
D? when!l = 0, i.e. for statess. O , O

Moreover, the Cramér-Rao inequality has been shown to WBeredx = [[,Z; dw;, x* =37, 7, and
closely connected to the Heisenberg uncertainty inegulayit

202 (x) i — <x2>} |

2
various authors |6]. In particular, it is fulfilled that |Vu(x)? = Z <§“ >
T
2|m| 20 /,2 =t
Fix7) 24 ( T 9+ D— 2) (7)) The associated Euler-Lagrange equation states that
is valid for central potentials| [10]. Since the Cramér-Rao oL
inequality [1) is saturated by Gaussian probability densi- Z B 5 G 0,
ties, it can be interpreted as a measure of the amount of ' (aT)

non-normality of the quantum-mechanical probability d'eyns
which describes the involved quantum state of the physica
system under consideratian [6]. 8V2u(x) — 2au(x) — 26x%*u(x) = 0.

FICh yields the differential equation


http://arxiv.org/abs/1001.3376v1

This equation, together with the boundary conditigs) = 0, The solutions are of the form

Vx € D(A), cclnlnmdes with the Schrodinger equation ) ) \/me@(zuy?)
—5 V() + V(x)ulx) = _%u(x) e (201 + 1)Ing!
i i i i
with the potential X Hop, 11 <ﬁ_\/§x> H,, <ﬁ_\/§y>
Vix) — §x2 if xe A, 5
(x) = 0 if x¢ A. @ where H, (x) is the Hermite polynomial of degree. The

. ... corresponding energy levels are
Then, the Lagrange paramet@érmust be strictly positive in P ¢ oy

order to obtain integrable solutions. E _ o ﬁ(zn I

- . . . . ni,no - 1 n2 + 2)

The set of densities with a given variang€®) is a convex 8 2

set, and since the Fisher information is a convex functional The densityp,, ., is defined as
its minimum, if it exists, is unique. However, it is not pdssi 9
to find a minimal value of the Fisher information regardleks o Pra s (T2Y) =ty iy (2,93
the value of(x?): the reason is that, due to the nature of thigs variance is
harmonic potential, the factg#s acts only as a scale factor ) )
for the resulting probability density function. Then, sinthe (@ + Y i ns = ﬁ@”l +n2 +2),
Fisher information scales g8~'/2, it is possible to reach
arbitrarily low values of the Fisher information by modifigj
this scale factor. Nevertheless, since the prodist®) is scale Flpnyns) = 2v/B(2n1 + na + 2).
invariant, it is independent ¢f, and a minimum should exist.
This minimum is characterized by the following theorem.

and its Fisher information

Notice that, as3 is a scale factor, the product of these two
guantities does not depend gnand equals
Theorem 1. In the case of an unbounded domal the
minimum value of the Cra@én-Rao productF'(x?) verifies
, B ) As predicted by the virial theorem, its minimum value is
E* = EF<X ) obtained for the ground state described by the density

F[pn17n2]<x2 + y2>n1,n2 = 4(2711 +ng + 2)2'

where E' is the energy of the ground state of the quantum
system with potential defined byl (2). It is reached by the
probability density associated to the ground state of thand is equal to
system.

poo(z,y) = B p2e=F @)
™

Flpo,ol(z* +y%)0,0 = 16,

Proof: We apply the virial theorem, that ensures the exis-
e . " I1l. BOUNDED D-DIMENSIONAL DOMAINS

tence of this minimum and points to it: for the potentidl (Ag

virial theorem establishes that the kinetic enet@y = (V). A. Statement of the problem

Then, the total energ¥ = (T') + (V) = 2(T) = 2(V), and In the case of a bounded domaly the sign of the Lagrange

E? = 4(T)(V). As (T) = F/8 for real wave functions, and multiplier 3 in the equation

since (V) = £(x?), we have that

1
— —V2u(x) + EXQu(x) = —gu(x) 4
B = 2 Fe) © ’ s s
16 ' cannot be fixed as in the case of unbounded domains.

Then, the minimum value of the produttx?) is reached for As the values of théd-dimensional variable& are bounded
the minimum value of the energ¥, i.e. by the ground state in A, its variance(x?) is also bounded. Then, there must

of this quantum system. - e>_<ist a_value of the c_onstra_ir{k2>* for which the minimal
Fisher informationF, is achieved. This valud’, would be
B. Example 1 the minimal value of the Fisher information among all the
Let us consider the case of the positive half plane densities defined im.
) We need the two following propositions to find this minimal
A={(z,y) eR%z>0}. value and the density that achieves it.
The Schrodinger equation reads Proposition 2. Let
1 [ 0%u(x,y 0%u(x,y B (%) = eu?(x) + (1 — e)v?(x
Y o with 0 < e < 1. Then a first order expansion of the Fisher
= —gu(x,y), information of g, is

with the constraint(0,y) = 0 Vy € R. Flg] = F[v*] = Be((x*)u — (x*)u) + o(e?).



Proof: The Fisher information of. is

= [, oGl gy

ge( x)
‘2

_ 0% (%)| Vu(x)
4f 900
w(x)v(x)Vu(x)- Vu(x)fvz(x)|Vv(x)\2
+8¢ [a 4:(%) dx
5 ¢ eI VueP 40 (9| Vo)l
+4€ fA gs(x) dx
+462 fA —2u(x)v(x)Vu(x) Vov(x) dx

ge(x)

dx

Denoting the integrand in the two first integrals 6Yu, v),
we perform a Taylor expansion in terms ofarounde = 0,
yielding the expression

G(u,v) = Go(u,v) + €G1(u,v) + o(€?),
where
Go(u,v) = [Vo(x)[?,
and ) )
Gi(u,v) = Vu(x) -V (%—){;}(X)) )
Then,
Flg = U2]+4€/A Vu(x)-V <%) dX+0(62).

An integration by parts yields:
.2
/Vv < “(x) U(X))dx
v(x)
:/ VU( ) - vdya
D(A)

-,

wheredya is the infinitesimal element of the bordB(A) of
A andv is a vector perpendicular to it.
As u(x) = 0 andv(x) = 0 for z € D(A), this result yields

Flod = Flv?] — 4e /A () —vi(x)

v(x)
Now we use the Schrodinger equation

u?(x) — v*(x)

v(x)

V2 (x)dx

V2 (x)dx

B_o _
—l—ng(x)—

so that we obtain the result

Flgd] = F[v*] = Be((x*)u

1 o
—§Vzv(x) gv(x),
= (x%)u) +o(é%).
|

Proposition 3. Let us denote byx?). the value of the vari-

ance that, after solving the variational problem, corresde
to the minimal value of the Fisher informatidf,. Then the

Lagrange multipliers of the problem has the same sign as
with the constraint(z,y) =0 if (x,y) ¢ A.

(x?), — (x?), that is
o if (x2) < (x?). thenp > 0,
o if (x?) > (x?). thenB <0,
o if (x2) = (x?). then = 0.

Proof: Let u?(x) and v?(x) be two distributions with
respective Fisher informations[u2] and F'[v?]. According to
the previous proposition, if.(x) = eu?(x) + (1 — €)v?(x).
Then,

Flge] = F[v*] = Be((x*)u — (x*)u) + o(¢?).  (5)
The convexity of the Fisher information gives
Flge] < eF[u’] + (1 — ) F[v’]
Let us now take(z?), = (22?).. Then, F[u?] = F, is the

minimum Fisher information, so we have the majoration
eFlu?] + (1 — e)F[v*] < Fv?].

Therefore,F[g.] < F[v?], and, as a consequence, frofm (5)
and the previous inequality, we obtain

56(<X2>u - <x2>v) >0,

which gives the first and second cases in the proposition. The
third case follows by continuity.

[ |
For 8 = 0, the Schrodinger equatiohl (4) becomes
1_, o«
- §V u(x) = 8u(x) (6)

for x € A, with u(x) = 0 ¥x € D(A), that is the equation of
the D-dimensional infinite potential well defined if\.

We can now characterize the minimum Fisher information
in the case of a bounded domain.

Theorem 4. The minimum Fisher information in a bounded
domain ofRP” is reached by the probability density associated
to the ground state of the quantum system whose potential is
the infinite well in this domain.

Proof: Notice that ifu(x) is a solution of equatiori 16),
then|u(x)| is also a solution. Since the solution of the problem
of finding the minimum value ofF' for a given value of
(x?) must be unique, we conclude thatx) = |u(x)|, SO
u(x) > 0 for x € A. But the only eigenstate of the previous
Schroddinger equation that does not have any zero is thengrou
state. Thus, the density that minimizes the Fisher infoionat
in a bounded domain is that associated to the ground state of
the corresponding infinite well defined on that domain.m

B. Example 2
Let us consider the case of the rectangular domain
A={(r,y) eR*0<z<2,~-1<y<2}
The Schrodinger equation reads
1 (82u(:17, 0?u(z,y
2 Ox?

y) vy _ o
ayg ) - _gu('rvy)a

The solutions are of the form

3 . (mm . [MNaT
s nlan) = [ 3o () s ("2 41)



with energy levels

72 4
Enl,ng = g (TL% + §TL%> .

The associated density is
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is found to be the minimal value of the Cramér-Rao product.

~ 23.875

IV. CONCLUSIONS

In summary, we have studied the probability densities
yielding the minimum value of the Cramer-Rao product in
generalD-dimensional unbounded domains and the densities
minimizing the Fisher information itself in bounded donmin
A € RP. The present developments constitute a substantial
generalization of previous results obtained by Becher dagd V
nat for the one dimensional caseé [3]. In the case of unbounded
domains the density optimising the Cramer-Rao productsturn
out to be the one corresponding to the ground state offhe (
dimensional) harmonic oscillator in the domain. On the pthe
hand, the optimal density minimising the Fisher informatio
in a bounded domain\ is given by the ground state of a
guantum free particle confined within a rigid box describgd b
the boundary ofA. This may have applications for the study
of important quantum systems such as quantum billiards.

It is intriguing that the above mentioned optima are achdeve
by the ground states of two systems that are among the most
basic (and most important) in quantum physics. This con-
stitutes new evidence pointing towards the fundamenta& rol
played by Fisher information both in quantum mechanics and
information theory, and particularly in the interface betm
these two fields.
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