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ON THE PERIODIC ORBITS OF THE THIRD-ORDER

DIFFERENTIAL EQUATION x′′′ − µx′′ + x′ − µx = εF (x, x′, x′′)

JAUME LLIBRE1 AND LUCI ROBERTO2

Abstract. In this paper we study the periodic orbits of the third-order
differential equation x′′′ − µx′′ + x′ − µx = εF (x, x′, x′′), where ε is a
small parameter and the function F is of class C2.

1. Introduction and statement of the main results

In the qualitative theory of differential equations one of the main problems
is the study of their periodic orbits, their existence, their number and their
stability. A limit cycle of a differential equation is a periodic orbit isolated
in the set of all periodic orbits of the differential equation.

In this paper we deal with the third-order differential equation

(1) x′′′ − µx′′ + x′ − µx = εF (x, x′, x′′),

Here the variables x and t, and the parameters µ and ε are real, moreover
ε is a small real parameter and the function F : Ω → R is of class C2. Here
Ω is an open subset of R3. The prime denotes derivative with respect to an
independent variable t. The objective is to study the periodic solutions of
this differential equation.

There are many papers studying the periodic orbits of third–order differ-
ential equations. In particular our class of equations (1) is not far from the
ones studied in [13] and [2]. But our main tool for studying the periodic
orbits of equation (1) is completely different to the tools of the mentioned
papers. We shall use the averaging theory, more precisely the Theorems 3
and 4 of the appendix. Many of the papers dealing with the periodic orbits of
third–order differential equations use Schauder’s or Leray–Schauder’s fixed
point theorem, see for instance [4, 8, 9], or the nonlocal reduction method
see [1], and others [5]. The non-autonomous case of the differential equation
(1) was studied in [6] with µ 6= 0. As in [6], our main tool for study the
periodic orbits of equation (1), was the averaging theory. But in [6] they
only need to use Theorem 3, and here we shall use Theorem 3 when µ 6= 0
and Theorem 4 when µ = 0.
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We recall that a simple zero r∗0 of a function F(r0) is defined by F(r∗0) = 0
and (dF(r∗0)/dr0) 6= 0.

The main results on the periodic solutions of the third-order differential
equation (1) are the following two theorems.

Theorem 1. Consider µ 6= 0 into the differential equation (1). For ε 6= 0
sufficiently small and every positive simple zero r∗0 of the function

F(r0) =
1

2π

∫ 2π

0
F (A,B,C) cos θ dθ,

where

A = −r0(cos θ + µ sin θ)

1 + µ2
, B =

r0(sin θ − µ cos θ)

1 + µ2
, C =

r0(cos θ + µ sin θ)

1 + µ2
,

the differential equation (1) has a periodic solution xε(t) tending to the pe-
riodic solution

x(t) = −r∗0(cos t+ µ sin t)

1 + µ2
,

of x′′′ − µx′′ + x′ − µx = 0 when ε → 0.

In order to state the next result we need the following definitions

f1(r0, Z0) =
1

2π

∫ 2π

0
F (α, β, γ) cos θ dθ,

f2(r0, Z0) =
1

2π

∫ 2π

0
F (α, β, γ)dθ,

where

α = −Z0 − r0 cos θ, β = r0 sin θ, γ = r0 cos θ.

Theorem 2. Consider µ = 0 into the differential equation (1). If there
exists (r0, Z0) such that

f1(r0, Z0) = 0, f2(r0, Z0) = 0 and det

(
∂(f1, f2)

∂(r, Z)

)
(r0, Z0) 6= 0,

then the differential equation (1) with µ = 0 has a periodic solution xε(t)
tending to the periodic solution

x(t) = −r0 cos t− Z0,

of x′′′ + x′ = 0 when ε → 0.

These two theorems are proved in the next section. The proofs are based
on the averaging theory for computing periodic orbits, see the appendix.
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2. Proof of the theorems

We start with some preliminaries. Indeed with some change of coordinates
that will be used in the proofs of Theorems 1 and 2.

If y = x′ and z = x′′, then we write the third-order differential equation
(1) as a first-order differential system in the open subset Ω ⊂ R3. Thus we
have the differential system

(2)
x′ = y,
y′ = z,
z′ = −y + µ(x+ z) + εF (x, y, z).

System (2) with ε = 0 will be called the unperturbed system, otherwise
we have the perturbed system. The unperturbed system has a unique sin-
gular point, the origin with eigenvalues i,−i, µ. Doing the linear change of
variables (X,Y, Z)T = C(x, y, z)T with

C =




0 −µ 1
−µ 1 0
−1 0 −1


 ,

we transform the differential system (2) into the next differential system
having its linear part in the real Jordan normal form, i.e.

(3)
X ′ = −Y + εF̃ (X,Y, Z),
Y ′ = X,

Z ′ = µZ − εF̃ (X,Y, Z),

where F̃ (X,Y, Z) = F (A,B,C) being

A = −X + Z + µY

1 + µ2
, B =

Y − µ(X + Z)

1 + µ2
, C =

X + µ(Y − µZ)

1 + µ2
.

Now we pass from the cartesian variables (X,Y, Z) to the cylindrical ones
(r, θ, Z) of R3, where X = r cos θ and Y = r sin θ. In these new variables
the differential system (3) becomes

(4)

r′ = εG(r, θ, Z) cos θ,

θ′ = 1− ε
G(r, θ, Z) sin θ

r
,

Z ′ = µZ − εG(r, θ, Z),

where G(r, θ, Z) = F̃ (r cos θ, r sin θ, Z).

Now we change the independent variable from t to θ, and denote the
derivative with respect to θ by a dot. Therefore the differential system (4)
becomes

(5)
ṙ =

dr

dθ
= εG(r, θ, Z) cos θ +O(ε2),

Ż =
dZ

dθ
= µZ + ε

µZ sin θ − r

r
G(r, θ, Z) +O(ε2).
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We must study the following cases separately: µ 6= 0 and µ = 0.

Case µ 6= 0. We can write system (5) as follows

(6) ẋ = F0(θ,x) + εF1(θ,x, ε) +O(ε2),

where

x =

(
r
Z

)
, F0(θ,x) =

(
0
µZ

)
, F1(θ,x, ε) =




G(r, θ, Z) cos θ

µZ sin θ − r

r
G(r, θ, Z)


 .

We shall study the periodic solutions of system (6) using the averaging
theory, more precisely Theorem 3 of the appendix. First we look for the
periodic solutions of the unperturbed system

ẋ = F0(θ,x).

Note that these periodic solutions are

(r(θ), Z(θ)) = (r0, 0),

for every r0 > 0, i.e. these periodic orbits are circles in the plane Z = 0 for
system (4). Of course all these periodic solutions in the coordinates (r, Z)
are 2π−periodic in the variable θ.

We shall describe the different elements which appear in the statement
of Theorem 3 in the particular case of the differential system (5). Thus
we have that k = 1 and n = 2. Let r1 > 0 be arbitrarily small and let
r2 > 0 be arbitrarily large. Then we take the open bounded subset V of R
as V = (r1, r2), α = r0 ∈ V , β : [r1, r2] → R is defined as β(r0) = 0. The set
Z is

Z = {zα = (r0, 0), r0 ∈ [r1, r2]}.
Clearly for each zα ∈ Z we can consider that the 2π−periodic solution
x(θ) = zα = (r0, 0).

Computing the fundamental matrix Mzα(θ) of the linear differential sys-
tem (14) associated to the 2π−periodic solution zα = (r0, 0) such that
Mzα(0) be the identity of R2, we get

M(θ) = Mzα(θ) =

(
1 0
0 eµθ

)
.

Note that the matrix M(θ) does not depend of the particular periodic orbit
zα. Since the matrix

M−1(0)−M−1(2π) =

(
0 0
0 1− e−2πµ

)
,

is not identically zero because µ 6= 0, it satisfies the assumptions of statement
(ii) of Theorem 3, and we can apply this theorem to system (5).
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Now ξ : R2 → R is ξ(r, Z) = r. We calculate the function (15)

F(r0) =
1

2π

∫ 2π

0
F (A,B,C) cos θ dθ,

where A, B and C are defined in the statement of Theorem 1. Then by
Theorem 3 we have that for every simple zero r∗0 ∈ [r1, r2] of the function
F(r0) we have a periodic solution (rε(θ), Zε(θ)) of system (5) such that

(rε(0), Zε(0)) → (r∗0, 0) as ε → 0.

Going back through the changes of coordinates we get a periodic solution
(rε(t), θε(t), Zε(t)) of system (4) such that

(rε(t), θε(t), Zε(t)) → (r∗0, t, 0) as ε → 0.

Consequently we obtain a periodic solution (Xε(t), Yε(t), Zε(t)) of system
(3) such that

(Xε(t), Yε(t), Zε(t)) → (r∗0 cos t, r
∗
0 sin t, 0) as ε → 0.

Therefore since

(7) x = −X + Z + µY

1 + µ2
,

we have a periodic solution (xε(t), yε(t), zε(t)) of the system (2) such that

xε(t) → −r∗0(cos t+ µ sin t)

1 + µ2
as ε → 0.

Note that the previous expression provides a periodic solution of the linear
differential equation x′′′−µx′′+x′−µx = 0. Hence we have proved Theorem
1.

Case µ = 0. System (5) with µ = 0 becomes

(8)
ṙ =

dr

dθ
= εG(r, θ, Z) cos θ +O(ε2),

Ż =
dZ

dθ
= −εG(r, θ, Z) +O(ε2),

with (r, Z) ∈ D ⊂ R2 and D an open subset in R2.

Note that system (8) is in standard form of averaging theory for applying
Theorem 4, see (16). Then the averaged differential system is

(9) (ṙ, Ż) = εg0(r, Z),

where

(10) g0(r, Z) =
1

2π

∫ 2π

0
(G(r, s, Z) cos s,G(r, s, Z)) ds.

By Theorem 4 for every singular point p = (r0, Z0) of system (9) such
that

(11) det

(
∂g0

∂(r, Z)

)∣∣∣∣∣
(r,Z)=p

6= 0,
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there exists a 2π−periodic solution (rε(θ), Zε(θ)) of system (8) such that
(rε(0), Zε(0)) → p as ε → 0. Then (11) is equivalent to

det

(
∂(f1, f2)

∂(r, Z)

)
(r0, Z0) 6= 0,

where f1 and f2 are the functions defined just before the statement of The-
orem 2.

Going back through the changes of coordinates the 2π−periodic solution
(rε(θ), Zε(θ)) of system (8) provides the periodic solution (Xε(t), Yε(t), Zε(t))
of system (2) with µ = 0 such that

(Xε(t), Yε(t), Zε(t)) → (r0 cos t, r0 sin t, Z0) as ε → 0.

Therefore, from (7) we have a periodic solution (xε(t), yε(t), zε(t)) of the
system (2) such that

xε(t) → −r0 cos t− Z0 as ε → 0.

Hence we have proved Theorem 2.

3. Appendix

In this appendix we present the basic results from averaging theory that
we need for proving the results of this paper.

We consider the problem of the bifurcation of T−periodic solutions from
the differential system

(12) ẋ = F0(t,x) + εF1(t,x, ε) + ε2F2(t,x, ε),

with ε = 0 to ε 6= 0 sufficiently small. The functions F0, F1 : R × Ω → Rn

and F2 : R×Ω×(−ε0, ε0) → Rn are C2 functions, T−periodic in the variable
t, and Ω is an open subset of Rn. One of the main assumptions is that the
unperturbed system

(13) ẋ = F0(t,x),

has a submanifold of periodic solutions. A solution of this problem is given
using averaging theory. For a general introduction to averaging theory see
the books of Sanders and Verhulst [11], and Verhulst [12].

Let x(t, z) be the solution of unperturbed system (13) such that x(0, z) =
z. We write the linearization of the unperturbed system along the periodic
solution x(t, z) as

(14) ẏ = DxF0(t,x(t, z))y.

In what follows we denote by Mz(t) some fundamental matrix of the linear
differential system (14), and ξ : Rk × Rn−k → Rk the projection of Rn onto
its first k coordinates, i.e., ξ(x1, . . . , xn) = (x1, . . . , xk).

Theorem 3. Let V ⊂ Rk be open and bounded, and let β0 : Cl(V ) → Rn−k

be a C2 function. We assume that
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(i) Z = {zα = (α, β0(α)), α ∈ Cl(V )} ⊂ Ω and that, for each zα ∈ Z
the solution x(t, zα) of (13) is T−periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (14) such
that the matrix

M−1
zα (0)−M−1

zα (T )

has in the right hand up corner the k × (n − k) zero matrix, and
in the right hand down corner a (n − k) × (n − k) matrix ∆α with
det(∆α) 6= 0.

We consider the function F : Cl(V ) → Rk

(15) F(α) = ξ

(
1

T

∫ T

0
M−1

zα (t)F1(t,x(t, zα))dt

)
.

If there exists an a ∈ V with F(a) = 0 and det((dF/dα)(a)) 6= 0, then
there is a T−periodic solution ϕ(t, ε) of system (12) such that ϕ(0, ε) → a
as ε → 0.

Theorem 3 goes back to Malkin [7] and Roseau [10], for a shorter proof
see [3].

The next theorem provides a first order approximation for the periodic
solutions of a periodic differential system, for the proof see Theorems 11.5
and 11.6 of Verhulst [12]

Consider the differential equation

(16) ẋ = εf(t,x) + ε2g(t,x, ε), x(0) = x0

with x ∈ D ⊂ Rn, t ≥ 0.Moreover we assume that both f(t,x) and g(t,x, ε)
are T−periodic in t. Separately we consider in D the averaged differential
equation

(17) ẏ = εf0(y), y(0) = x0,

where

f0(y) =
1

T

∫ T

0
f(t,y)dt.

Under certain conditions, equilibrium solutions of the averaged equation
turn out to correspond with T−periodic solutions of equation (16).

Theorem 4. Consider the differential equation (16) and suppose that

(i) the functions f , g, fx, gx and fxx are defined, continuous and
bounded by a constant independent of ε in [0,∞)×D and ε ∈ (0, ε0];

(ii) f and g are T−periodic in t (T independent of ε).

If p is a singular point of the averaged equation (17) and

det

(
∂f0

∂y

)
|y=p 6= 0,

then there exists a T−periodic solution ϕ(t, ε) of equation (16) which is close
to p such that ϕ(0, ε) → p as ε → 0.
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