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Abstract

At a border-collision bifurcation a fixed point of a piecewise-smooth map intersects a
surface where the functional form of the map changes. Near a generic border-collision
bifurcation there are two fixed points, each of which exists on one side of the bifurcation.
A simple eigenvalue condition indicates whether the fixed points exist on different sides
of the bifurcation (this case can be interpreted as the persistence of a single fixed point),
or on the same side of the bifurcation (in which case the bifurcation is akin to a saddle-
node bifurcation). A similar eigenvalue condition indicates whether or not there exists a
period-two solution on one side of the bifurcation. Previously these conditions have been
combined to obtain five distinct scenarios for the existence and relative coexistence of fixed
points and period-two solutions near border-collision bifurcations. In this Letter, it is shown
that one of these scenarios, namely that two fixed points exist on one side of the bifurcation
and a period-two solution exists on the other side of the bifurcation, cannot occur. The
remaining four scenarios are feasible. Therefore there are exactly four distinct scenarios for
fixed points and period-two solutions near border-collision bifurcations.

1 Introduction

A piecewise-smooth map on M ⊂ R
N is a discrete-time dynamical system

Xi+1 = F j(Xi) , Xi ∈ Mj , (1.1)

where the regions Mj form a partition of the domain M, and each F j : Mj → M is a smooth
function. The boundaries of the Mj, termed switching manifolds, are assumed to be either
smooth or piecewise-smooth surfaces. Piecewise-smooth maps are used to model oscillatory
dynamics in systems involving abrupt events, such as mechanical systems with impacts [1], power
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electronics with switching events [2], and economics systems with non-negativity conditions or
optimisation [3].

As parameters are varied, a fixed point of (1.1) may intersect a switching manifold. If, near
the intersection, the switching manifold is smooth, (1.1) is continuous, and the derivatives DXF

j

are bounded, then the intersection is known as a border-collision bifurcation [4]. Dynamics near a
border-collision bifurcation of (1.1) are well-approximated by a piecewise-linear, continuous map,
which can be put in the form

xi+1 =

{

ALxi + bµ , si ≤ 0
ARxi + bµ , si ≥ 0

, (1.2)

where, throughout this Letter, s = eT1 x denotes the first component of x ∈ R
N . In (1.2), AL and

AR are real-valued N × N matrices, b ∈ R
N , and µ ∈ R is the primary bifurcation parameter:

the border-collision bifurcation occurs at x = 0 when µ = 0. The requirement that (1.2) is
continuous implies

AR = AL + ξeT1 , (1.3)

for some ξ ∈ R
N .

A fixed point of (1.2) must be a fixed point of one of the two half-maps of (1.2):

fL(xi) = ALxi + bµ , fR(xi) = ARxi + bµ . (1.4)

As long as 1 is not an eigenvalue of AL and AR, f
L and fR have unique fixed points,

xL = (I − AL)
−1bµ , xR = (I −AR)

−1bµ . (1.5)

The point xL is a fixed point of (1.2), and said to be admissible, if sL ≤ 0. Similarly, xR is
admissible if sR ≥ 0. Since xL and xR are linear functions of µ, generically xL and xR are each
admissible for exactly one sign of µ. In general, for the purposes of characterising the behaviour
of (1.2), it suffices to consider only the sign of µ, because the structure of the dynamics of (1.2)
is independent to the magnitude of µ.

Other invariant sets may be created in border-collision bifurcations, such as periodic solutions,
invariant circles, and chaotic sets [4, 5, 6, 7, 8, 9], as well as exotic dynamics such as multi-
dimensional attractors [10], and infinitely many coexisting attractors [11]. This Letter concerns
only fixed points and period-two solutions. Period-two solutions were first explored by Mark
Feigin in the 1970’s [12, 13], and were described more recently in [4, 14]. The creation of a
period-two solution in a border-collision bifurcation has different scaling properties than a period-
doubling bifurcation, and such differences can have important physical interpretations [15].

In generic situations, (1.2) either has no period-two solution for either sign of µ, or has an
LR-cycle (a period-two solution consisting of one point on each side of s = 0) for exactly one
sign of µ [12]. In [13], Feigin showed that the relative coexistence of the fixed points xL and xR is
determined by a simple condition on the eigenvalues of AL and AR, and that a similar condition
indicates whether or not an LR-cycle exists for one sign of µ. This is one of the most far-reaching
results in the bifurcation theory of nonsmooth dynamical systems, because it applies to maps
of any number of dimensions. Centre manifold analysis, which is the key tool for dimension
reduction, requires local differentiability and so usually cannot be applied to bifurcations specific
to nonsmooth dynamical systems, such as border-collision bifurcations [16].
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By directly combining the two generic cases for the nature of both fixed points and period-
two solutions, it appears that border-collision bifurcations can be categorised into five basic
scenarios. In the absence of an LR-cycle there are two scenarios: either xL and xR are admissible
for different signs of µ, Fig. 1-A, or xL and xR are admissible for the same sign of µ, Fig. 1-B.
If there exists an LR-cycle, and xL and xR are admissible for different signs of µ, then, trivially,
the LR-cycle coexists with exactly one fixed point, Fig. 1-C. Finally, if there exists an LR-cycle,
and xL and xR are admissible for the same sign of µ, it appears that there are two scenarios. The
LR-cycle could either coexist with xL and xR, as in Fig. 1-D, or coexist with neither xL or xR.
In [13], Feigin noted that the latter scenario is not possible in one-dimension (N = 1) in view
of Sharkovskii’s theorem [17]. Feigin further stated that this scenario is not possible for N = 2
(but did not provide a proof), and conjectured that the scenario is not possible for any N ∈ Z

+.
The purpose of this Letter is to prove this conjecture.

Each of the four scenarios of Fig. 1 is possible for (1.2) in any number of dimensions. In Fig. 1
the scenarios are illustrated for (1.2) with N = 1, for which (1.2) is written as

xi+1 =

{

aLxi + µ , xi ≤ 0
aRxi + µ , xi ≥ 0

, (1.6)

where aL, aR ∈ R.
The remainder of this Letter is organised as follows. Calculations for fixed points and period-

two solutions of (1.2) are given in §2 and §3, respectively. The basic border-collision bifurcation
scenarios formed by considering all generic possibilities for fixed points and period-two solutions
are described in §4. In §5 it is proved that a non-degenerate period-two solution of (1.2) must
coexist with a fixed point. Finally, §6 presents a brief summary and outlook.

2 Fixed points

In order to compare the values of sL and sR (the first components of xL and xR (1.5)), we let

̺T = eT1 adj(I −AL) , (2.1)

where adj(A) denotes the adjugate of a square matrix A. Recall, if A is nonsingular, then

A−1 = adj(A)
det(A)

. Thus, by (1.5) with J = L, we have

sL =
̺Tb

det(I −AL)
µ . (2.2)

Since AL and AR differ in only their first columns (1.3), adj(I − AL) and adj(I − AR) have the
same first row [9, 14], that is, eT1 adj(I −AR) = ̺T. Thus, by (1.5) with J = R, we have

sR =
̺Tb

det(I −AR)
µ . (2.3)

By (2.2) and (2.3), if ̺Tb = 0, then sL = sR = 0 for all µ. In this instance the fixed points do
not move away from the switching manifold as µ is varied from zero, which runs counter to our
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Figure 1: Bifurcation diagrams showing the four scenarios for the existence and relative co-
existence of fixed points and period-two solutions near generic border-collision bifurcations of
piecewise-smooth maps. In panels A and C, the two fixed points xL and xR (1.5) are admissible
for different signs of µ (persistence); in panels B and D, xL and xR are admissible for the same
sign of µ (nonsmooth-fold). In panels A and B, there is no period-two solution; in panels C
and D, an LR-cycle {xLR, xRL} exists for one sign of µ (indicated by dashed lines). By The-
orem 5.1, the LR-cycle must coexist with at least one fixed point. Each bifurcation diagram
is illustrated for the one-dimensional map (1.6) (the insets are graphs of xi+1 versus xi). The
specific parameter values are (aL, aR) = (0.4,−0.4) in panel A, (aL, aR) = (2,−0.4) in panel B,
(aL, aR) = (0.4,−1.5) in panel C, and (aL, aR) = (2,−1.5) in panel D.

notion of a border-collision bifurcation. For this reason, ̺Tb 6= 0 is a non-degeneracy condition
for the border-collision bifurcation of (1.2) at µ = 0.

Following [13], for J = L,R, we let σ+
J denote the number of real eigenvalues of AJ that are

greater than 1. If 1 is not an eigenvalue of AJ , then

sgn (det(I − AJ)) = (−1)σ
+

J , J = L,R . (2.4)

By combining (2.2), (2.3) and (2.4), we obtain the formula

sgn
(

sJ
)

= (−1)σ
+

J sgn
(

̺Tbµ
)

, J = L,R . (2.5)

Recall, xL is admissible if sL ≤ 0, and xR is admissible if sR ≥ 0. Therefore, if σ+
L +σ+

R is an even

number, then (−1)σ
+

L = (−1)σ
+

R , and hence by (2.5), sgn
(

sL
)

= sgn
(

sR
)

. Thus in this case xL
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and xR are admissible for different signs of µ (persistence of a fixed point). Alternatively if σ+
L+σ+

R

is an odd number, then xL and xR are admissible for the same sign of µ (a nonsmooth-fold).

3 Period-two solutions

Let us first consider a period-two solution of (1.2) consisting of two points with s < 0. Points
of this solution are fixed points of

(

fL ◦ fL
)

(xi) = A2
Lxi + (I + AL)bµ. If AL does not have an

eigenvalue of 1 or −1, as is generically the case, this period-two solution is unique, and therefore
must coincide with xL. Hence the period-two solution is really a fixed point, and we do not
need to consider it further. We can similarly dismiss period-two solutions of (1.2) consisting
of two points with s > 0. Therefore it remains to consider an LR-cycle {xLR, xRL}, where
xRL = fL(xLR) and xLR = fR(xRL).

Expressions for the first components of xLR and xRL are given by the following lemma. Lemma
3.1 is a special case of a result for general periodic solutions of (1.2) derived in [9, 18], and the
reader is referred to these sources for a proof.

Lemma 3.1. If 1 is not an eigenvalue of ARAL, then the LR-cycle is unique (but not necessarily
admissible) and

sLR =
det(I + AR)̺

Tb

det(I − ARAL)
µ , sRL =

det(I + AL)̺
Tb

det(I −ARAL)
µ . (3.1)

As in [13], we let σ−

J denote the number of real eigenvalues of AJ that are less than −1. If
−1 is not an eigenvalue of AJ , then

sgn (det(I + AJ)) = (−1)σ
−

J , J = L,R . (3.2)

We also let σ+
LR denote the number of real eigenvalues of ARAL (or equivalently of ALAR) that

are greater than 1. If 1 is not an eigenvalue of ARAL, then

sgn (det(I −ARAL)) = (−1)σ
+

LR . (3.3)

By (3.1), (3.2) and (3.3), we have

sgn
(

sLR
)

= (−1)σ
−

R
+σ+

LR sgn
(

̺Tbµ
)

, sgn
(

sRL
)

= (−1)σ
−

L
+σ+

LR sgn
(

̺Tbµ
)

, (3.4)

The LR-cycle is admissible if sLR ≤ 0 and sRL ≥ 0. Therefore by (3.4), if σ−

L + σ−

R is even,
then sgn

(

sLR
)

= sgn
(

sRL
)

and so the LR-cycle is not admissible for all µ 6= 0. Alternatively if
σ−

L + σ−

R is odd, then the LR-cycle is admissible for one sign of µ.

4 Feigin’s classification

If the LR-cycle is admissible for one sign of µ, we would like to determine which fixed points
it coexists with. To this end, we let σ+

LL denote the number of real eigenvalues of A2
L that are

greater than 1. If 1 is not an eigenvalue of A2
L, then

sgn
(

det
(

I −A2
L

))

= (−1)σ
+

LL . (4.1)
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In view of the simple factorisation I −A2
L = (I −AL)(I +AL), by (2.4), (3.2) and (4.1) we have

(−1)σ
+

LL = (−1)σ
+

L
+σ−

L . (4.2)

The following theorem summarises the main results of [13]. All aspects of Theorem 4.1 follow
from the results of the previous two sections, except those relating to the quantity σ+

LL + σ+
LR,

and for a complete proof the reader is referred to [4, 13, 14].

Theorem 4.1. For the map (1.2), suppose ̺Tb 6= 0, 1 is not an eigenvalue of AL, AR and ARAL,
and −1 is not an eigenvalue of AL and AR.

i) If σ+
L + σ+

R and σ−

L + σ−

R are even, then xL and xR are admissible for different signs of µ,
and the LR-cycle is not admissible for all µ 6= 0.

ii) If σ+
L + σ+

R is odd and σ−

L + σ−

R is even, then xL and xR are admissible for the same sign of
µ, and the LR-cycle is not admissible for all µ 6= 0.

iii) If σ+
L + σ+

R is even and σ−

L + σ−

R is odd, then xL and xR are admissible for different signs
of µ, and the LR-cycle is admissible for one sign of µ. If σ+

LL + σ+
LR is even [odd], then the

LR-cycle coexists with xR [xL].

iv) If σ+
L + σ+

R , σ
−

L + σ−

R and σ+
LL + σ+

LR are odd, then xL, xR and the LR-cycle are admissible
for the same sign of µ.

v) If σ+
L + σ+

R and σ−

L + σ−

R are odd and σ+
LL + σ+

LR is even, then xL and xR are admissible for
one sign of µ, and the LR-cycle is admissible for the other sign of µ.

5 The LR-cycle coexists with at least one fixed point

As a consequence of the following theorem, which is the main result of this Letter, if σ+
L + σ+

R

and σ−

L +σ−

R are odd, then σ+
LL + σ+

LR is also odd. Therefore, scenario (v) of Theorem 4.1 cannot
occur.

Theorem 5.1. Suppose 1 is not an eigenvalue of AL, AR and ARAL, and −1 is not an eigenvalue
of AL and AR. Suppose (−1)σ

+

L
+σ+

R = (−1)σ
−

L
+σ−

R . Then (−1)σ
+

LL
+σ+

LR = (−1)σ
+

L
+σ+

R .

The key feature of the proof of Theorem 5.1, given below, is that we look closely at (−1)σ
+

L
+σ−

R

and (−1)σ
−

L
+σ+

R , rather than (−1)σ
+

L
+σ+

R and (−1)σ
−

L
+σ−

R , as the first two quantities admit a con-
venient algebraic manipulation. We begin with the following lemma.

Lemma 5.2. Suppose 1 and −1 are not eigenvalues of AL and AR. Then

(−1)σ
+

L
+σ−

R = sgn
(

det(I − ARAL) + eT1 adj(I − ARAL)ξ
)

, (5.1)

(−1)σ
−

L
+σ+

R = sgn
(

det(I − ARAL)− eT1 adj(I −ARAL)ξ
)

, (5.2)

where ξ is given by (1.3).
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Proof of Lemma 5.2. For clarity we derive only (5.1). Equation (5.2) results from switching signs
in the following arguments. By (2.4) and (3.2),

(−1)σ
+

L
+σ−

R = sgn (det(I + AR) det(I − AL)) . (5.3)

We can use (1.3) to write

(I + AR)(I − AL) = I − ARAL + ξeT1 . (5.4)

Next we recall the matrix determinant lemma [19]: det(A+ pqT) ≡ det(A) + qTadj(A)p, for any
N × N matrix A, and p, q ∈ R

N . By applying this result to the right-hand side of (5.4), from
(5.3) we obtain (5.1).

Proof of Theorem 5.1. By assumption (−1)σ
+

L
+σ+

R = (−1)σ
−

L
+σ−

R , therefore (−1)σ
+

L
+σ+

R
+σ−

L
+σ−

R = 1,

and therefore we have (−1)σ
+

L
+σ−

R = (−1)σ
−

L
+σ+

R . By Lemma 5.2, we have |det(I −ARAL)| >
∣

∣eT1 adj(I − ARAL)ξ
∣

∣, and sgn (det(I − ARAL)) = (−1)σ
−

L
+σ+

R . By (3.3) we can rewrite this last
equation as

(−1)σ
+

LR = (−1)σ
−

L
+σ+

R . (5.5)

By multiplying (4.2) and (5.5) together, we obtain (−1)σ
+

LL
+σ+

LR = (−1)σ
+

L
+2σ−

L
+σ+

R = (−1)σ
+

L
+σ+

R ,
as required.

6 Discussion

By Theorems 4.1 and 5.1, the existence and relative coexistence of xL, xR and the LR-cycle near
generic border-collision bifurcations is almost completely determined by the even/odd parity of
σ+
L +σ+

R and σ−

L +σ−

R . We only need to evaluate σ+
LL+σ+

LR if we wish to identify which fixed point
the LR-cycle coexists with in scenario (iii) of Theorem 4.1. Scenario (v) of Theorem 4.1 cannot
occur in view of Theorem 5.1, which was proved by using algebraic arguments to demonstrate that
the particular combination of eigenvalue conditions required for scenario (v) cannot be satisfied.

The stability of xL, xR and the LR-cycle was not discussed here, refer to [4, 13, 14]. In
brief, xL, xR and the LR-cycle are attracting if and only if all eigenvalues of AL, AR and ARAL,
respectively, have modulus less than 1. Stability therefore relates directly to the various σ’s
defined above, and Theorem 4.1 can be used to show that for any µ ∈ R, at most one fixed point
or period-two solution can be attracting.

The admissibility of periodic solutions of (1.2) with period greater than two cannot be charac-
terised as simply as for fixed points and period-two solutions. For instance, a generic LLR-cycle
is admissible for one sign of µ if and only if

sgn (det(I + AR + ARAL)) = sgn (det(I + AL + ALAR)) 6= sgn
(

det
(

I + AL + A2
L

))

, (6.1)

see [9, 18], and it is not clear how to relate the quantities in (6.1) to the eigenvalues of AL and
AR.

7



References

[1] R.I. Leine and H. Nijmeijer. Dynamics and Bifurcations of Non-smooth Mechanical Systems, volume 18 of
Lecture Notes in Applied and Computational Mathematics. Springer-Verlag, Berlin, 2004.

[2] Z.T. Zhusubaliyev and E. Mosekilde. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World
Scientific, Singapore, 2003.

[3] T. Puu and I. Sushko, editors. Business Cycle Dynamics: Models and Tools. Springer-Verlag, New York,
2006.

[4] M. di Bernardo, C.J. Budd, A.R. Champneys, and P. Kowalczyk. Piecewise-smooth Dynamical Systems.

Theory and Applications. Springer-Verlag, New York, 2008.

[5] H.E. Nusse and J.A. Yorke. Border-collision bifurcations including “period two to period three” for piecewise
smooth systems. Phys. D, 57:39–57, 1992.

[6] S. Banerjee and C. Grebogi. Border collision bifurcations in two-dimensional piecewise smooth maps. Phys.
Rev. E, 59(4):4052–4061, 1999.

[7] Z.T. Zhusubaliyev, E. Mosekilde, S. Maity, S. Mohanan, and S. Banerjee. Border collision route to quasiperi-
odicity: Numerical investigation and experimental confirmation. Chaos, 16(2):023122, 2006.

[8] I. Sushko and L. Gardini. Center bifurcation for two-dimensional border-collision normal form. Int. J.

Bifurcation Chaos, 18(4):1029–1050, 2008.

[9] D.J.W. Simpson. Bifurcations in Piecewise-Smooth Continuous Systems., volume 70 of Nonlinear Science.
World Scientific, Singapore, 2010.

[10] P. Glendinning and C.H. Wong. Two dimensional attractors in the border collision normal form. Nonlinearity,
24:995–1010, 2011.

[11] D.J.W. Simpson. Sequences of periodic solutions and infinitely many coexisting attractors in the border-
collision normal form. To appear: Int. J. Bifurcation Chaos, 2014.

[12] M.I. Feigin. Doubling of the oscillation period with C-bifurcations in piecewise continuous systems. J. Appl.
Math. Mech., 34(5):822–830, 1970. Translation of Prikl. Mat. Mekh., 34(5):861-869, 1970.

[13] M.I. Feigin. On the structure of C-bifurcation boundaries of piecewise-continuous systems. J. Appl. Math.

Mech., 42(5):885–895, 1978. Translation of Prikl. Mat. Mekh., 42(5):820-829, 1978.

[14] M. di Bernardo, M.I. Feigin, S.J. Hogan, and M.E. Homer. Local analysis of C-bifurcations in n-dimensional
piecewise-smooth dynamical systems. Chaos Solitons Fractals, 10(11):1881–1908, 1999.

[15] X. Zhao and D.G. Schaeffer. Alternate pacing of border-collision period-doubling bifurcations. Nonlinear

Dyn., 50(3):733–742, 2007.

[16] P. Glendinning and M.R. Jeffrey. Grazing-sliding bifurcations, the border collision normal form, and the
curse of dimensionality for nonsmooth bifurcation theory. Unpublished., 2012.

[17] A.N. Sharkovskii. Co-existence of cycles of a continuous map of the line to itself. Int. J. Bifurcation Chaos,
5(5):1263–1273, 1995. Translation of Ukrain. Mat. Z., 16:61-71, 1964.

[18] D.J.W. Simpson and J.D. Meiss. Resonance near border-collision bifurcations in piecewise-smooth, continu-
ous maps. Nonlinearity, 23(12):3091–3118, 2010.

[19] D.S. Bernstein. Matrix mathematics: Theory, facts, and formulas with application to linear systems theory.

Princeton University Press, Princeton, NJ, 2005.

8


	1 Introduction
	2 Fixed points
	3 Period-two solutions
	4 Feigin's classification
	5 The LR-cycle coexists with at least one fixed point
	6 Discussion

