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Abstract

The challenge of removing the mixed derivative terms of a second order multidimensional partial differential equation is
addressed in this paper. The proposed method, which is based on proper algebraic factorization of the so-called diffusion
matrix, depends on the semidefinite or indefinite character of this matrix. Computational cost of the transformed equation
is considerably reduced and well-known numerical drawbacks are avoided.
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1. Introduction

Multiasset option pricing problems have an increasing interest because they are natural and frequent in the real market
practice. In the multi-dimensional Black-Scholes model the asset prices follow a geometric Brownian motion

dSi(t) = (µi − qi)Sidt+ σiSi(t)dWi(t), t ≥ 0, (1)

where Si is the i-th underlying asset having an expected return of µi, a continuous divided of qi, and the volatility of σi, for
i = 1, 2, . . . ,M and M ∈ N. The Wiener processes are correlated with ρijdt =< dWi, dWj >, for 1 ≤ i, j ≤ M , i ̸= j. Using
Martingale strategies and Itô’s calculus, one gets that option price V (S, τ) = V (S1, . . . , SM , τ) satisfies [23]:

∂V

∂τ
=
1

2

M∑
i,j=1

ρijσiσjSiSj
∂2V

∂Si ∂Sj
+

M∑
i=1

(r − qi)Si
∂V

∂Si
− rV, (2)

where τ = T − t, T is the time of maturity, ρii = 1, ρij = ρji, i ̸= j, and |ρij | ≤ 1. The mixed derivative terms appearing in
(2) show the correlation among the prices of the assets Si.5

If the curse of dimensionality is a very significant problem within the pricing techniques due to the exponential growth of
unknowns and complexity, the mixed derivative terms are a source of numerical drawbacks. If not accurately discretized, they
may generate oscillations, spurious solutions and other instabilities [27]. Furthermore, standard finite difference discretization
schemes involve stencils with a considerable greater number of nodes.

It is important to point out that multidimensional partial differential equations with mixed derivative terms also appear10

in many different engineering problems [15, 17]. It is well known that the presence of the mixed derivative terms may cause
instability and inaccuracies, which complicates numerical schemes as splitting methods [26] and references therein.

Authors overcome these mixed derivative drawbacks in two different ways. Some of them construct special schemes to
reduce the number of stencil nodes [3, 4, 14] or propose high order compact schemes [6]. The second approach, developed for
two asset problems in [12] and for stochastic volatility models in [5, 7], uses different transformation techniques to remove15

the mixed derivative terms. In [20], the authors remove the cross derivative terms using the orthogonal diagonalization of
the covariance matrix. Such approach requires the use of iterative methods, [8, chapter 8] and has the drawback of the

∗Corresponding author. Email: rcompany@imm.upv.es (R. Company)
1R. Company (rcompany@imm.upv.es), V. Egorova (egorova.vn@gmail.com), L. Jódar (ljodar@imm.upv.es), F. Soleymani
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reliable computation of eigenvectors [24, chapter 5]. In this paper, we show that, in fact, for the general multiasset option
pricing problem the cross derivative terms of (2) can be removed by means of an easy to implement transformation based
on Gaussian elimination and pivoting strategies.20

Sample covariance and correlation matrices from real data may lack definiteness, see [19], [25, pp. 189-190]. In such cases,
authors use to transform the original problem into another close one where the correlation matrix becomes positive definite
[10, 22].

Our strategy is based on the LDLT transformation of the symmetric positive semi-definite correlation matrix

R = (ρij)1≤i,j≤M , (3)

(see e.g. [16, p. 540] and [21, p. 369]). The organization of the paper is as follows. Section 2 contains the proposed general25

method to remove the M(M−1)
2 mixed derivative terms of equation (2). Thinking of applications in other fields where the

real symmetric matrix A involving the coefficients of second order derivative terms, so-called the diffusion matrix, becomes
indefinite, it is important to point out that in such cases the factorization A = LDLT may not exist, and if it exists, its
computation may be unstable (see e.g., [11, p. 214]). Then, in Section 3 we provide an alternative to remove only a part
of the mixed derivative terms based on the Bunch-Kaufman factorization of the matrix R (see e.g. [1], [8, p. 192] or [11, p.30

217]). A conclusion section finishes the work.

2. Removing mixed derivative terms transformation

For the sake of clarity in the presentation, we recall some algebraic definitions and results about real symmetric matrices
that are relevant in the following. We begin with a well-known definition.

Definition 1. [8] A matrix L = (lij) is said to be a unit lower triangular matrix if lii = 1, and lij = 0 for 1 ≤ i, j ≤ M and35

j > i. Also, a symmetric matrix R ∈ RM×M is said to be positive semidefinite if xTRx ≥ 0 for all vectors x ∈ RM .

The next result is an adapted one from the results of Chapter 10 of [11] and Chapter 4 of [8].

Proposition 1. [8] Let R be a symmetric positive semidefinite matrix in RM×M . Then, there exists a unit lower triangular
matrix L and a diagonal matrix D = (dij) in RM×M with dii ≥ 0, 1 ≤ i ≤ M , such that

R = LDLT . (4)

The expression (4) is called LDLT factorization of matrix R with the additional hypothesis of invertibility on R, i.e., the40

positive definite case, the above decomposition (4) is unique, but not if R is only positive semidefinite.
In order to guarantee the numerical stability, it is convenient to ensure that no large entries appear in the computed

triangular factors of (4). This is performed by means of a permuted version of R [8, Chapters 3 and 4].
Taking advantage of a diagonal pivoting strategy in algorithm 4.2.2 of [8], one constructs a LDLT decomposition of a

symmetric semidefinite matrix R using a permutation matrix P such that |lij | ≤ 1 and45

PRPT = LDLT , (5)

with
d11 ≥ d22 ≥ · · · ≥ dnn ≥ 0. (6)

Let us start from equation (2). It is well-known that logarithm transformation for spatial variables leads to constant
coefficient partial differential equation [4]. Here, we use the substitution

xi =
logSi

σi
, 1 ≤ i ≤ M, (7)

with V (S, τ) = W (X, τ), where X = (x1, x2, . . . , xM )T , achieving

∂W

∂τ
=
1

2

M∑
i,j=1

ρij
∂2W

∂xi ∂xj
+

M∑
i=1

(
r − qi −

σ2
i

2

)
1

σi

∂W

∂xi
− rW. (8)
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In order to explore the possibility of removing the mixed derivative terms of (8), let us propose a linear transformation

Y = CX, C = (cij)1≤i,j≤M , (9)

where C is a nonsingular matrix to be determined later. Using (9), the equation (8) becomes U(Y, τ) = W (X, τ) and

∂U

∂τ
=
1

2

M∑
i,j=1

(ciRcTj )
∂2U

∂yi ∂yj
+

M∑
i,j=1

(
r − qj − σ2

j /2

σj

)
cij

∂U

∂yi
− rU, (10)

where ci = (ci1, ci2, · · · , ciM ) is the ith row vector of matrix C. Note that mixed derivative terms disappear in (10) if row50

vectors of matrix C are orthogonal with respect to R. As R is symmetric positive semidefinite, from (5), we have

(L−1P )R(L−1P )T = D. (11)

Let us take ci as the ith row of matrix L−1P : ci = (L−1P )i. From (11), one gets

ciRcTj =

{
0, i ̸= j,
dii, i = j.

(12)

Hence, equation (10) becomes:

∂U

∂τ
=
1

2

M∑
i=1

(dii)
∂2U

∂y2i
+

M∑
i=1

 M∑
j=1

(r − qj − σ2
j /2)cij

σj

 ∂U

∂yi
− rU. (13)

Summarizing the following result has been established.

Theorem 1. With previous notation, let R be the symmetric positive semi-definite matrix given in (3) and let L,P and D be
matrices in RM×M satisfying (5). Then, under substitutions (7) and (9), where C = L−1P , the equation (2) is transformed55

into equation (13) without mixed derivative terms.

Remark 1. Note that using the classic vector analysis notation where · denotes the Euclidean inner product and the gradient

is represented by the operator ∇ =
(

∂
∂y1

, ∂
∂y2

, . . . , ∂
∂yM

)T
, the transformed equation (13) of Theorem 1 can be written in the

compact form

∂U

∂τ
=
1

2
(D∇) · ∇U + (CQ) · ∇U − rU, (14)

where Q = (Q1, Q2, . . . , QM )T with Qi =
r−qi−σ2

i /2
σi

, 1 ≤ i ≤ M .

Remark 2. It is important to point out that the transformation constructed in Theorem 1 has numerical advantage from the
computational cost and stability points of view, but it is not the only way to eliminate mixed derivative terms. In fact, if one
uses the standard orthogonal diagonalization of R = FDF−1, with F−1 = FT , the transformation C = F−1 also transforms60

equation (2) into another without mixed derivative terms.

In the next example, we apply the removing strategy to a 7-asset option pricing problem treated in [18, p. 18].

Example 1. Consider equation (2) for M = 7 where the correlation positive definite matrix R is given by

R =



1.00 −0.65 0.25 0.2 0.25 −0.05 0.05
−0.65 1.00 0.5 0.1 0.25 0.11 −0.016
0.25 0.5 1.00 0.37 0.25 0.21 0.076
0.2 0.1 0.37 1.00 0.25 0.27 0.13
0.25 0.25 0.25 0.25 1.00 0.14 −0.04

−0.05 0.11 0.21 0.27 0.14 1.00 0.19
0.05 −0.016 0.076 0.13 −0.04 0.19 1.00


, (15)
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with the parameters σ = (σ1, . . . , σ7)=(0.25, 0.35, 0.20,0.25, 0.20, 0.21, 0.27), r = 0.045, T = 1 year, q = (q1, . . . , q7)= 0.05,
0.07, 0.04,0.06, 0.04, 0.03, 0.02. With previous notation, using factorization PRPT = LDLT and substitution (7) and (9),65

one gets D = diag(1.000, 0.998, 0.960, 0.907, 0.861, 0.787, 0.00786) and

C = L−1P =



1.000 0 0 0 0 0 0
0.050 0 0 0 0 1.000 0

−0.060 0 0 0 0 −0.190 1.000
−0.260 0 0 0 1.000 −0.170 0.085
−0.210 0 1.000 0 −0.170 −0.190 −0.036
−0.110 0 −0.270 1.000 −0.130 −0.190 −0.074
0.900 1.000 −0.680 0.021 −0.330 0.120 −0.017


. (16)

Now, the corresponding problem (2) is transformed into (13) and (14) as follows:

∂U

∂τ
=

1

2
(D∇) · ∇U + (CQ) · ∇U − rU, (17)

where U(Y, τ) = V (S, τ) and Q appears in Remark 1. Note also that the original partial differential equation with 37 terms
has been transferred into one with only 16 terms.

3. Mixed derivative removing: The indefinite case70

As it is pointed out in Section 1, the removing technique proposed in Section 2 is also applicable with changes to other
second order partial differential equations where the diffusion matrix is symmetric possibly indefinite. Let us consider the
equation

M∑
i,j=1

aij
∂2v

∂xi∂xj
+

M∑
i=1

bi
∂v

∂xi
+ cv = 0, (18)

where A = (aij)1≤i,j≤M is a real symmetric matrix, b = (b1, . . . , bM )T ∈ RM and c ∈ R.
In the transformation of previous section, the positive semi-definite structure of matrix R was essential to guarantee

the LDLT factorization. As now the matrix A is allowed to be indefinite, we provide the Bunch-Kaufman factorization
alternative. This approach not always provides a diagonal factorization of A, but only a block-diagonal matrix B with 1× 1
or 2× 2 diagonal blocks such that75

PAPT = LBLT , (19)

where the permutation matrix P provides a partial pivoting strategy. Thus, one gets a more efficient method than other
diagonal pivoting strategies as complete pivoting [2], see chapter 10 of [11, p. 226]. Numerically stable computation of
factorization (19) is given in [1], [11, p. 217], [8, p. 192] and [9].

The next example is related to multiasset cross currency option pricing [13, chapter 29] with indefinite sample correlation
matrix.80

Example 2. [25, p. 189] Consider equation (2) for M = 3, with indefinite sample correlation matrix

R =

 1 3
10

9
10

3
10 1 9

10
9
10

9
10 1

 . (20)

Using Bunch-Kaufman strategy, one gets the transformation matrix C and the resulting matrix B,

C = L−1P =

 1 0 0
− 3

10 1 0
− 9

13 − 9
13 1

 , B = diag (1, 91/100,−16/65) = D. (21)

Hence, the original partial differential equation is transformed into (14) without cross derivative terms.
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Example 3. Let us consider the 4-dimensional second order partial differential equation

(A∇) · ∇v = 2
∂2v

∂x1∂x2
+ 4

∂2v

∂x1∂x3
+ 8

∂2v

∂x2∂x3
+ 6

∂2v

∂x1∂x4
+ 10

∂2v

∂x2∂x4
+ 12

∂2v

∂x3∂x4
= 0, (22)

and let A be the symmetric indefinite diffusion matrix85

A =


0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0

 . (23)

Note that as all the diagonal entries of A are zeros the LDLT factorization of PAPT is not possible because diagonal pivoting
interchanges among diagonal entries and no nonzero pivot is possible.

The Bunch-Kaufman algorithm provides the factorization (19) with

L =


1 0 0 0
0 1 0 0
1/2 1/3 1 0
5/6 2/3 4/3 1

 , B = diag

((
0 6
6 0

)
,−2,−28

9

)
, P =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (24)

Considering the substitution (9) where C = L−1P gives the transformed equation for w(Y ) = u(X):

(B∇) · ∇w = 12
∂2w

∂y1∂y2
− 2

∂2w

∂y23
− 28

9

∂2w

∂y24
= 0. (25)

Remark 3. Note that because of numerical stability requirements, mixed partial derivative still remains in (25). However,90

for the aim of solving the PDE, we can manage the 2× 2 remaining block by standard eigenvalue diagonalization. Note that(
0 6
6 0

)
= KD1K

T , D1 =

(
6 0
0 −6

)
, K =

1√
2

(
1 1
1 −1

)
, (26)

and taking C1 =
(
diag(KT , 1, 1)

)
L−1P , and Z = C1X one achieves finally u(Z) = w(Y ) = v(X):

6
∂2u

∂z21
− 6

∂2u

∂z22
− 2

∂2u

∂z23
− 28

9

∂2u

∂z24
= 0. (27)

This last transformation is always possible, when after applying the Bunch-Kaufman algorithm, some 2×2 blocks remain
in the block-diagonal factorization of matrix A.

4. Conclusions95

In this paper, a general numerically stable method is proposed to remove the mixed derivative terms of multidimensional
second order partial differential equations with real symmetric diffusion matrix A. Although the cases where A is semidefinite
or indefinite are treated separately, both removing techniques become numerically stable. In fact, the indefinite case may
need in the last step, an eigenvalue diagonalization of a 2× 2 block that is numerically stable.
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