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SELF-REGULATION IN THE BOLKER-PACALA MODEL

YURI KONDRATIEV AND YURI KOZITSKY

Abstract. The Markov dynamics is studied of an infinite system of point entities placed
in R

d, in which the constituents disperse and die, also due to competition. Assuming
that the dispersal and competition kernels are continuous and integrable we show that
the evolution of states of this model preserves their sub-Poissonicity, and hence the local
self-regulation (suppression of clustering) takes place. Upper bounds for the correlation
functions of all orders are also obtained for both long and short dispersals, and for all
values of the intrinsic mortality rate.

1. Introduction

An actual task of applied mathematics is the description of the dynamics of large sys-
tems of living entities, see [1, 11, 12]. This relates, in particular, to the systems in which
the dynamics amounts to the appearance (birth) and disappearance (death) of the con-
stituents. The disappearance of a given entity caused by its interaction with the rest of
the community is interpreted as the result of competition.

In the simplest birth-and-death models, the state space is N0 := N∪{0}. Then the only
observed result of the trade-off between the appearance and disappearance is the dynamics
of the number of entities in the population. The theory of such models goes back to A.
Kolmogorov and W. Feller, see [2, Chapter XVII]. In this theory, the time evolution of
the probability of having n entities is obtained from the Kolmogorov equation with a
tridiagonal infinite matrix containing birth and death rates. An important generalization
here is to place the entities in a continuous habitat, H, usually a subset of Rd, d ≥ 1.
Among the advantages of this approach is the possibility to study the system at both local
and global levels, where the local structure is determined by the interaction between the
entities dependent on their spatial positions. A paramount task of this study is to describe
how does the local structure of a given system affects its global behavior. Typically, the
entities interacting with a given entity lie in a compact subset of H. If H itself is compact,
the qualitative difference between the global and the local is inessential. Hence, to see the
difference between them one has to place the system into a noncompact habitat. A finite
birth-and-death system in a noncompact habitat always occupies its compact subset and
has a tendency to disperse to the empty parts by placing there the newborn entities. It
can thus be classified as a developing system in which the possibly existing interactions
have little influence on the global behavior, see [10]. Therefore, the importance of the local
competition in determining the global behavior of a birth-and-death system can fully be
understood if the system is developed, i.e., is infinite and placed in a noncompact habitat.

In this work, we continue, cf. [4, 5, 6, 10], dealing with the model introduced in [1, 11],
often called Bolker-Pacala or Bolker-Pacala-Dieckmann-Law model. Here the habitat is
the Euclidean space R

d. The phase space is the set Γ of all locally finite subsets γ ⊂ R
d,

i.e., such that γΛ := γ ∩ Λ is finite whenever Λ ⊂ R
d is compact. For a compact Λ, one

defines the counting map Γ ∋ γ 7→ |γΛ| (| · | denotes cardinality). Then Γ is equipped with
the σ-field B(Γ) generated by all ΓΛ,n := {γ ∈ Γ : |γΛ| = n}, n ∈ N0 and Λ compact. This
allows for considering probability measures on Γ as states of the system, including Poisson
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states in which the entities are independently distributed over R
d. For the homogeneous

Poisson state πκ with density κ > 0 and every compact Λ, one has

πκ(Γ
Λ,n) = (κV(Λ))n exp (−κV(Λ)) /n!, n ∈ N0, (1.1)

where V(Λ) denotes Lebesgue’s measure (volume) of Λ. A state µ can be called sub-
Poissonian if for each compact Λ ⊂ R

d, the following holds

∀n ∈ N0 µ(ΓΛ,n) ≤ CΛκ
n
Λ/n!, (1.2)

with some positive constants CΛ and κΛ. Thus, the sub-Poissonian states are characterized
by the lack of heavy tails or clustering. The entities in such a state are either independent in
taking their positions or ‘prefer’ to stay away of each other. The set of finite configurations
Γ0 := ∪n∈N0

{γ ∈ Γ : |γ| = n} is clearly measurable. In a state with the property
µ(Γ0) = 1, the system is (µ-almost surely) finite. In this note, we consider infinite systems
and hence deal with states µ such that µ(Γ0) = 0.

In dealing with states on Γ one employs observables – appropriate functions F : Γ → R.
Their evolution is obtained from the Kolmogorov equation

d

dt
Ft = LFt, Ft|t=0 = F0, t > 0, (1.3)

where the generator L specifies the model. The states’ evolution is then obtained from
the Fokker–Planck equation

d

dt
µt = L∗µt, µt|t=0 = µ0, (1.4)

related to that in (1.3) by the duality µt(F0) = µ0(Ft) :=
∫

Γ Ft(γ)µ0(dγ). The model
discussed in this work is specified by the following

(LF ) (γ) =
∑

x∈γ

E−(x, γ \ x) [F (γ \ x)− F (γ)] (1.5)

+

∫

Rd

E+(x, γ) [F (γ ∪ x)− F (γ)] dx,

where E+(x, γ) and E−(x, γ) are state-dependent birth and death rates, respectively. We
take them in the following forms

E+(x, γ) =
∑

y∈γ

a+(x− y), (1.6)

E−(x, γ) = m+
∑

y∈γ

a−(x− y), (1.7)

where a+ ≥ 0 and a− ≥ 0 are the dispersal and competition kernels, respectively, m ≥ 0
is the intrinsic mortality rate. This model plays a significant role in the mathematical
theory of ecological systems, see [12]. Its recent study can be found in [4, 5, 6]. The
particular case of (1.5), (1.7) with a− ≡ 0 is the continuum contact model, see [9] and the
references therein. In this work, we aim at understanding the ecological consequences of
the competition presented in (1.5).

Remark 1.1. For the kernels a±, one has the following possibilities:

(i) ( short dispersal) there exists θ > 0 such that a−(x) ≥ θa+(x) for all x ∈ R
d;

(ii) ( long dispersal) for each θ > 0, there exists x ∈ R
d such that a−(x) < θa+(x).

In case (i), a+ decays faster than a−, and hence each daughter entity competes with her
mother. Such models are usually employed to describe the dynamics of cell communities,
see [3]. An instance of the short dispersal is given by a+ with finite range, i.e., a+(x) ≡ 0
for all |x| ≥ r, and a−(x) > 0 for such x. In case (ii), a− decays faster than a+, and hence
some of the offsprings can be out of reach of their parents. Models of this kind can be
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adequate, e.g., in plant ecology with the long-range dispersal of seeds. In this study, the
model parameters are supposed to satisfy the following.

Assumption 1.2. The kernels a± in (1.6) and (1.7) are continuous and belong to L1(Rd)∩
L∞(Rd). According to this we set 〈a±〉 =

∫

Rd a
±(x)dx and ‖a±‖ = supx∈Rd a±(x).

Like in [5, 6], the evolution of states will be described by means of correlation functions.
To explain the essence of this approach let us consider the set of all compactly supported
continuous functions θ : Rd → (−1, 0]. For a state, µ, its Bogoliubov functional is

Bµ(θ) =

∫

Γ

∏

x∈γ

(1 + θ(x))µ(dγ), (1.8)

with θ running through the mentioned set of functions. For the homogeneous Poisson
measure πκ, it takes the form

Bπκ
(θ) = exp

(

κ

∫

Rd

θ(x)dx

)

.

Having this in mind we will consider those states µ for which the functional (1.8) can be
written down in the form

Bµ(θ) = 1 +

∞
∑

n=1

1

n!

∫

(Rd)n
k(n)µ (x1, . . . , xn)θ(x1) · · · θ(xn)dx1 · · · dxn, (1.9)

where k
(n)
µ is a symmetric element of L∞((Rd)n). It is the n-th order correlation function

of µ. In the contact model, for each t > 0 and n ∈ N the correlation functions satisfy the
following estimates

const · n!cnt ≤ k
(n)
t (x1, . . . , xn) ≤ const · n!Cn

t . (1.10)

Thus, the corresponding state does not satisfy (1.2), and hence the clustering does occur
in this model. In view of this, the main question arising here is whether the competition
contained in L can suppress clustering. In such a case, one can say that the local self-
regulation takes place in this model. The answer given Theorems 2.1 and 2.2 below is in
affirmative.

2. The Results

By B(R) and P(Γ) we denote the sets of all Borel subsets of R and the set of all
probability measures on (Γ,B(Γ)), respectively. Ny definition, the subset Pexp(Γ) ⊂ P(Γ)
consists of all those µ for which Bµ can be continued, as a function of θ, to an exponential

type entire function on L1(Rd). It can be shown that a given µ belongs to Pexp(Γ) if and
only if Bµ can be written down as in (1.9) where the correlation functions satisfy

‖k(n)µ ‖L∞((Rd)n) ≤ C exp(ϑn), n ∈ N0, (2.1)

with some C > 0 and ϑ ∈ R. In other words, k
(n)
µ satisfies the Ruelle bound, see [8, Section

6]. In view of (2.1), each µ ∈ Pexp(Γ) satisfies (1.2) and hence is sub-Poissonian.
A function G : Γ0 ⊂ Γ → R is B(Γ)/B(R)-measurable, see [5], if and only if, for each

n ∈ N, there exists a symmetric Borel function G(n) : (Rd)n → R such that

G(η) = G(n)(x1, . . . , xn), for η = {x1, . . . , xn}. (2.2)

Like in (2.2), we introduce kµ : Γ0 → R such that kµ(η) = k
(n)
µ (x1, . . . , xn) for η =

{x1, . . . , xn}, n ∈ N. We also set kµ(∅) = 1. Then we pass from (1.4) to the corresponding
Cauchy problem for the correlation functions

d

dt
kt = L∆kt, kt|t=0 = kµ0

. (2.3)
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In non-equilibrium statistical mechanics, the corresponding problem is known as the
BBGKY hierarchy. The action of L∆ presents as follows, cf. [4, 5, 6],

(

L∆k
)

(η) = (L∆,−k)(η) +
∑

x∈η

E+(x, η \ x)k(η \ x) (2.4)

+

∫

Rd

∑

x∈η

a+(x− y)k(η \ x ∪ y)dy,

where

(L∆,−k)(η) := −E−(η)k(η) −

∫

Rd

(

∑

y∈η

a−(x− y)

)

k(η ∪ x)dx, (2.5)

and

E−(η) :=
∑

x∈η

E−(x, η \ x) = m|η|+
∑

x∈η

∑

y∈η\x

a−(x− y). (2.6)

By (2.1) it follows that µ ∈ Pexp(Γ) implies |kµ(η)| ≤ C exp(ϑ|η|), holding for λ-almost all
η ∈ Γ0, some C > 0, and ϑ ∈ R. In view of this, we set

Kϑ := {k : Γ0 → R : ‖k‖ϑ < ∞}, (2.7)

where ‖k‖ϑ = ess supη∈Γ0

{

|kµ(η)| exp
(

− ϑ|η|
)}

. Clearly, (2.7) defines a Banach space.
In the following, we use the ascending scale of such spaces Kϑ, ϑ ∈ R, with the property
Kϑ →֒ Kϑ′ for ϑ < ϑ′. Here →֒ denotes continuous embedding. Then K := ∪ϑ∈RKϑ is
equipped with the corresponding inductive topology that turns it into a locally convex
space.

For each ϑ ∈ R and ϑ′ > ϑ, the expressions in (2.4), (2.5) and (2.6) can be used to define
the corresponding bounded linear operators L∆

ϑ′ϑ acting from Kϑ to Kϑ′ . Their operator
norms can be estimated similarly as in [6, eqs. (3.11), (3.13)], which yields

‖L∆
ϑ′ϑ‖ ≤

4(‖a+‖+ ‖a−‖)

e2(ϑ′ − ϑ)2
+

〈a+〉+m+ 〈a−〉eϑ
′

e(ϑ′ − ϑ)
. (2.8)

By means of the collection {L∆
ϑ′ϑ} with all ϑ ∈ R and ϑ′ > ϑ we introduce the correspond-

ing continuous linear operators acting on K, and thus define the Cauchy problems (2.3) in
this space. By the (global in time) solutions we mean continuously differentiable functions
[0,+∞) ∋ t 7→ kt ∈ K such that both equalities in (2.3) hold.

Theorem 2.1. Under Assumption 1.2 the following holds: For each µ0 ∈ Pexp(Γ), the
problem in (2.3) with L∆ : K → K as in (2.4) – (2.6) and (2.8) has a unique solution kt
such that, for each t > 0, there exists a unique state µt ∈ Pexp(Γ) for which kt = kµt

.

Theorem 2.2. Let ϑ0 be such that kµ0
∈ Kϑ0

. Then, for all t ≥ 0, the mentioned above
solution kt, corresponding to this kµ0

, satisfies the following estimates:

(i) Case 〈a+〉 > 0 and m ∈ [0, 〈a+〉]: for each δ < m (long dispersal) or δ ≤ m (short
dispersal), there exists a positive Cδ such that logCδ ≥ ϑ0 and

kt(η) ≤ C
|η|
δ exp

(

(〈a+〉 − δ)|η|t

)

, η ∈ Γ0.

(ii) Case 〈a+〉 > 0 and m > 〈a+〉: for each ε ∈ (0,m − 〈a+〉), there exists a positive
Cε such that logCε ≥ ϑ0 and

kt(η) ≤ C |η|
ε exp(−εt), η 6= ∅. (2.9)

(iii) Case 〈a+〉 = 0:

kt(η) ≤ k0(η) exp
[

−E−(η)t
]

, η ∈ Γ0. (2.10)
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If m = 0 and a−(x) = θa+(x), then

kt(η) = θ−|η|, t ≥ 0, (2.11)

is a stationary solution.

The proof of these statements is based on the following

Lemma 2.3. Let a± satisfy Assumption 1.2. Then one finds b ≥ 0 and θ > 0 such that

b|η|+
∑

x∈η

∑

y∈η\x

a−(x− y) ≥ θ
∑

x∈η

∑

y∈η\x

a+(x− y), (2.12)

holding for all η ∈ Γ0.

The proof of the lemma (quite technical) can be found in [7].

3. Comments and comparison

The condition of continuity of a− in Assumption 1.2 can be relaxed. In fact, it is enough
to assume that a− is measurable and separated away from zero in some ball. For a+, it is
enough to have a continuous ã+ ∈ L∞(Rd) ∩ L1(Rd) such that ã+(x) ≥ a+(x) for almost
all x.

By Theorem 2.1, adding competition to the continuum contact model, cf. (1.10), yields
the local self-regulation – no matter how long the dispersal is. In the short dispersal case,
the inequality in (2.12) readily holds with b = 0. Then the most intriguing question here
is whether it can hold in the long dispersal case. In [6, Proposition 3.7], it was shown
that measurable a+ and a− satisfy (2.12) with some b and θ if a−(x) is separated away
from zero for |x| < r with some r > 0, and a+(x) ≡ 0 for |x| ≥ R with some R > 0
with the possibility R > r. Another choice of a+ and a− satisfying (2.12) can be, see [6,
Proposition 3.8],

a±(x) =
c±

(2πσ2
±)

d/2
exp

(

−
1

2σ2
±

|x|2
)

,

with all possible c± > 0 and σ± > 0. An important example of a± which both Propositions
3.7 and 3.8 of [6] do not cover is the case where a− has finite range and a+ is Gaussian as
above. The novelty of our present – rather unexpected – result is that (2.12) is satisfied
for any a+ and a− as in Assumption 1.2, and hence the local self-regulation is achieved
by applying any kind of competition.

Now let us compare our results with those of [4, 5]. In [4], the model was supposed to
satisfy the conditions, see [4, Eqs. (3.38) and (3.39)], which can be formulated as follows:
(a) condition (i) in Remark 1.1 holds with a given θ > 0; (b) m > 16〈a−〉/θ for this θ.
Then the global evolution k0 7→ kt was obtained in Kϑ with some ϑ ∈ R by means of a
C0-semigroup. No information was available on whether kt is a correlation function and
hence on the sign of kt. In [5], the restrictions were relaxed to imposing the short dispersal
condition. Then the evolution k0 7→ kt was obtained in a scale of Banach spaces Kα as in
Theorem 2.1, but on a bounded time interval. Like in [4], also here no information was
obtained on whether kt is a correlation function.

Theorem 2.2 gives a complete characterization of the evolution k0 7→ kt. For m < 〈a+〉
(short dispersal) or m ≤ 〈a+〉 (long dispersal), the evolution described in Theorem 2.1
takes place in an ascending scale {Kϑt

}t≥0 of Banach spaces. If m > 〈a+〉, the evolution
holds in one and the same space. The only difference between the cases of long and short
dispersals is that one can take δ = m in the latter case. This yields different results for
m = 〈a+〉, where the evolution takes place in the same space Kϑ with ϑ = logCm. Note
also that for m = 0, one should take δ < 0. For m > 〈a+〉, it follows from (2.9) that the
population dies out: for 〈a+〉 > 0, the following holds

k(n)µt
(x1, . . . , xn) ≤ e−εtk(n)µ0

(x1, . . . , xn), t > 0,
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for some ε ∈ (0,m − 〈a+〉), almost all (x1, . . . , xn), and each n ∈ N. For m > 0 and
〈a+〉 = 0, by (2.10) we get

k(n)µt
(x1, . . . , xn) ≤ exp (−nmt) k(n)µ0

(x1, . . . , xn), t > 0.

This means that k
(n)
µt

(x1, . . . , xn) → 0 as n → +∞ for sufficiently big t > 0. This phenom-
enon does not follow from (2.9). Finally, we mention that (2.11) corresponds to a special
case of short dispersal. Until the present work no results on the extinction as in (2.9) and
on the case of a+ ≡ 0 were known.
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els of tumour development and related mesoscopic equations, Interdisciplinary Studies of Complex

Systems 7 (2015) 5–85.
[4] D. L. Finkelshtein, Yu. G. Kondratiev, O. Kutovyi, Semigroup approach to birth-and-death stochastic

dynamics in continuum, J. Funct. Anal. 262 (2012) 1274-1308.
[5] D. L. Finkelshtein, Yu. G. Kondratiev, Yu. Kozitsky, O. Kutovyi, The statistical dynamics of a spatial

logistic model and the related kinetic equation, Math. Models Methods Appl. Sci. 25 (2015) 343–370.
[6] Yu. G. Kondratiev, Yu. Kozitsky, The evolution of states in a spatial population model, J. Dyn. Diff.

Equat. (2016)
[7] Yu. Kondratiev, Yu. Kozitsky, Self-regulation in continuum population models, Preprint

arXiv:1702.02920v1 (2017).
[8] Yu. Kondratiev, T. Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens.

Anal. Quantum Probab. Relat. Top. 5 (2002) 201–233.
[9] Yu. Kondratiev, O. Kutovyi, S. Pirogov S, Correlation functions and invariant measures in continuous

contact model, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008) 231–258.
[10] Yu. Kozitsky, Dynamics of spatial logistic model: finite systems, in: J. Banasiak, A. Bobrowski, M.

Lachowicz (Eds.), Semigroups of Operators – Theory and Applications: Bȩdlewo, Poland, October
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