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Abstract

We consider a Shockley–Read–Hall recombination-drift-diffusion model coupled to Poisson’s equation and subject to
boundary conditions, which imply conservation of the total charge. As main result, we derive an explicit functional
inequality between relative entropy and entropy production rate, which implies exponential convergence to equilib-
rium with explicit constant and rate. We report that the key entropy-entropy production inequality ought rather not
to be formulated on the states space of the parabolic-elliptic system, but on the reduced states space of the associated
nonlocal drift-diffusion problem, where the Poisson equation is replaced by the corresponding Green function.
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1. Introduction

This paper investigates the large-time-behaviour of the following recombination-drift-diffusion-Poisson system on
a bounded Lipschitzian domain Ω ⊂ Rm:

∂tn = ∇ · Jn(n, ψ) − R(n, p), Jn := µn
(
∇n + n∇(ψ + Vn)

)
,

∂t p = ∇ · Jp(p, ψ) − R(n, p), Jp := µp
(
∇p + p∇(−ψ + Vp)

)
,

−ε∆ψ = n − p −C,
(1)

where n, p and ψ represent the concentrations of electrons and holes as well as the self-consistent electric potential.
The recombination terms are of Shockley–Read–Hall form, i.e.

R := F(n, p, x)
(
np − e−Vn−Vp

)
, 0 < CF ≤ F(n, p, x), (2)

and Vn,Vp ∈ H1(Ω)∩ L∞(Ω) are external potentials. The strictly positive functions µn and µp with µn, µp ≥ µ > 0 a.e.
in Ω denote scaled mobilities of electrons and holes under the assumption that the Einstein relations hold true, see e.g.
[MRS90]. In addition, C ∈ L∞(Ω) describes the internal doping profile and ε > 0 is the permittivity constant. Note
that the drift-diffusion fluxes Jn and Jp can also be written in terms of the quasi-Fermi potentials Φn and Φp, i.e.

Jn = µnn∇Φn, Φn := ψ + Vn + ln n, Jp = µp p∇Φp, Φp := −ψ + Vp + ln p.

The main aim of the paper is to prove exponential convergence to an equilibrium state (n∞, p∞, ψ∞) of (suitable)
solutions to (1)–(2) via the so-called entropy method. In our context, the entropy method aims to quantify the decay
of the non-negative relative entropy functional

E(n, p, ψ) =

∫
Ω

(
n ln

n
n∞
− (n − n∞) + p ln

p
p∞
− (p − p∞)

)
dx +

ε

2

∫
Ω

|∇(ψ − ψ∞)|2 dx ≥ 0 (3)
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according to the non-negative entropy production functional P := − d
dt E, i.e.

P(n, p, ψ) =

∫
Ω

(
µnn|∇Φn|

2 + µp p|∇Φp|
2 + F(n, p, x)

(
np − e−Vn−Vp

)
ln

( np
e−Vn−Vp

))
dx ≥ 0, (4)

in terms of a functional inequality, a so-called entropy–entropy production inequality of the form,

P(n, p, ψ) ≥ CEEP E(n, p, ψ), (5)

for a constant CEEP > 0. Note that (5) applied to (sufficiently regular) solutions of system (1)–(2) implies exponential
(with rate CEEP) convergence to the equilibrium (n∞, p∞, ψ∞) in the relative entropy E via a Gronwall argument.

The entropy method, conceptionally reaching back to pioneering ideas of Boltzmann in the field of kinetic theory,
constitutes a fully nonlinear approach in studying the large-time-behaviour of entropy producing PDEs, which has
the advantage of being quite robust as it is based on functional inequalities (which can be reused in related problems)
rather than PDE-specific a-priori estimates on solutions. Related previous works using various (non-explicit and
explicit) variants of the entropy method are e.g. [Jün95, GGH96, GG96, GH97] for semiconductor models with self-
consistent potential. More generally for chemical reaction-diffusion systems, we refer to the pivotal works of Gröger
[Grö83, Grö92] and remark that for systems with conservation laws, explicit proofs of the entropy–entropy production
inequality (5) are technically challenging and were first obtained in [DF06, DF08, GZ10, DF14, MHM15, HHMM]
for special systems and recently in [FT17, DFT17] for general detailed/complex balanced reaction-diffusion systems.

In the current paper, we study the large-time-behaviour of system (1)–(2) subject to no-flux boundary conditions
for Jn and Jp and homogeneous Neumann boundary conditions for the potential ψ:

n̂ · Jn = n̂ · Jp = 0 on ∂Ω and n̂ · ∇ψ = 0 on ∂Ω, (6)

where n̂ denotes the outer unit normal vector on the boundary ∂Ω and we shall assume (w.l.o.g. by rescaling the space
variable) that the volume of Ω is normalised, i.e. |Ω| = 1. As a consequence of the no-flux boundary conditions and
the equations for n and p, we observe that the total charge is conserved:

n(t) − p(t) = nI − pI = C ∈ R for all t ∈ R+, (7)

where we denote the spatial average of a function f as f :=
∫

Ω
f (x) dx (recall |Ω| = 1) and the second equality is a

consequence of supposing initial concentrations nI and pI , which satisfy charge neutrality, i.e.

nI − pI = C. (8)

Note that the conservation of charge in (7) implies that the system preserves charge neutrality for all times t ≥ 0.
Moreover, charge neutrality constitutes the necessary and sufficient compatibility condition for solving the inhomo-
geneous Poisson equation in (1) subject to the homogeneous Neumann boundary data (6):

Remark 1.1. Consider the inhomogeneous Poisson equation subject to homogeneous Neumann boundary conditions,
i.e.

− ε∆ψ = f ∈ L2 in Ω, n̂ · ∇ψ = 0 on ∂Ω. (9)

Then, there exists a weak solution ψ ∈ H1(Ω) if and only if f = 0 (compatibility condition with homogeneous Neumann
boundary conditions), which corresponds to n−p = C for the Poisson equation in (1). Moreover, since ψ is determined
only up to an additive constant, we choose the normalisation ψ = 0 to obtain a unique solution ψ.

The charge conservation law (7) and the charge neutrality (8) are also essential to determine the unique equilibrium
state of system (1)–(2) and (6). Based on e.g. [MRS90], [WMZ08] and [Trö09], one can prove the following result.

Proposition 1.2 (Equilibrium States). The stationary state system
∇ · Jn(n, ψ) − R(n, p) = 0, n̂ · Jn = 0 on ∂Ω,

∇ · Jp(p, ψ) − R(n, p) = 0, n̂ · Jp = 0 on ∂Ω,

−ε∆ψ = n − p −C, n̂ · ∇ψ = 0 on ∂Ω

(10)
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has a unique equilibrium solution (n∞, p∞, ψ∞) with ψ∞ = 0, where ψ∞ is continuous and bounded and

n∞ = Cn e−ψ∞−Vn and p∞ = Cp eψ∞−Vp

for two constants Cn,Cp > 0 with CnCp = 1.
Thus, the uniqueness of the equilibrium state is a consequence of the charge conservation law n∞ − p∞ = C, i.e.

Cn e−ψ∞−Vn −Cp eψ∞−Vp = C. (11)

The key step of the entropy method is to establish an entropy–entropy production inequality of the form (5)
on a suitable set of admissible functions, for which holds that all admissible states with zero entropy production
P(n, p, ψ) = 0 equal the states with zero relative entropy E(n, p, ψ) = 0, which is exactly the equilibrium state
(n∞, p∞, ψ∞) and which is determined uniquely by the charge conservation law (11). For the entropy production
functional, however, all states of the form

Na,ψ := a e−ψ−Vn , Pa,ψ := a−1 eψ−Vp , for any constant a > 0

yield P(Na,ψ, Pa,ψ, ψ) = 0. Due to the family (Na,ψ, Pa,ψ, ψ), an entropy–entropy production inequality of the form
(5) can only hold by taking into account that the potential ψ has to satisfy the inhomogeneous Poisson equation (9)
with f = Na,ψ − Pa,ψ − C subject to the compatibility condition Na,ψ − Pa,ψ = C, which corresponds to the charge
conservation law (11) and equally implies (Na,ψ, Pa,ψ, ψ) = (n∞, p∞, ψ∞).

The first interesting result of this paper is the observation, that while the charge conservation law (7) is necessary
for an entropy–entropy production inequality of the form (5) as stated in the following Theorem 1.3, the actual proof
does not explicitly use it. In fact, the proof adapts successfully arguments from [GG96], where the uniqueness of the
equilibrium is a consequence of thermodynamically consistent mixed Dirichlet-Neumann boundary conditions instead
of the charge conservation law (7), which does not hold in the model of [GG96]. Hence, one would believe that the
approach of [GG96] cannot really work for the here considered system.

The reason why this point of view is mistaken and why the approach of [GG96] can be successfully adapted lies in
the fact that the solvability condition of the elliptic problem (9) is equivalent to the charge conservation law (7). It is as
surprising as interesting that the presented proof succeeds in showing Theorem 1.3 by using the charge conservation
law (7) only implicitly via the very definition of the considered potential ψ including the normalisation ψ = 0.

Theorem 1.3 (Entropy–Entropy Production Inequality). Consider ψ∞ ∈ L∞(Ω) and define

K∞ := ‖ψ∞‖L∞(Ω) and V∞ := max
{
‖Vn‖L∞(Ω), ‖Vp‖L∞(Ω)

}
. (12)

Then, for all non-negative n, p ∈ L2(Ω), for which ψ = ψ(n, p) ∈ H1(Ω) is the unique solution of (9) with
f = n − p −C and ψ = 0, there exists an explicitly computable constant CEEP > 0 such that

P(n, p, ψ(n, p)) ≥ CEEP E(n, p, ψ(n, p))

with
C−1

EEP :=
1
2

e2(K∞+V∞)(1 + |C|
)

max
{
ε

µ
e2(K∞+V∞)(1 + |C|

)
,

1
CF

}(
1 +

L(Ω)
ε

e2(K∞+V∞)(1 + |C|
))

where CF > 0 is defined in (2) and L(Ω) > 0 is a constant satisfying Poincaré’s inequality ‖Ψ‖2L2(Ω) ≤ L(Ω)‖∇Ψ‖2L2(Ω)

for all Ψ ∈ H1(Ω), Ψ = 0.

Remark 1.4. In view of the above discussion, Theorem 1.3 can not hold as a functional inequality on a set of arbitrary
states (n, p, ψ) which includes the family (Na,ψ, Pa,ψ, ψ). In particular, it seems not admissible to include arbitrary
potentials ψ into the state space of the entropy–entropy production inequality without keeping in mind the solvability
condition of the inhomogeneous Poisson equation. Therefore, maybe a better way of viewing Theorem 1.3 is — similar
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to the Keller–Segel model, see e.g. [Per07] — to formulate the entropy–entropy production inequality not on the state
space of the parabolic-elliptic system (1), but for the corresponding non-local parabolic problem∂tn = ∇ · Jn(n, p) − R(n, p), Jn(n, p) := µn

(
∇n + n∇(G ∗ (n − p −C) + Vn)

)
,

∂t p = ∇ · Jp(n, p) − R(n, p), Jp(n, p) := µp
(
∇p + p∇(−G ∗ (n − p −C) + Vp)

)
,

(13)

where the self-consistent potential ψ = ψ(n, p) is represented via the Green function G (of second kind) of the inho-
mogeneous Poisson equation, i.e. ψ = G ∗ (n − p −C) such that ψ = 0.

Theorem 1.5 (Exponential Convergence to Equilibrium). Assume the existence of weak global non-negative solutions
of (1)-(2) and (6) subject to non-negative initial data (nI , pI) satisfying (8) (see e.g. [MRS90, Jün95, GGH96, GG96]
and the references therein for typical definitions of weak solutions and [WMZ08] for results in this direction on R3)
with sufficient regularity to satisfy the weak entropy production law

E(n, p, ψ)(t1) +

∫ t1

t0
P(n, p, ψ)(s) ds ≤ E(n, p, ψ)(t0), for all 0 ≤ t0 ≤ t1 < ∞.

Then, these solutions decay exponentially to the equilibrium (n∞, p∞, ψ∞) as a function of time t ≥ 0:

E(n, p, ψ)(t) ≤ E(nI , pI , ψI) e−Kt

and
‖n − n∞‖2L1(Ω) + ‖p − p∞‖2L1(Ω) + ‖ψ − ψ∞‖

2
H1(Ω) ≤

(
C +

2
ε

(1 + L(Ω))
)

E(nI , pI , ψI) e−Kt

where K := CEEP and C := C−1
CKP are defined in Theorem 1.3 and Proposition 3.3. In addition, ψI ∈ H1(Ω) is the

unique solution of (9) with f = nI − pI −C and ψI = 0.

2. Derivation of an EEP-Inequality

Proof of Proposition 1.2. A solution (n∞, p∞, ψ∞) of (10) with ψ∞ = 0 necessarily satisfies Jn(n∞, ψ∞) = 0,
Jp(p∞, ψ∞) = 0 and R(n∞, p∞) = 0, which implies n∞ = Cne−ψ∞−Vn and p∞ = Cpeψ∞−Vp for two constants Cn,Cp > 0
with CnCp = 1. By using arguments of e.g. [MRS90] and [WMZ08], there exists a unique equilibrium potential
ψ∞ ∈ H1(Ω) with ψ∞ = 0. The uniqueness of Cn and Cp (in terms of ψ∞) follows by monotonicity from n∞ − p∞ = C.

Having shown the existence, the continuity and boundedness of ψ∞ follow from applying [Trö09, Theorem 4.8]
to

− ε∆ψ + min
{
Cne−Vn ,Cpe−Vp

}
ψ + d(·, ψ) = −C, n̂ · ∇ψ = 0 on ∂Ω, (14)

where d(·, ψ) := Cpeψ−Vp −Cne−ψ−Vn −min
{
Cne−Vn ,Cpe−Vp

}
ψ constitutes a suitable monotone operator in terms of ψ.

Note that [Trö09, Theorem 4.8] can not be used to directly prove the well-posedness of ψ∞ since the constants Cn and
Cp depend non-locally on the solution.

Lemma 2.1. Under assumption (12), the following bounds on Cn and Cp hold in terms of K∞, V∞ and |C|:

Cn,Cp ≤ eK∞+V∞(1 + |C|
)

and n∞, n−1
∞ , p∞, p−1

∞ ≤ e2(K∞+V∞)(1 + |C|
)
. (15)

Proof. We recall CnCp = 1 and solve (11) for Cn > 0:

Cn =
C

2e−ψ∞−Vn

+

√√
C

2

4e−ψ∞−Vn
2 +

eψ∞−Vp

e−ψ∞−Vn

≤
|C|

e−ψ∞−Vn

+

√
eψ∞−Vp

e−ψ∞−Vn

≤ eK∞+V∞ (1 + |C|)

and the same bound holds for Cp > 0 by an analog estimate. Finally, the bounds on n∞, n−1
∞ , p∞ and p−1

∞ directly
follow from the bounds on Cn and Cp and CnCp = 1.
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Proposition 2.2. There exists an explicitly computable constant c1 > 0 such that

E(n, p, ψ) ≤ c1

∫
Ω

( (n − n∞)2

n∞
+

(p − p∞)2

p∞

)
dx

for all n, p ∈ L2(Ω) where ψ ∈ H1(Ω) is the unique solution of (9) with f = n − p −C and ψ = 0. More precisely, this
inequality holds true for

c1 := 1 +
L(Ω)
ε

e2(K∞+V∞)(1 + |C|
)
.

Proof. From the elementary inequality ln x ≤ x−1 for x > 0, we derive n ln
( n

n∞

)
−(n−n∞) ≤ n

(
n

n∞
−1

)
−n+n∞ =

(n−n∞)2

n∞
and an analogous estimate for p and p∞. Furthermore, integration by parts with homogeneous Neumann boundary
conditions for ψ and ψ∞ yields with −ε∆(ψ − ψ∞) = (n − n∞) − (p − p∞)

ε

∫
Ω

|∇(ψ − ψ∞)|2 dx = −ε

∫
Ω

(ψ − ψ∞)∆(ψ − ψ∞) dx =

∫
Ω

(
(n − n∞) − (p − p∞)

)
(ψ − ψ∞) dx.

Next, by applying Hölder’s inequality and Young’s inequality with some constant γ > 0, we find

ε

∫
Ω

|∇(ψ − ψ∞)|2 dx ≤
1
2

(1
γ
‖(n − n∞) − (p − p∞)‖2 + γ‖ψ − ψ∞‖

2
)
.

Further, as a consequence of ψ − ψ∞ = 0 and Poincaré’s inequality, we estimate with γ := ε/L(Ω)

ε

∫
Ω

|∇(ψ − ψ∞)|2 dx ≤
L(Ω)
ε

(
‖n − n∞‖2 + ‖p − p∞‖2

)
+
ε

2
‖∇(ψ − ψ∞)‖2.

We thus arrive at

ε

2

∫
Ω

|∇(ψ − ψ∞)|2 dx ≤
L(Ω)
ε

∫
Ω

(
(n−n∞)2 + (p− p∞)2

)
dx ≤

L(Ω)
ε

e2(K∞+V∞)(1+ |C|
) ∫

Ω

( (n − n∞)2

n∞
+

(p − p∞)2

p∞

)
dx,

where we have employed the bounds from Lemma 2.1. This proves the claim.

Proposition 2.3. There exists an explicitly computable constant c2 > 0 such that∫
Ω

( (n − n∞)2

n∞
+

(p − p∞)2

p∞

)
dx ≤ c2P(n, p, ψ)

for all n, p ∈ L2(Ω) where ψ ∈ H1(Ω) is the unique solution of (9) with f = n − p − C and ψ = 0. In detail, this
estimate is valid for

c2 :=
1
2

e2(K∞+V∞)(1 + |C|
)

max
{
ε

µ
e2(K∞+V∞)(1 + |C|

)
,

1
CF

}
.

Proof. First, the entropy production (4) is bounded below by

P(n, p, ψ) ≥ c
∫

Ω

(
ε

2

( n
n∞
|∇Φn|

2 +
p

p∞
|∇Φp|

2
)

+
1
2

(
np − e−Vn−Vp

)
ln

( np
e−Vn−Vp

) )
dx (16)

where
c := min

{2µ
ε

e−2(K∞+V∞) 1

1 + |C|
, 2CF

}
.

A couple of elementary manipulations shows that

n
n∞
|∇Φn|

2 =
n

n∞
|∇(ψ + Vn + ln n)|2 =

n
n∞

∣∣∣∣∣∇(ψ + Vn + ln Cn − ψ∞ − Vn + ln
( n
n∞

))∣∣∣∣∣2
=

n
n∞

∣∣∣∣∣∇(ψ − ψ∞ + ln
( n
n∞

))∣∣∣∣∣2 =
n

n∞
|∇(ψ − ψ∞)|2 + 2∇(ψ − ψ∞) · ∇

( n
n∞

)
+ 4

∣∣∣∣∣∇√
n

n∞

∣∣∣∣∣2
≥ 2∇(ψ − ψ∞) · ∇

( n
n∞

)
= 2∇(ψ − ψ∞) · ∇

( n
n∞
− 1

)
.
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Likewise, one finds p
p∞
|∇Φp|

2 ≥ −2∇(ψ − ψ∞) · ∇
(

p
p∞

)
= −2∇(ψ − ψ∞) · ∇

(
p

p∞
− 1

)
and together

ε

2

∫
Ω

( n
n∞
|∇Φn|

2 +
p

p∞
|∇Φp|

2
)

dx ≥ ε
∫

Ω

∇(ψ − ψ∞) · ∇
(( n

n∞
− 1

)
−

( p
p∞
− 1

))
dx.

Hence, integration by parts yields

ε

2

∫
Ω

( n
n∞
|∇Φn|

2 +
p

p∞
|∇Φp|

2
)

dx ≥
∫

Ω

(
(n − n∞) − (p − p∞)

)(( n
n∞
− 1

)
−

( p
p∞
− 1

))
dx

=

∫
Ω

( (n − n∞)2

n∞
+

(p − p∞)2

p∞

)
dx −

∫
Ω

(
(n − n∞)(p − p∞)

( 1
n∞

+
1

p∞

))
dx,

and it remains to control the last term on the right hand side in order to complete the proof of Proposition 2.3. Note
that it is sufficient to consider this term on the set Ω+ :=

{
x ∈ Ω

∣∣∣ (n(x) − n∞(x)
)(

p(x) − p∞(x)
)
> 0

}
, where it is

non-positive and can be estimated by the bounds on n−1
∞ and p−1

∞ from Lemma 2.1, i.e.∫
Ω

( (n − n∞)2

n∞
+

(p − p∞)2

p∞

)
dx ≤

ε

2

∫
Ω

( n
n∞
|∇Φn|

2 +
p

p∞
|∇Φp|

2
)

dx+2e2(K∞+V∞)(1+ |C|
) ∫

Ω+

(n−n∞)(p−p∞) dx. (17)

From e−Vn−Vp = n∞p∞, the elementary inequality (x − y) ln x
y ≥ 4(

√
x −
√

y)2 for x ≥ 0, y > 0 and by following ideas
of [GG96], we have(

np − e−Vn−Vp

)
ln

(
np

e−Vn−Vp

)
=

(
np − n∞p∞

)
ln

( np
n∞p∞

)
≥ 4

(√
np −

√
n∞p∞

)2

=
(
(
√

n −
√

n∞)(
√

p +
√

p∞) − (
√

n +
√

n∞)(
√

p −
√

p∞)
)2

+ 4(
√

n −
√

n∞)(
√

p −
√

p∞)(
√

n +
√

n∞)(
√

p +
√

p∞)

≥ 4(n − n∞)(p − p∞).

This shows that

2
∫

Ω+

(n − n∞)(p − p∞) dx ≤
1
2

∫
Ω+

(
np − e−Vn−Vp

)
ln

(
np

e−Vn−Vp

)
dx

which — together with (17) and (16) — yields∫
Ω

( (n − n∞)2

n∞
+

(p − p∞)2

p∞

)
dx ≤ e2(K∞+V∞)(1 + |C|

)∫
Ω

(
ε

2

( n
n∞
|∇Φn|

2 +
p

p∞
|∇Φp|

2
)

+
1
2

(
np − e−Vn−Vp

)
ln

(
np

e−Vn−Vp

))
dx

≤ e2(K∞+V∞)(1 + |C|
)

max
{
ε

2µ
e2(K∞+V∞)(1 + |C|

)
,

1
2CF

}
P(n, p, ψ)

and, hence, the assertion.

Proof of Theorem 1.3. The proof is an immediate consequence of Proposition 2.2 and Proposition 2.3.

3. Convergence to the Equilibrium

Lemma 3.1 (Classical Csiszár–Kullback–Pinsker inequality, see e.g. [DF08]). Let f , g : Ω → R be non-negative
measureable functions. Then,

RE( f , g) :=
∫

Ω

(
f ln

( f
g

)
− ( f − g)

)
dx ≥

3

2 f + 4g
‖ f − g‖2L1(Ω).

Lemma 3.2. Any entropy producing solution of (1) with initial relative entropy E(nI , pI , ψI) satisfies

∀ t ≥ 0 : n, p ≤ M1, with M1 :=
5
2

e2(K∞+V∞)(1 + |C|
)

+
3
4

E(nI , pI , ψI)

where ψI ∈ H1(Ω) is the unique solution of (9) with f = nI − pI −C and ψI = 0.
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Proof. Lemma 3.1 and Young’s inequality entail

n ≤ n∞ + ‖n − n∞‖L1(Ω) ≤ n∞ +

√
2n + 4n∞

3

√
RE(n, n∞) ≤ n∞ +

1
3

n +
2
3

n∞ +
1
2

RE(n, n∞).

Solving this inequality for n yields n ≤ 5
2 n∞ + 3

4 RE(n, n∞). Therefore, we estimate with Lemma 2.1

n ≤
5
2

n∞ +
3
4

RE(n, n∞) ≤
5
2

n∞ +
3
4

E(n, p, ψ) ≤
5
2

e2(K∞+V∞)(1 + |C|
)

+
3
4

E(nI , pI , ψI)

due to the monotonicity of the entropy functional. In the same way follows the bound on p.

Proposition 3.3. For all n, p ∈ L2(Ω) satisfying n, p ≤ M1 and ψ ∈ H1(Ω) being the corresponding unique solution
of (9) with f = n − p −C and ψ = 0, the following Csiszár–Kullback–Pinsker type inequality holds:

E(n, p, ψ) ≥ CCKP

(
‖n − n∞‖2L1(Ω) + ‖p − p∞‖2L1(Ω)

)
, with CCKP :=

(
3 e2(K∞+V∞)(1 + |C|

)
+

1
2

E(nI , pI , ψI)
)−1
.

where E(nI , pI , ψI) is the initial relative entropy and ψI ∈ H1(Ω) is the unique solution of (9) with f = nI − pI − C
and ψI = 0.

Proof. We observe that

E(n, p, ψ) ≥
∫

Ω

(
n ln

n
n∞
− (n − n∞) + p ln

p
p∞
− (p − p∞)

)
dx ≥

3
2n + 4n∞

‖n − n∞‖2L1(Ω) +
3

2p + 4p∞
‖p − p∞‖2L1(Ω)

thanks to Lemma 3.1. The proof then follows from the assumption n, p ≤ M1 and Lemma 2.1:

E(n, p, ψ) ≥ 3
(
9 e2(K∞+V∞)(1 + |C|

)
+

3
2

E(nI , pI , ψI)
)−1(
‖n − n∞‖2L1(Ω) + ‖p − p∞‖2L1(Ω)

)
.

Proof of Theorem 1.5. The statement of Theorem 1.5 follows directly from a Gronwall argument together with The-
orem 1.3 and Proposition 3.3.
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[GGH96] A. Glitzky, K. Gröger, R. Hünlich, Free energy and dissipation rate for reaction-diffusion processes of electrically charged species,
Appl. Anal. 60 (1996), 201–217.
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