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Abstract

In this note, we prove or re-prove several important results regarding one dimen-
sional time fractional ODEs following our previous work [4]. Here we use the definition
of Caputo derivative proposed in [8, 10] based on a convolution group. In particular,
we establish generalized comparison principles consistent with the new definition of
Caputo derivatives. In addition, we establish the full asymptotic behaviors of the solu-
tions for D

γ

c u = Au
p. Lastly, we provide a simplified proof for the strict monotonicity

and stability in initial values for the time fractional differential equations with weak
assumptions.

1 Introduction

The fractional calculus in time has been used widely in physics and engineering for memory
effect, viscoelasticity, porous media etc [5, 7, 2, 1, 9]. There is a huge amount of literature
discussing time fractional differential equations. For instance, one can find some results
in [3, 2] using the classic Caputo derivatives. In this paper, we study the following time
fractional ODE:

Dγ
c u = f(t, u), u(0) = u0, (1.1)

for γ ∈ (0, 1) and f measurable. Here Dγ
c u is the generalized Caputo derivative introduced

in [8, 10]. As we will see later, this generalized definition is theoretically more convenient,
since it allows us to take advantage of the underlying group structure.

As in [8], we use the following distributions {gβ} as convolution kernels for β ∈ (−1, 0):

gβ(t) =
1

Γ(1 + β)
D

(

θ(t)tβ
)

.

Here θ(t) is the standard Heaviside step function, Γ(·) is the gamma function, and D means
the distributional derivative on R. Indeed, gβ can be defined for β ∈ R (see [8]) so that
{gβ : β ∈ R} forms a convolution group. In particular, we have

gβ1
∗ gβ2

= gβ1+β2
. (1.2)

Here since the support of gβi
(i = 1, 2) is bounded from left, the convolution is well-defined.

Now we are able to give the generalized definition of fractional derivatives:
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Definition 1.1 ([8, 10]). Let 0 < γ < 1. Consider u ∈ L1
loc[0, T ). Given u0 ∈ R, we define

the γ-th order generalized Caputo derivative of u, associated with initial value u0, to be a
distribution in D ′(−∞, T ) with support in [0, T ), given by

Dγ
c u = g−γ ∗

(

(u− u0)θ(t)
)

.

If limt→0+
1
t

∫ t

0
|u(s)− u0|ds = 0, we call Dγ

c u the Caputo derivative of u.

As in [8], if the function u is absolutely continuous, the generalized definition reduces to
the classical definition. However, the generalized definition is theoretically useful because it
reveals the underlying group structure (see Proposition 1.1).

Definition 1.2. Let T > 0. A function u ∈ L1
loc[0, T ) is a weak solution to (1.1) on [0, T )

with initial value u0, if f(t, u(t)) ∈ D ′(−∞, T ) and the equality holds in the distributional

sense. We call a weak solution u a strong solution if (i). limt→0+
1
t

∫ t

0
|u(s) − u0|ds = 0;

(ii). both Dγ
c u and f(t, u(t)) are locally integrable on [0, T ).

By the group property (1.2), we have

Proposition 1.1 ([8]). Suppose f ∈ L∞
loc([0,∞)×R;R). Fix T > 0. Then, u(t) ∈ L1

loc[0, T )

with initial value u0 is a strong solution of (1.1) on (0, T ) if and only if limt→0+
1
t

∫ t

0
|u(s)−

u0| ds = 0 and it solves the following integral equation

u(t) = u0 +
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s, u(s))ds, ∀t ∈ (0, T ). (1.3)

Using this integral formulation, the following has been shown in [8]

Proposition 1.2. Suppose f : [0,∞) × (α, β) → R is continuous and locally Lipschitz
continuous in u. For any given initial value u0 ∈ (α, β), there is a unique strong solution,
which either exists globally on [0,∞) or approaches the boundary of (α, β) in finite time.
Moreover, this solution is continuous on the interval of existence.

Below in Section 2, we will establish some generalized comparison principles consistent
with the new definition of Caputo derivatives. In Section 3, we establish the full asymptotic
behaviors of the solutions for Dγ

c u = Aup. In Section 4, we provide a new proof for the
strict monotonicity and stability in initial values with weak assumptions.

2 Generalized comparison principles

The comparison principles are important in the analysis of time fractional PDEs (See [11]).
There are many versions of comparison principles proved in literature using various defi-
nitions of Caputo derivatives. In [8], the authors assumed f(t, ·) to be non-decreasing. In
[15, Lemma 2.6], f(t, ·) was assumed to be non-increasing. In [14, Theorem 2.3], there is
no assumption on the monotonicity of f(t, ·), but the function v is assumed to be C1 so
that the pointwise value of Dγ

c v can be defined. Combining these ideas and establishing a
crucial lemma (Lemma 2.1), we prove some generalized comparison principles in this section.
Similar to [8], we define the inequality in the distributional sense:

Definition 2.1. Let U be an open interval. We say f ∈ D ′(U) is a nonpositive (nonneg-
ative) distribution if for any ϕ ∈ C∞

c (U) with ϕ ≥ 0, we have 〈f, ϕ〉 ≤ 0 (〈f, ϕ〉 ≥ 0). We
say f1 ≤ f2 in the distributional sense for f1, f2 ∈ D ′(U), if f1 − f2 is nonpositive. We say
f1 ≥ f2 in the distributional sense if f1 − f2 is nonnegative.

In order to prove the comparison principle, we first prove the following auxiliary lemma:

Lemma 2.1. Suppose u ∈ L1
loc[0, T ) and limt→0+

1
t

∫ t

0
|u(s) − u0| ds = 0. If there exists a

function f ∈ L1
loc(0, T ) such that on interval (0, T ) we have in the distributional sense that

Dγ
c u ≤ f , then for any given A ∈ R, we have in the distributional sense

Dγ
c (u−A)+ ≤ χ(u ≥ A)f, on (0, T ).
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Proof. First, recall the following result in [8, Proposition 3.11]: if u ∈ C[0, T )∩C1(0, T ) and
u 7→ E(u) is C1 and convex, we have

Dγ
cE(u) ≤ E′(u)Dγ

c u.

Now let us consider η ∈ C∞
c (−1, 0) with η ≥ 0 and

∫

η dt = 1. Define ηǫ(t) = 1
ǫη(

t
ǫ ) and

uǫ = ηǫ ∗ u. As showed in [8, Proposition 3.11], uǫ(0) → u0 and uǫ(t) → u(t) in L1
loc[0, T ).

Denote E(u) = (u−A)+ and define Eδ(u) = (E∗ηδ)(u). Clearly, (Eδ)′(u) = ηδ∗χ(u ≥ A)
is nonnegative and increasing, which implies that Eδ is a convex increasing function. Then,
we have

Dγ
cE

δ(uǫ) ≤ (Eδ)′|uǫDγ
c u

ǫ. (2.1)

It is not hard to see lim supǫ→0(E
δ)′|uǫDγ

c u
ǫ ≤ (Eδ)′|uf(t). Since Eδ(uǫ) converges to

Eδ(u) in L1
loc and Eδ(uǫ(0)) converges to Eδ(u0), according to Definition 1.1, Dγ

cE
δ(uǫ) →

Dγ
cE

δ(u) as distributions. Moreover, notice that the inequality is preserved in the distribu-
tional sense (Definition 2.1). We have Dγ

cE
δ(u) ≤ (Eδ)′|uf(t). Taking δ → 0, similarly we

have Dγ
cE

δ(u) converges as distributions to Dγ
c (u−A)+. Then the right hand side of (2.1)

converges to χ(u ≥ A)f(t), and the inequality is preserved in the distributional sense.

As is well-known, if u ∈ H1(0, T ), D(u − A)+ = χ(u − A)Du. Since Caputo derivative
is nonlocal, the equality is no longer true in general. However, we have similar inequalities
and Lemma 2.1 provides an answer.

Corollary 2.1. Suppose u(t) is a locally integrable function with limt→0+
1
t

∫ t

0
|u(s)−u0| ds =

0. Let A ∈ R and t1 ∈ (0, T ) is a Lebesgue point. If u ≤ A for a.e. t ≤ t1, and on the
interval (t1, T ) we have Dγ

c u ≤ 0 in the distributional sense, then we have u ≤ A, a.e. (0, T ).

Let uǫ be the mollification in the proof of Lemma 2.1. Consider vǫ = uǫ− C(ǫ)θ(t)
Γ(1+γ) t

γ such

that vǫ ≤ A for t ∈ [0, t1 + ǫ]. C(ǫ) → 0 since t1 is a Lebesgue point. Applying Lemma 2.1,
Dγ

c (v
ǫ −A)+ ≤ χ(t ≥ t1 + ǫ)(Dγ

c u
ǫ −C(ǫ)) ≤ χ(t ≥ t1 + ǫ)(Dγ

c u
ǫ − ηǫ ∗D

γ
c u). Taking ǫ → 0

yields Dγ
c (u−A)+ ≤ 0. The details are left to readers. Now several versions of comparison

principles can be stated as follows:

Theorem 2.1. (i) Suppose ui ∈ L1
loc[0, T ) with limt→0+

1
t

∫ t

0
|ui(s) − ui,0| ds = 0 (i =

1, 2). Suppose u1(t) ≤ u2(t) on [0, t1] for a Lebesgue point t1, and the γ-th Caputo
derivatives of u1, u2 on [0, t1] are locally integrable. Define

hi(t) = ui,0 +
1

Γ(γ)

∫ t∧t1

0

(t− s)γ−1Dγ
c ui(s) ds, i = 1, 2.

Then, h1(t) ≤ h2(t) for all t ∈ [0, T ]. Moreover, assume there exists a measurable
function f(t, u) such that (i) f(·, ui(·)) (i = 1, 2) is locally integrable on [t1, T ); (ii)
f(t, ·) is non-decreasing on [t1, T ); (iii) Dγ

c u1 ≤ f(t, u1) and Dγ
c u2 ≥ f(t, u2) in the

distributional sense on (t1, T ), then u1 ≤ u2 a.e. on [0, T ).

(ii) Suppose ui ∈ L1
loc[0, T ) with limt→0+

1
t

∫ t

0
|ui(s) − ui,0| ds = 0 (i = 1, 2). If u1 ≤ u2

on [0, t1] for a Lebesgue point t1 and Dγ
c (u1 − u2) ≤ f(t, u1)− f(t, u2) as distributions

on (t1, T ), with f(t, ·) being non-increasing on (t1, T ) and f(·, ui(·)) (i = 1, 2) being
locally integrable on [t1, T ), then u1 ≤ u2 a.e on [0, T ).

(iii) Suppose u(t) is a continuous function on [0, T ]. If u(t1) = sup0≤s≤t1 u(s) for some
t1 ∈ (0, T ] and f(t) = Dγ

c u(t) is a continuous function, then f(t1) ≥ 0.

Proof. (i). Clearly, Dγ
c hi = Dγ

c ui for t ≤ t1 and Dγ
c hi = 0 for t > t1. Let u = h1 − h2,

A = 0 in Corollary 2.1, we find h1 ≤ h2. On [t1, T ), we have

u1(t) ≤ h1(t) +
1

Γ(γ)

∫ t

t1

(t− s)γ−1f(s, u1) ds, u2(t) ≥ h2(t) +
1

Γ(γ)

∫ t

t1

(t− s)γ−1f(s, u2) ds.
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As h1(t) ≤ h2(t) and f(t, ·) is non-decreasing, one has u1(t) ≤ u2(t) (see [8, Theorem 4.10]).
(ii). Apply Lemma 2.1 for u1 − u2 and A = 0. (The proof is similar as in Corollary 2.1.)

(iii). Consider uǫ(t) = u(t) + ǫθ(t)
Γ(1+γ) t

γ , where ǫ > 0. Then, t1 is the unique maximizer

of uǫ on [0, t1]. Let f
ǫ = Dγ

c u
ǫ = f + ǫ. It suffices to show

f ǫ(t1) ≥ 0, ∀ǫ > 0. (2.2)

Otherwise, there is an ǫ0 > 0 such that f ǫ0(t1) < 0. Since f ǫ0 is continuous, we can find
δ > 0 such that on [t1− δ, t1] f

ǫ0 is negative and uǫ0(t) ≤ uǫ0(t1− δ) for t ≤ t1− δ. Applying
Corollary 2.1, we have uǫ0(t) ≤ uǫ0(t1−δ) for t ∈ [t1−δ, t1], which is a contradiction. Taking
ǫ → 0 then gives the result.

Remark 2.1. Though the conditions here are weaker under the new definition of Caputo
derivative, (ii) is essentially [15, Lemma 2.6] and (iii) is well-known for C1 functions (see,
for example [12, 14]).

Now, we establish a generalized Grönwall inequality (or another version of comparison
principle), consistent with the new definition of Caputo derivative. The main construction
is inspired by [14].

Theorem 2.2. Suppose f(t, u) is continuous and locally Lipschitz in u. Let v(t) be a
continuous function. If Dγ

c v ≤ f(t, v) in the distributional sense, and Dγ
c u = f(t, u), with

v0 ≤ u0. Then, v ≤ u on the common interval. Similarly, if we have Dγ
c v ≥ f(t, v) as

distributions and v0 ≥ u0, then v ≥ u on the common interval.

Proof. We only prove the first claim (the proof for the other is similar). By Proposition
1.2, Dγ

c u = f(t, u) with initial value u(0) = u0 has a unique solution on the interval [0, Tb),
where Tb is the largest time of existence. Moreover, u is continuous on [0, Tb).

Fix T ∈ (0, Tb). Pick M large enough so that u(t) and v(t) fall into [0, T ] × [−M,M ].
Let L be the Lipschitz constant of f(t, ·) for the region [0, T ]× [−2M, 2M ]. Consider

vǫ = v − ǫw.

Here w = Eγ(2Lt
γ) is the solution to Dγ

cw = 2Lw with initial value 1, where Eγ(z) =
∑∞

n=0
zn

Γ(nγ+1) is the Mittag-Leffler function [6, 13]. Clearly, if ǫ is sufficiently small, vǫ falls

into [0, T ]× [−2M, 2M ]. Then, we find that in the distributional sense

Dγ
c v

ǫ = Dγ
c v − ǫ2Lw ≤ f(t, v)− ǫ2Lw ≤ f(t, vǫ)− ǫLw.

We claim that for all such small ǫ,

vǫ(t) ≤ u(t), ∀t ∈ [0, T ]. (2.3)

If not, define
t1 = sup{t ∈ (0, T ] : vǫ(s) ≤ u(s), ∀s ∈ [0, t]}.

Since vǫ(0) = v0 − ǫ < u0, by continuity we have t1 > 0. By assumption, (2.3) is not
true, and we have t1 < T . Consequently, there exists δ1 > 0, such that vǫ(t1) = u(t1) and
vǫ(t) > u(t) for t ∈ (t1, t1 + δ1). Moreover,

Dγ
c (v

ǫ − u) ≤ f(t, vǫ)− ǫLw − f(t, u).

By continuity, for some δ2 ∈ (0, δ1), D
γ
c (v

ǫ − u) is a nonpositive distribution on the interval
(t1, t1 + δ2). By Corollary 2.1, we have vǫ(t) ≤ u(t) for t ∈ (t1, t1 + δ2), which is a contra-
diction. Hence, (2.3) is true. Taking ǫ → 0 in (2.3) yields the result on [0, T ]. Since T is
arbitrary, the result is true.
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3 Asymptotic behaviors for a class of fractional ODEs

In this section, we study the solution curves to the following autonomous fractional ODEs:

Dγ
c u = Aup, u(0) = u0 > 0. (3.1)

The monotonicity of the solutions to (3.1) and some partial results for the asymptotic
behaviors have been established in our previous work [4]. The asymptotic behaviors of the
solutions for the A < 0, p > 0 case have also been discussed in [15, Theorem 7.1]. However,
the discussion on all the range of A and p is not complete. Here, we will give a complete
description on asymptotic behaviors of the solution curves.

By Proposition 1.2, the strong solution u to (3.1) exists on [0, Tb) for Tb ∈ (0,∞]. If
Tb < ∞, either limt→T−

b

u(t) = 0 or limt→T−

b

u(t) = ∞. We give a complete description

regarding the solutions curves to (3.1):

Theorem 3.1. Consider (3.1). If A = 0, then u(t) = u0. If A > 0, then all the solutions
are strictly increasing on (0, Tb). If A < 0, then all solutions are strictly decreasing before
they touch 0.

(i) Suppose A > 0. If p > 1, then Tb < ∞ and u(t) ∼
[

Γ( pγ
p−1

)

AΓ( γ

p−1
)

]
1

p−1

(Tb − t)−
γ

p−1 , as

t → T−
b . If p = 1, then u(t) = u0Eγ(At

γ). If p < 1, then there exist c1 > 0 and c2 > 0

such that c1t
γ

1−p ≤ u(t) ≤ c2t
γ

1−p , t ≥ 1.

(ii) Suppose A < 0. If p < 0, the solution curve touches u = 0 in finite time where the
right hand side blows up. If p = 0, then u = u0 + Ag1+γ. If p > 0, then Tb = ∞, and

there exist c1 > 0, c2 > 0 such that c1t
−

γ
p ≤ u(t) ≤ c2t

−
γ
p , t ≥ 1.

Proof. The A = 0 or p = 0 cases are trivial. The monotonicity has been proved in [4]. The
A > 0, p > 1 case has also been discussed there. Indeed, there is also an accurate estimate of
Tb in [4]. The p = 1 case is trivial. The A < 0, p > 0 case has been discussed in [15, Theorem
7.1]. In fact, they established a version of comparison principle and used a subsolution and

a supersolution to get c1t
−

γ

p ≤ u(t) ≤ c2t
−

γ

p , t ≥ 1. For the case A < 0, p < 0, since the
solution is decreasing, we have Dγ

c u ≤ Aup
0 < 0 before u touches zero. Hence, the claim

follows.
Now, we establish the results for A > 0, p < 1 case. First, let us construct the sub-

solution as follows:

ω(t) =

®

u0, t ∈ [0, t0],

at
γ

1−p , t ≥ t0.

Here a > 0 is to be determined and t0 is determined by at
γ

1−p

0 = u0. Clearly, ω is absolutely
continuous on any finite interval. For t < t0, D

γ
cω = 0 ≤ Aωp. For t ≥ t0, we have

Dγ
cω =

aγ

(1− p)Γ(1 − γ)

∫ t

t0

τ
γ

1−p
−1

(t− τ)γ
dτ <

aγB( γ
1−p , 1− γ)

(1− p)Γ(1− γ)
t

γp

1−p =
aΓ(γ/(1− p) + 1)

Γ(γp/(1− p) + 1)
t

pγ

1−p ,

where B(·, ·) is the Beta function. Clearly, if we choose a > 0 such that aΓ(γ/(1−p)+1)
Γ(γp/(1−p)+1) ≤ Aap,

then Dγ
cω ≤ Aωp. Such a exists because p < 1.

For the super-solution, let us consider

v(t) =

®

u0 +B1
tγ

Γ(1+γ) , t ∈ [0, 1],

B2t
γ

1−p , t ≥ 1.

B2 is determined by B2 = u0 +
B1

Γ(1+γ) . This choice of B2 makes v absolutely continuous on

any finite interval. We now determine B1. On [0, 1], one has Dγ
c v = B1. For t > 1, we have

Dγ
c v =

B1γ

B(1 + γ, 1− γ)

∫ 1

0

τγ−1

(t− τ)γ
dτ +

B2

Γ(1− γ)

γ

1− p

∫ t

1

τ
γ

1−p
−1

(t− τ)γ
dτ.
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On [1, 2], one has Dγ
c v > B1γ

B(1+γ,1−γ)

∫ 1

0
τγ−1

(2−τ)γ dτ = B1C1(γ). For t > 2, we have

Dγ
c v > B2

1

Γ(1− γ)

γ

1− p
t

γp

1−p

∫ 1

1
t

τ
γ

1−p
−1

(1− τ)γ
dτ ≥ B2t

γp

1−pC2(p, γ).

It is clear that there exists M1(A, p, γ) such that as long as B2 ≥ M1, D
γ
c v ≥ Avp for t ≥ 2

since p < 1. For v to be a super-solution, one needs

u0 +B1
1

Γ(1 + γ)
≥ M1, B1 min(1, C1(γ)) ≥ Amax

Å

up
0,
(

u0 +
B1

Γ(1 + γ)

)p

2
pγ
1−p

ã

.

Such B1 exists since p < 1. Hence, applying comparison principle Theorem 2.2 yields the
result.

4 Strict monotonicity and stability in initial values

It is well-known that solution curves for well-behaved ODEs do not touch each other. How-
ever, for fractional ODEs, similar results are not trivial since the dynamics is non-Markovian.
By the comparison principles (or generalized Grönwall inequality), if f(t, u) in (1.1) is con-
tinuous and locally Lipschitz in u, u(0) < v(0) implies u(t) ≤ v(t) for t ≥ 0. However we do
not have strict inequality. In [2, Theorem 6.12], the strict inequality has been established
following a series of contraction techniques. Using our new definition of Caputo derivative,
we provide a new proof of that solutions are strict monotone in initial values, by assuming
f ∈ L∞

loc.
The following lemma (a variant of [4, Lemma 3.4] or [16, Theorem 1]), is important:

Lemma 4.1. Let rλ(t) = − d
dtEγ(−λΓ(γ)tγ) be the resolvent for kernel λtγ−1 (in other

words, rλ(t) + λ
∫ t

0
(t− s)γ−1rλ(s)ds = λtγ−1). Let T > 0. Assume h ∈ L1[0, T ], h > 0 a.e.,

satisfying

h(t)−

∫ t

0

rλ(t− s)h(s)ds > 0, a.e., ∀λ > 0.

Suppose v ∈ L∞[0, T ], then the integral equation

y(t) +

∫ t

0

(t− s)γ−1v(s)y(s)ds = h(t) (4.1)

has a unique solution y(t) ∈ L1[0, T ]. Moreover, y(t) > 0, a.e..

The proof is exactly the same as [4, Lemma 3.4], though we only assume v ∈ L∞[0, T ]
here. Next, we provide a new proof for the strict monotonicity in initial value. We also
prove the stability of solutions with respect to initial values.

Theorem 4.1. Assume that f(·, ·) ∈ L∞
loc([0,∞)×R). Moreover, assume for every compact

set K, there is LK > 0 such that |f(t, u) − f(t, v)| ≤ LK |u − v| for a.e. (t, u), (t, v) ∈ K.
Then, for a given initial value u0, the solution in L∞

loc[0, Tb) is unique. Further, we have

• Any two solutions ui ∈ L∞
loc[0, T

i
b) (i = 1, 2) with initial values u1,0 < u2,0 satisfy

u1(t) < u2(t) on [0,min(T 1
b , T

2
b )).

• For any T > 0, M > 0, there exists C(M,T ) > 0 such that any two solutions with
‖ui‖L∞[0,T ] ≤ M (i = 1, 2) and initial values u1,0, u2,0 satisfy

‖u1 − u2‖L∞[0,T ] ≤ C(M,T )|u1,0 − u2,0|.

Proof. Fix T ∈ (0,min(T 1
b , T

2
b )). There exists K compact such that for a.e t ∈ [0, T ],

(t, ui(t)) ∈ K. By Proposition 1.1, one has

ui(t) = ui,0 +
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s, ui(s)) ds.

6



The boundedness of f(s, ui(s)) implies that ui(t) ∈ C[0, T ]. If u1,0 = u2,0, by taking the

difference, |u1(t) − u2(t)| ≤ C
∫ t

0
(t − s)γ−1|u1(s) − u2(s)| ds and the uniqueness therefore

follows.
Now, assume u1,0 6= u2,0. Define y(t) = (u2(t)− u1(t))/(u2,0 − u1,0), we have

y(t) +

∫ t

0

(t− s)γ−1v(s)y(s) ds = 1, where v(s) = −
1

Γ(γ)

f(s, u2(s))− f(s, u1(s))

u2(s)− u1(s)
.

If u1(s) = u2(s), we define v(s) = 0. Note that |v| ≤ LK/Γ(γ) a.e. for t ∈ (0, T ). By setting
h = 1 in Lemma 4.1, one has

1−

∫ t

0

rλ(t− s) ds = Eγ(−λΓ(γ)tγ) > 0.

By Lemma 4.1, y(t) > 0. Since y is continuous, satisfying

y(t) ≤ 1 +

∫ t

0

(t− s)γ−1‖v‖L∞[0,T ]y(s) ds,

we have y(t) ≤ C(‖v‖L∞ , T ) by [4, Proposition 5]. This verifies the last claim.
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