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Abstract

We study, for the first time in the literature on the subjeloe Cauchy problem for a semilinear fractional elliptic
equation. Under aa priori assumption on the solution, we propose the Fourier trumcatiethod for stabilizing the
ill-posed problem. A stability estimate of logarithmic &5 established.
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1. Introduction

Fractional dfferential equations arise in many fields of science and eagimg[11], and most of the previous
studies have been devoted to fractiondfudiion and wave equations [3, 10, 13]. More recently fracti@lliptic
equations have become the point of interest of some disshgd studies [1, 2, 6dnd the present paper is aimed to
contribute towards broadening the overall understandinigverse problems associated to equations of this.type
this paper, we consider the boundary value problem for thelisear fractional elliptic equation

ofu+ Au = F(x,t, u(x, t)), (xt)eQx(0,T)=:Qr, 1.1)

with the following boundary conditions:

u(x,t) =0, (x,t) € 0Q % (0, T),
{ u(x,0)= f(x), xeQ, (1.2)
Ww(x 0)=9g(x), XxeQ,

whereQ c RY (d = 1, 2, 3) is a bounded domain with a smooth bound&yandT > 0 is a given number. In (1.1),
a € (1,2) is the fractional order ang}’ denotes the Caputo fractional derivative with respett ¢see [9, 12]),

Au(x, t) := _t ft(t - s)l"’@(x 9ds  (xt) e Qr
Y= rem e b PR ’
wherel is the Gamma function. We note that a modified equation tg €éls1
ofu—Au = F(x,t,u(x,t)), (x.1) € Qr, (1.3)

called a semilinear fractional wave equation, subject éocttnditions (1.2) has been studied in [9].

In the casar \, 1, the problem (1.1) becomes an ill-posed backward probtanthie parabolic heat equation
[14], whilst in the case ofr 2, the problem (1.1) becomes a classical elliptic inversdlem (called the Cauchy
problem for the Laplace equation), [7]. Itis well-known titfais latter problem is ill-posed in the sense of Hadarmard
and regularization results have been obtained in [15]. Amnadtjuestion is whether the Cauchy problem for the
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fractional elliptic equation (1.1) is also as ill-posed comtrast to the classical elliptic equation, even lineactional
elliptic equations are not very studied. In [8], the authmoesidered the ill-posedness (though no regularization wa
addressed) of problem (1.1)-(1.2) in the simpler lineae¢as: 0. To the best knowledge of the authors, there are no
publications on the Cauchy problem for semilinear fraciailiptic equation (1.1) for general source functien

The manuscript is organized as follows. In section 2, wenthice the nonlinear integral equation satisfied by the
solution of the Cauchy problem (1.1)-(1.2). In section 3 give the Fourier truncation method and obtain the stability
estimate in theé-? norm.

2. Theintegral equation

It is well-known [5] that the spectral problem

{—A¢1(X) =2j$j(x), XeQ

$i(¥) =0, xedQ, (24)

admits the eigenvaluesd1; < 1o < A3 < ... < 4 < ...andl; - o« asj — co. Let the corresponding eigenfunctions
beg; € HI(SQ).

Next, suppose that problem (1.1) has a solutioof the formu(x,t) = X2, uj(t)¢;(X). Then, uj(t) solves the
following fractional ordinary dferential equation with initial conditions:

aru; - jui(t) = (F(xtu(x1).¢;), te(0T),
u;(0) f.o5), (2.5)
"“’ £0) =(g.9)),

where(-, -y denotes the usual inner productlif(Q2). By applying the method of [9, 12], we obtain the solution of
(2.5) as follows:

t
Uj(t) = Eaa(4it") (. 67) + tEa2(4it") (9, ¢5) + fo (t= 9" Eea(dit - 9 (F(- S U(, ). ¢)) ds (2.6)

where

o
Ea/,/i’(z) = kz::() m, zeC (27)

is the Mittag-Lefler function andi satisfies the integral equation

o

U 8) = )7 [Eaa(dit") (f.6)) + tEaa(2it") (.6}) |6 ()

j=1

(]
+2
=1

2.1. Properties of the Mittag-Lg@er function

The following lemmas state some properties of the Mittagieefunction (2.7), which will be useful for the main
analysis of section 3.

t
fo (t= 9" *Eva(dift - 9°) (F(. S UC. 9). 1) ds] 10, (x1eQr. (2.8)

Lemma2.1. (a) Leta > ap, 8 > bp and M be positive numbers. Then there exists a positive @onGSt = Cg(ap, bo)
such that
0< Eap(d) < CeEano(M).  z€[0,M]. (2.9)

(b) Leta, g and z be positive numbers. Then there exists a positive constan€(z;) such that

C
[Eap(d) — dol@.p.2) < . z€[z1,), (2.10)

where
—/3

go(@.5,2) = =27 exp(z").

N Qll—\



Proof. See Lemma 2.3 of [4]. O

Lemma 2.2. Letay, a1, Bo gnd,Bl eR satisfyl <ap<a1<2,1< Bo <pP1< 2. Leta € [a’o, al] andﬂ € [ﬂo,ﬂl].
Then there exists a constadt> 0 such that

Eup(2 < Coo(a.3,2), ze€ (0,). (2.11)

Remark also that E3(0) = ~ 113

1 1
T) = T(T46T6)
Proof. From Part (a) of Lemma 2.4, > 1 andB > 1, we know that there exists a const@at> 0 such that

E(,’ﬁ(Z) < CEElyl(l) =eC, Vze [0, 1]. (2.12)
Also, sincex > 1 andB > 1, we have that= exp(:) > 1 forallze (0,1] and (2.12) gives

Eop(2) < eCeago(a,B,2), ze€(0,1]. (2.13)

If z> 1, then we defin&(z a,B) := E,p5(2)/do(e. B, 2). From Part (b) of Lemma 2.1, we have that there extsts 0
such that

C
|E(,’ﬁ(2) - ¢0((I,,3, Z)| < m, Z€e [l, OO)
This implies that
E (Z) C B-1 C =
Gz a,p) -1 = |~ ‘< avzr o OZR ) ze[lw). (2.14)

¢0((I,,8, Z) -

Since lim-,+ ¥(2) = 0, we can find atM > 1 such that &< y(2) < 1/2 forz > M. It follows thatG(z «, 8) < 3/2 for
z € [M, o). Now, denoteD := [1, M] X [a@o, @1] X [Bo.B1] andc* := sup, G(z «,B). Using a compactness argument,
we obtainc* = max G(z «,8) > 0. DenotingC := maxc*, 2}, we have thaG(z a, ) < C for z € [1, «). Finally,
definingC := maxC, «eCe} we obtain that (2.11) holds for atle (0, o). O

T (1+2e" T (1+ e

Lemma2.3. Leta € [ao, a1] With 1 < ag < a1 < 2. Then, for any & 0, the following inequalities hold:
C 1
Eo1(2jt") < — exp(a71), (2.15)
a

tE, (A7) < 94? exp(A’1), (2.16)
o

1

—a
@

a—1 @ 6 :
" Eaa(4it) < —4;7 exp(a;t). (2.17)
o

J

Proof. Letz = A;t* and puttingd = 1, 2 andv in (2.11) of Lemma 2.2, we obtain (2.15)-(2.17), respedyive [

3. Fourier truncation method

Let N € N* be a positive integer, which later on will play the role of tegularization parameter, and denote

N N
SNOF = D Eaa@it") (£,6)) 6, PG = Y tEaa(dit) (0. ¢5) b5, (3.18)

=1 =1

for f andg € L?(Q). Then we define the solution by truncated Fourier seriesatisfigng the nonlinear integral
equation

t
un(x 1) = Sn(®) F(X) + Pn(B)a(x) + fo Qn(t - 9F (un)(x, 9)ds (3.19)
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where
N
FU)(% 9 = FxSUN(X 9),  Qut— 9FUn)(X%9) = Y (t- 9" "Eaal(di(t - 97) (FUN( 9. ¢5) #5(X). (3.20)
j=1
Using that @;)i-1 is an increasing sequence of positive numbers and Lemmai2.84dsy to derive that

C 1 C 2 1
ISNOl £2@)) < - exp(Agt), 1PN ez@) < E/lf exp(Ayt), tel[0,T], (3.21)

where£(L%(Q)) denotes the space of all linear and continuous maps E{@) onto itself, and

la
o

_ ) N
QN (t = 9)F(un)(X, 9)| < g/ll exp(y(t— s))JZ| <F@unN)( 9,0, > 12, xeQ, ste[0,T]. (3.22)
=1

Let now the Cauchy data in (1.2) be in ertor O satisfying
If-fl<s lg-dli<s, (3.23)

where, unless otherwise specified, the n¢rihdenotes th&2(Q) norm. Then, we can define the regularized solution
by truncated Fourier series as satisfying the nonlineagiat equation

u (% 1) = Sn(t) FO(X) + Pn(t)g’(X) + fot Qn(t — 9F(UR)(x, 9)ds (3.24)

where the regularization parametémill be chosen depending on the amount of ndise
We assume thdt satisfies the global Lipschitz property, i.e. there exists 0 such that

F(tU) = F(x L) < Kllu= V2. u.ve LX(Q), (x.t) € Qr. (3.25)
Now we state our main results in the following theorem.

Theorem 3.1. The nonlinear integral equatio8.24)has a unique solutiondue C([0, T]; L%(Q)).
Assume further that there exists a postve 0 such that

o0 1/2
[Z Az eXp(Z/lj%(T - t))|uj(t)|2] <A tel0,T], (3.26)
=1

for some constant A 0. Then, we have the following stability estimate:
lluC-, ) = Uy . Dl
C ie 1 C El 1 _
< exp(K=4," t)exp( - A3(T - 1)) [—(1 +A7 )exp(AR T+ AL/ |, te[0.T]. (3.27)
a a
Remark 3.1. Choosing N= N(5) such thatly < (% In (2))" for someo € (0.1), then the erroru(-, ) — U3, (- Dl is
. . 1 —ya
of logarithmic order{ In(g)’ .

Proof. Part 1. The existence and uniqueness of a solution to the nonlinezgrial equation (3.24).
Forw e C([0, T]; L3(Q)), we put

TJW)(x1) := SN FO(X) + Pn(t)g’(X) + j: Qn(t - 9 F(W)(x, s)ds (3.28)

We shall prove by induction i, w, € C([0, T]; L?(Q)) then, for anym e N*,

LT, 9 = T )| < Ant™ws — Wallogoryzay,  te (0TI, (3.29)
4



where

= Lu -
(KC/]l T/l,‘\f)
[0

Am =
Form = 1, using (3.22) and (3.25), we have

ml

t
KT (W), ) = T (wa), Ol = | fo Qu(t - 9(F (W) - F)( 9| < Autiwa — Wallooyizy.  (3.30)

Assume that (3.29) holds fon = p and we show that it also holds far= p + 1. Using again (3.22) and (3.25), we
have

t
TP wa)( ) = TP ) Bl = | fo Qu(t - Y(F(TP(w)) - F(TPW))(, 97

KC i 2o
< 7/11" Apliwy = Wallego 120 €' ™ f sPds < Apaat? Hiwy — Walleqo.L2(@)- (3.31)
0
Therefore, by the induction principle, we have that (3.289§k. From it, we also obtain that

“J M(wi) =T m(Wz)“ COTI@) < Bmlwy = Walleqo, g 2(0))» (3.32)

whereBy, := AnT™. Since limy_.« Bm = 0 there exists a positive integer numiney such that7™ is a contraction.
It follows that the equatio@@™w = w has a unique solutio®, € C([0, T]; L3(©)). We claim that7(u3) = u,. In

fact, since7™(uy,) = ug,, we know thaty (j”b(u‘,i,)) = J(u3). This is equivalent tgy™ (j(u‘fq)) = J(u}). Hence,
J () is a fixed point of7™. Moreover, as noted abové, is a fixed point of7™.
Part 2. Let vy be the solution of the nonlinear integral equation

t
WN(X 1) = Sn(t) F(X) + Pn(t)a(x) + j(; Qn(t - 9F(vn) (X, 9)ds (3.33)
Step 1. Estimatel|uf (-, t) — (-, t)llL2(q)- Using (3.21)-(3.25) and (3.33), we have

IR =W Ol < [Sn@(F = )] + [Puto(a- o)+ fo Qult- 9(FR)C.9 - Fou(- 9)ed

C 1 C = 1 C e [t 1
< Ze@URDIT - 11+ 207 exp(tiplg - 1+ T4 [ expai(t - 9)|FLh. 9 - Fot- 9
0
Cc -1 1 C 1o t 1
< g(l + ﬂ]i_y) eXp(/l,‘\]t)(? + Kg/llw f exp(/l,‘\](t - 5))“Uﬁ|(, s) — Wn(-» S)”dS (3.34)
0

Multiplying both sides to exp— A,%,t), we derive that

1 C a1 C 1. [ 1
exp( = AL, (. 1) = W Bl < ;(1+/ll" )s + K=1,7 fexp(—Ag,s)”u,ﬁ(-,s)—vN(-,s)”ds (3.35)
0

Applying Gronwall’'s inequality, we obtain that

1 C -1 C 1«
exp( — AgHIuy (-, 1) — W, Bl < ;(1 + A )6 exp(K E/ll" t).
Hence

C B C 1e 1
U, (5 1) = (s Bl < ;(1 + A/ )exp(K;/ll" t) exp(Ayt)s. (3.36)

Step 2. Estimatd|u(-,t) — v (-, )| First, itis easy to see that

N t
> Ui = Su® F() + Pug) + fo Qu(t - YF(U)(x 9ds (3.37)
=1
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Then, from (3.22), (3.25), (3.26), (3.33) and (3.37), weadibt

WQO—wmﬁnsWuo—ﬁmmmﬂ+ﬂﬁﬁmwerﬁw
=1 =1

< Z /1]_27 exp( - 2/13% (T - t))/llgy exp(Z/IJf%(T = 1)luj(t)?
j=N+1

t
| [ @t~ 9(F .9 - Fome )
1 C o (! 1
<Ay exp(— AT —)A+ K—=21," f exp(Ay (t =9I, s) = w(-, 9)llds
@ 0
Multiplying both sides by expl,%(T —1)), we have
1 B C 1o [t 1
exp(A (T = OIUC, ) = (- Ol < A7 A+ K=, f exp(Ay(T = 9Iu(, s) - (- s)lids
0
By using Gronwall’s inequality, we thus obtain
C i B 1
u(-,t) = v, Bl < exp(K;/ll" AL exp( - A3 (T - 1)). (3.38)
Finally, from (3.36) and (3.38), we deduce that

U, t) = ud G O < -, ) = GBI+ Ivn G 1) = W G Dl

< g(l +27) exp(Kg/ﬁ t) exp(A)6 + exp(K%A? ALY exp( — 44T ~ 1)

20

= exp(K /lll‘;’a t) exp( - /l,% (T - t))[g(l + Al%) exp(/l,%T)(S + A/my].

This completes the proof of the theorem. O
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