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Abstract

In this paper we enhance the adaptive scheme presented in [2] for solving elliptic boundary value problems
via RBF collocation methods. More precisely, this study concerns a leave one out cross validation technique
applied as an error estimate and used in the adaptive refinement process. The modified algorithm we
propose here allows us to get numerical convergence also when L-shape or irregular domains are considered.
Moreover, a comparison between unsymmetric and symmetric RBF collocation schemes is performed.

Keywords: meshless approximation, adaptive algorithms, refinement schemes, collocation methods,
partial differential equations
2010 MSC: 65D15, 65M70

1. Introduction

Radial basis function (RBF) methods have been receiving great attention and recognition from scientists
and engineers for their power and efficacy in solving interpolation or approximation problems, also in high
dimensions, and partial differential equations (PDEs). In particular, over the last years RBF collocation
methods have constantly being studied and applied to solve a large number of science and engineering
problems (see e.g. [1, 3, 11, 20]).

In this paper we propose an adaptive refinement scheme for solving elliptic PDE problems via RBF
collocation methods over 2D irregular domains. The adaptive algorithm is characterized by the use of a
leave one out cross validation (LOOCV) technique, which is here applied as an error indicator to be used
in combination with a new strategy of adaptive refinement. The entire process is tested by using both
unsymmetric Kansa’s method [12] and the symmetric Hermite-based approach [4] in order to solve some
benchmark Poisson and modified Helmholtz equations over L-shape or irregular domains. Note that the
above-mentioned LOOCV technique refers to the algorithm – or more precisely to the single formula –
originally proposed in [17], and later used not as an error indicator but to choose an optimal value of the
RBF shape parameter (see e.g. [5]). This article extends our previous work in [2], enabling the current
algorithm to achieve numerical convergence also when irregular domains or other types of PDE problems
are considered. In doing so, it came naturally to make also a comparison between the unsymmetric and
symmetric collocation methods that are used within our adaptive scheme.

The paper is organized as follows. In Section 2 we recall unsymmetric and symmetric collocation methods
for solving elliptic PDEs. In Section 3 we present the adaptive LOOCV-based refinement algorithm, also
describing our error indicator and a refinement strategy. In Section 4 we show numerical results in order to
illustrate the performance of our adaptive scheme. Section 5 contains conclusions.
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Rossi)
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2. RBF collocation methods

Given a domain Ω ⊂ R
d and a linear elliptic partial differential operator L, we define an elliptic PDE

problem with Dirichlet boundary conditions (BCs) of the form

Lu(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(1)

To solve the problem (1) through RBF collocation methods, we make use of both Kansa’s unsymmetric
method [12] and Hermite-based symmetric approach [4].

2.1. Kansa’s unsymmetric collocation method

For Kansa’s approach we express the approximate solution û as a linear combination of basis functions
as usually occurs in RBF interpolation [5], i.e.

û(x) =

N
∑

j=1

cjφε(||x− zj ||2), (2)

where cj denotes unknown real coefficients, || · ||2 is the Euclidean norm, and φε : [0,∞) → R is some RBF
depending on a shape parameter ε > 0 such that

φε(||x− z||2) = φ(ε||x− z||2), ∀x, z ∈ Ω.

As an example, globally supported RBFs that are commonly used for solving PDEs are listed below along
with their smoothness degrees (see e.g. [5, 19]):

φε(r) = (1 + ε2r2)−1/2, Inverse MultiQuadric C∞ (IMQ),

φε(r) = exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15), Matérn C6 (M6).

In (2) we distinguish between a set ZN = {z1, . . . , zN} of centers and a set XN = {x1, . . . ,xN} ⊂ Ω of
collocation points. Even if formally different, they can also coincide. So, in the following, we will assume
the scenario with ZN = XN . Moreover, for our purposes the set XN is split into the sets XNI

of interior
points and XNB

of boundary points, so that XN = XNI
∪ XNB

, with the subscript NI and NB denoting
the number of interior and boundary points, respectively.

When matching the PDE and the BCs in (1) at the set XN , we get the collocation system of linear
equations

Ac = v, (3)

where A is the collocation matrix defined as

A =

[

ÂL

Â

]

, (4)

whose two blocks in (4) are given by

(ÂL)ij = Lφε(||xi − zj ||2), xi ∈ XNI
, zj ∈ ZN ,

Âij = φε(||xi − zj ||2), xi ∈ XNB
, zj ∈ ZN ,

and v is the vector of entries

vi =

{

f(xi), xi ∈ XNI
,

g(xi), xi ∈ XNB
.

(5)
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2.2. Hermite-based symmetric collocation method

The symmetric collocation method is based on the generalized Hermite interpolation method (see e.g.
[5]). The approximate solution û is expressed in the following form

û(x) =

NI
∑

j=1

cjL
zφε(||x− zj ||2) +

N
∑

j=NI+1

cjφε(||x− zj ||2), (6)

where Lz is the differential operator used in (1), but acting on φε viewed as a function of the second
argument, i.e. Lφε is equal to Lzφε up to a possible difference in sign. Notice that in the second sum on
the right the notation that involves an index j = NI + 1, . . . , N refers to the NB boundary indexes.

After enforcing the collocation conditions at the set XN , we obtain a linear system of the form (3), where
the vector v is defined as in (5) and the collocation matrix A is given by

A =

[

ÂLLz ÂL

ÂLz Â

]

. (7)

The four blocks in (7) are generated as follows:

(ÂLLz )ij = Lφε(||xi − zj ||2), xi ∈ XNI
, zj ∈ ZNI

,

(ÂL)ij = Lφε(||xi − zj ||2), xi ∈ XNI
, zj ∈ ZNB

,

(ÂLz )ij = Lzφε(||xi − zj ||2), xi ∈ XNB
, zj ∈ ZNI

,

Âij = φε(||xi − zj ||2), xi ∈ XNB
, zj ∈ ZNB

.

Thus, if the RBF centers coincide with collocation points, i.e. ZN = XN , the matrix (7) is symmetric
and the collocation method is certainly well-posed. Further, we have the following convergence result [5, 19]:

Theorem 2.1. Let Ω ⊆ R
d be a polygonal and open region. Let L 6= 0 be a second-order linear elliptic

differential operator with coefficients in C2(k−2)(Ω̄) that either vanish on Ω̄ or have no zero there. Suppose
that Φ ∈ C2k(Rd) is a strictly positive definite function. Suppose further that the boundary value problem (1)
has a unique solution u ∈ NΦ(Ω) for given f ∈ C(Ω) and g ∈ C(∂Ω). Let û be the approximate collocation
solution of the form (6) based on Φ = φ(|| · ||). Then

||u− û||L∞(Ω) ≤ Chk−2||u||NΦ(Ω)

for all sufficiently small h, where h = sup
x∈Ω minxi∈XN

||x−xi||2 denotes the fill distance, namely the larger
of the distances in the interior and on the boundary of Ω, respectively.

2.3. Comparison between unsymmetric and symmetric collocation

An issue due to the unsymmetric method is that the matrix (4) may be singular for certain rare config-
urations of the centers. In fact, Kansa’s method might not be well-posed for arbitrary center locations [10].
However, the huge popularity of this collocation method associated with a theoretical/convergence analysis
has encouraged the use of Kansa’s approach despite its potential for failure (see [5, 6]). It is, indeed, possible
to find sufficient conditions on the centers as in [15] so that invertibility of the matrix (4) is ensured.

On the other hand, the symmetric method guarantees invertibility of the collocation matrix (7), since
it depends on a different use of the basis functions deriving from the Hermite interpolation approach. This
choice results in a convergence result (cf. Theorem 2.1) and related analysis given in [8, 9].

Numerical comparisons between unsymmetric and symmetric methods have been discussed in [5, 13].
However, while the work [13] states that the symmetric approach is more accurate than the unsymmetric
one, in [5] a little superiority of the unsymmetric method is shown. On the basis of these opposing results
we have thus decided to analyze numerically the behavior of both collocation methods when applying in an
adaptive scheme (see Section 4).
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3. Adaptive LOOCV-based scheme

3.1. Error computation

The idea of LOOCV for RBF collocation methods can be depicted as follows. At first, the data are split
into two distinct sets: a training set {v(x1), . . ., v(xk−1), v(xk+1), . . . , v(xN )}, and a validation set that is
merely made of the single value v(xk), i.e. the one left out when generating the training set [5].

Thus, given an index k ∈ {1, . . . , N} and a fixed value of ε, we consider a partial RBF approximant

denoted by û[k] and obtained from (2) (or (6)) by excluding the point xk. The related coefficients c
[k]
j are

determined by collocating the training data, i.e.

Lû[k](xi) = v(xi), xi ∈ XNI
,

û[k](xi) = v(xi), xi ∈ XNB
,

for i = 1, . . . , k − 1, k + 1, . . . , N.

To measure the quality of this attempt, we compute the absolute error

ek = |v(xk)− û[k](xk)|, (8)

at the one validation point xk not used to find the approximant û[k]. Now, evaluating the error in (8), for
all k = 1, . . . , N , we get a vector e = (e1, . . . , eN )T , which can be used as an error indicator to identify the
regions that need to be refined in the neighborhood of the point xk. However, the error (8) can be computed
more efficiently without solving N collocation problems, each of size (N − 1)× (N − 1). In fact, in [17] the
error computation can be simplified to a single formula. The rule (8) can thus be rewritten as

ek =

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

, k = 1, . . . , N, (9)

where ck is the k-th coefficient of the full approximate solution (2) and A−1
kk is the k-th diagonal element of

the inverse of the corresponding N ×N collocation matrix A in (4).

3.2. Computational procedure: error indicator and refinement

Stage 1. We define an initial set XN(1) ≡ XN = {x
(1)
1 , . . . ,x

(1)

N(1)} of collocation points, associated with an

initial set ZN(1) ≡ ZN = {z
(1)
1 , . . . , z

(1)

N(1)} of centers, where ZN = XN . It is then split into two subsets,

i.e. the set X
N

(j)
I

= {x
(j)
1 , . . . ,x

(j)

N
(j)
I

} of interior points, and the set X
N

(j)
B

= {x
(j)
1 , . . . ,x

(j)

N
(j)
B

} of boundary

points, where j = 1, 2, . . . denotes the algorithm iteration and the subscript N(j) defines the number of
points.

Stage 2. Fixed a tolerance τ > 0, from (9) we can iteratively define an error indicator via LOOCV as

e
(j)
k =

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

, k = 1, . . . , N (j), j = 1, 2, . . . . (10)

Stage 3. If the error indicator (10) is such that e
(j)
k > τ , then a refinement is applied in the neighborhood

of xk. In doing so, we first compute the so-called separation distance

qX
N(j)

=
1

2
min
u6=v

||x(j)
u − x(j)

v ||2, x(j)
u ,x(j)

v ∈ XN(j) , j = 1, 2, . . . , (11)

and then sum up or subtract the quantity in (11) to one or both coordinates of the point xk = (xk,1,xk,2).
More precisely, the refinement technique used here consists in the addition of the following eight points
around xk, whose coordinates are (xk,1,xk,2 + qX

N(j)
), (xk,1 − qX

N(j)
,xk,2 + qX

N(j)
), (xk,1 − qX

N(j)
,xk,2),

(xk,1 − qX
N(j)

,xk,2 − qX
N(j)

), (xk,1,xk,2 − qX
N(j)

), (xk,1 + qX
N(j)

,xk,2 − qX
N(j)

), (xk,1 + qX
N(j)

,xk,2), and
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(xk,1 + qX
N(j)

,xk,2 + qX
N(j)

). The choice of using an eight-point approach has been done because it enables
us to cover uniformly the domain areas that need to be refined without adding too few or too many points,
also when an irregular domain is considered.

Stage 4. When all components of error terms in (10) are less than or equal to τ , the refinement procedure
stops and the final set of collocation points is returned.

3.3. Computational cost and complexity analysis

The computational cost of our algorithm depends primarily on the iterated use of the LOOCV-based
error indicator in (10). This requires that the collocation matrix of the form (4) (or (7)) is inverted at
each iteration. As a result, the computational cost is O((N (j))3), where j = 1, 2 . . . denotes the algorithm
iteration. Once the refinement process was completed, the algorithm stops and the approximate solution
(2) (or (6)) is computed on a set of evaluation points. This phase needs a matrix-vector multiplication with
a vector that has the same size of the final set of centers.

4. Numerical results

In this section we consider two examples to validate our adaptive refinement scheme by solving Poisson
and modified Helmholtz problems on L-shape and irregular domains. The codes are implemented inMatlab

and run on a laptop with an Intel(R) Core(TM) i7-6500U CPU 2.50 GHz processor with 8GB RAM.
In order to assess the accuracy of the adaptive method, we compute the root mean square error (RMSE)

RMSE =

√

√

√

√

1

M

M
∑

i=1

|u(ξi)− û(ξi)|2,

where ξi, i = 1, . . . ,M , are gridded evaluation points and M = 51× 51. Moreover, to analyze the stability
of the method, we evaluate the condition number (CN) of the collocation matrix A in (4) (or (7)) by using
the Matlab command cond. Finally, as a measure of computational efficiency we report the CPU time
expressed in seconds.

Example 1. Consider the Laplace operator L = −∆ in (1), whose analytical solution is given by

u1(x1, x2) =
1

25(4x1 − 2)2 + 25(4x2 − 2)2 + 1
,

defined on a L-shape domain Ω contained in [0, 1]2 (see [14]). In Table 1 we show the algorithm performance
obtained via M6 as RBF for various values of ε, also including the total number Nfin of collocation points
required to achieve the final results. Specifically, we remark that the choice of the shape parameters given
in Table 1 turns out to be a good trade-off to get both accuracy and stability in the numerical method.
Nevertheless, in this example the use of different values of ε has been done primarily to highlight as the
choice of “good” shape parameters does not produce significant changes in the results. In Table 2 we then
compare the numerical results by applying Kansa and Hermite-based methods with IMQ. These tests (and
others omitted for shortness) reveal greater performances of Kansa’s approach. Moreover, as an example,
in Figure 2 we depict a couple of graphs with some final configurations of collocation points. Note that the
adaptive scheme is able to detect and increase the points in the area where u1 has a pick (see Figure 1, left).

Finally, in order to demonstrate the usefulness of our adaptive scheme, in Table 3 we report the results
obtained by applying the non-adaptive Kansa and Hermite-based methods on uniform/gridded point sets.
From a comparison with Table 2, we can observe that the non-adaptive schemes can achieve a similar level of
accuracy only when using a quite larger number of collocation points, namely about 1300 points for Kansa’s
approach and 1900 points for Hermite’s one. However, in this specific case our study also points out as CNs
for Kansa and times for Hermite are lower than the ones obtained via our adaptive scheme whereas CNs for
Hermite and times for Kansa are comparable.
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Figure 1: Exact solutions viewed from the top with colorbar: u1 (left), u2 (center) and u3 (right).

ε Nfin RMSE CN time

5 722 1.73e−4 1.73e+13 0.8

6 737 1.04e−4 1.26e+14 1.1

7 737 1.05e−4 5.13e+13 1.1

Table 1: Results obtained for Example 1 via Kansa’s method with M6 by varying ε for τ = 10. The initial
number of discretization points is N = 469, with NI = 385 (gridded) and NB = 84.

Method Nfin RMSE CN time

Kansa 774 9.30e−5 4.38e+11 0.7

Hermite 1614 1.34e−4 3.26e+10 3.9

Table 2: Results obtained for Example 1 with IMQ for ε = 12 and τ = 10. The initial number of discretiza-
tion points is N = 469, with NI = 385 (gridded) and NB = 84.
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Figure 2: Final discretization points via Kansa’s method for u1 computed by starting with gridded points
as in Tables 1–2. These tests have been carried out by using M6 with ε = 6 (left) and IMQ with ε = 12
(right).

Example 2. Consider the modified Helmholtz operator L = (−∆ + ν2I) in (1), where I is the identity
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Method N RMSE CN time

720 1.03e−3 7.26e+5 0.5

Kansa 1261 1.84e−4 1.91e+7 0.7

1344 7.66e−5 9.39e+7 0.8

1612 1.84e−4 8.09e+10 1.5

Hermite 1952 1.32e−4 1.04e+11 1.9

2268 9.69e−5 2.95e+11 2.4

Table 3: Results obtained for Example 1 by applying non-adaptive methods computed on gridded points
with IMQ for ε = 12 and τ = 10.

operator. The exact solutions of such problems (cf. [14, 16]) are

u2(x1, x2) = arctan(20(
√

(x1 + 0.05)2 + (x2 + 0.05)2 − 0.7)),

u3(x1, x2) = sin(2(4x1 − 2.1)2) cos((4x1 − 2.3)2) + sin2((4x2 − 2.5)2),

defined on an irregular domain such as the Ameoba like shape domain Ω ⊂ [0, 1]2 and bounded by the
parametric curve [18]

r(θ) = esin(θ) sin2(2θ) + ecos(θ) cos2(2θ).

In this example the numerical results are illustrated in Table 4 while the corresponding plots are shown in
Figure 3. From both graphs we can see as the method finds the steep variation of u2 (see Figure 1, center)
and is sensitive to the several oscillations of u3 (see Figure 1, right).

Problem τ Nfin RMSE CN time

u2 5 1209 2.39e−4 3.14e+14 3.6

u3 15 1132 5.75e−4 1.76e+15 3.2

Table 4: Results obtained for Example 2 via Kansa’s method with M6 for ν = 3 and ε = 10. The initial
number of discretization points is N = 361, with NI = 261 (gridded) and NB = 100.
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Figure 3: Final discretization points for u2 (left) and u3 (right) of Table 4.

So far, in our previous tests, we have assumed that ZN = XN , i.e. the interior and boundary centers
coincide with the corresponding collocation points. Now, here, we consider a case in which ZNI

= XNI
while
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the set XNB
of collocation points is on the boundary of the domain and the set ZNB

of centers is taken
outside the domain as suggested in [7]. In Table 5 we show the results obtained with this different scenario
whereas in Figure 4 (left to right) we report the graphical representation of the final collocation points for
u2 and u3, respectively.

Problem τ Nfin RMSE CN time

u2 5 1299 2.56e−4 4.20e+14 3.7

u3 15 1156 4.92e−4 3.50e+14 3.2

Table 5: Results obtained for Example 2 via Kansa’s method with M6 for ν = 3 and ε = 10. The initial
number of discretization points is N = 361, with NI = 261 (gridded) and NB = 100. Here we assume
ZNI

= XNI
and ZNB

6= XNB
.
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Figure 4: Final discretization points for u2 (left) and u3 (right) of Table 5.

In conclusion, though in this work we only considered globally supported RBFs, we can remark that the
use of compactly supported RBFs is also possible. However, since the most accurate results were obtained
with quite large supports, the use of compactly supported functions does not provide particular benefits
w.r.t. globally supported ones. For this reason and for the sake of brevity, we do not consider this case in
the present paper.

Remark 4.1. In our experiments the iterative algorithm starts by considering uniform (or gridded) points.
However, the use of different point distributions can influence even significantly the approximation results.
In fact, from further tests (not reported in the paper) we observed in general a loss of accuracy and an
increase of condition numbers in the numerical method when using non-uniform points such as random or
quasi-random points.

5. Conclusions

In this work we presented a variation of the adaptive scheme discussed in [2], which showed some issues
in terms of algorithm convergence when one considered irregular (e.g. L-shape) domains. This target was
achieved by using a LOOCV-based error indicator combined with an eight-point refinement procedure. The
resulting algorithm was tested to solve some benchmark Poisson-type and modified Helmholtz problems.
This allowed us to also make a comparison between unsymmetric and symmetric collocation, analyzing nu-
merically the behavior of both collocation methods within our adaptive scheme. From this study we observed
a greater sensitivity of the unsymmetric method, when the adaptive strategy is applied, and accordingly
better performance in terms of accuracy and algorithm convergence than the symmetric approach.
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