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Abstract

This paper describes a new algorithm for computing Nonnegative Low Rank
Matrix (NLRM) approximation for nonnegative matrices. Our approach is com-
pletely different from classical nonnegative matrix factorization (NMF) which
has been studied for more than twenty five years. For a given nonnegative
matrix, the usual NMF approach is to determine two nonnegative low rank ma-
trices such that the distance between their product and the given nonnegative
matrix is as small as possible. However, the proposed NLRM approach is to
determine a nonnegative low rank matrix such that the distance between such
matrix and the given nonnegative matrix is as small as possible. There are two
advantages. (i) The minimized distance by the proposed NLRM method can
be smaller than that by the NMF method, and it implies that the proposed
NLRM method can obtain a better low rank matrix approximation. (ii) Our
low rank matrix admits a matrix singular value decomposition automatically
which provides a significant index based on singular values that can be used to
identify important singular basis vectors, while this information cannot be ob-
tained in the classical NMF. The proposed NLRM approximation algorithm was
derived using the alternating projection on the low rank matrix manifold and
the non-negativity property. Experimental results are presented to demonstrate
the above mentioned advantages of the proposed NLRM method compared the
NMF method.
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1 Introduction

Nonnegative data matrices appear in many data analysis applications. For instance,
in image analysis, image pixel values are nonnegative and the associated nonnegative
image data matrices can be formed for clustering and recognition [5, 9, 10, 14,
15, 16, 19, 24, 25, 30, 34]. In text mining, the frequencies of terms in documents
are nonnegative and the resulted nonnegative term-to-document data matrices can
be constructed for clustering [3, 22, 27, 32]. In bioinformatics, nonnegative gene
expression values are studied and nonnegative gene expression data matrices are
generated for diseases and genes classification [6, 8, 11, 17, 18, 26, 31]. Nonnegative
Low Rank Matrix (NLRM) approximation for nonnegative matrices play a key role in
all these applications. Its main purpose is to identify a latent feature space for objects
representation. The classification, clustering or recognition analysis can be done by
using these latent features. Lee and Seung [19] proposed and developed Nonnegative
Matrix Factorization (NMF) algorithms, and demonstrated that NMF has part-
based representation which can be used for intuitive perception interpretation.

1.1 Related Work

NMF has emerged in 1994 by Paatero and Tapper [35] for performing environmental
data analysis. The purpose of NMF is to decompose an input m-by-n nonnegative
matrix A ∈ R

m×n
+ into m-by-r nonnegative matrix B ∈ R

m×r
+ and r-by-n nonnega-

tive matrix C ∈ R
r×n
+ :

A ≈ BC,

and
min

B,C≥0
‖A−BC‖2F , (1)

where B,C ≥ 0 means that each entry of B and C is nonnegative, ‖ · ‖F is the
Frobenius norm of a matrix, and r (the low rank value) is smaller than m and
n. For simplicity, we assume that m ≥ n, Several researchers have proposed and
developed algorithms for determining such nonnegative matrix factorization in the
literature. For instance, Lee and Seung [19, 20] proposed to solve NMF by using
the multiplicative update algorithm by finding both B and C iteratively. Also Yuan
and Oja [33] considered and studied a projective nonnegative matrix factorization
and proposed the following minimization problem:

min
B≥0

‖A−BBTA‖2F ,

where BT is the transpose of B. In the optimization problem, it is required to find
a projection matrix BBT such that the difference between the given nonnegative
matrix A and its projection BBTA is as small as possible.

We remark that there can be many possible solutions in (1). In practice, it is
necessary to impose additional constraints for finding NMF. In some applications, or-
thogonality, sparsity and/or smoothness constraints on B and/or C are incorporated
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in (1). Because of these constraint formulations, many optimization techniques have
been designed to solve these minimization problems. For example, the multiplicative
update algorithms [7, 8, 10] are revised to deal with these constraint minimization
problems.

1.2 The Contribution

The proposed Nonnegative Low Rank Matrix (NLRM) approximation method is
completely different from classical NMF. Here NLRM approximation is to find a
nonnegative low rank matrix X such that X ≈ A such that their difference is as
small as possible. Mathematically, it can be formulated as the following optimization
problem

min
rank(X)=r,X≥0

‖A−X‖2F. (2)

There are two advantages in the proposed NLRM method.

• It is obvious in (1) that when B and C are nonnegative, then the resulting
matrix BC is also nonnegative. But these constraints are more restricted than
that required in (2). Instead of using NMF in (1), we study NLRM in (2).
The distance ‖A −X‖2F by the proposed NLRM method can be smaller than
minB,C≥0 ‖A − BC‖2F by the NMF method. It implies that the proposed
NLRM method can obtain a better low rank matrix approximation.

• The proposed NLRM approximation admits a matrix singular value decompo-
sition, i.e.,

X = UΣV T , (3)

where U is an m-by-n matrix, Σ is an n-by-n diagonal matrix, and V T is also
an n-by-n matrix. The columns of U are called the left singular vectors of
the singular value decomposition {ui}

m
i=1. These left singular vectors form an

orthonormal basis system in R
m×m such that uTi uj = 1 if i = j, otherwise

0. The rows of V T refer to the elements of the right singular vectors of the
singular value decomposition {vi}

n
i=1. These right singular vectors also form

an orthonormal basis system in R
n×n such that vTi vj = 1 if i = j, otherwise

0. The diagonal elements of Σ = diag(σ1, σ2, · · · , σn) are called the singular
values. As X is a rank r matrix, we have σi ≥ 0 for 1 ≤ i ≤ r and σi = 0 for
r+1 ≤ i ≤ n. The ordering of the singular values follows the descending order,
i.e., σ1 ≥ σ2 ≥ · · · ,≥ σr. We remark that both U and V are not necessary to
be nonnegative, but the resulting matrix X = UΣV T must be non-negative.
Therefore, this decomposition is different from principal component analysis
as there is such requirement in principal component analysis. According to
the singular value decomposition of X, the proposed method can identify im-
portant singular basis vectors based on singular values. In the classical NMF,
this information cannot be obtained directly.

3



Our experimental results are presented to demonstrate the above mentioned advan-
tages of the proposed NLRM method compared the NMF method.

The paper is organized as follows. In Section 2, we present our algorithm and
show the convergence. In Section 3, numerical results are presented to demonstrate
the proposed algorithm. Finally, some concluding remarks and future research work
are given in Section 4.

2 The Optimization on Manifolds

Constrained optimization is quite well studied as an area of research, and many
powerful methods are proposed to solve the general problems in that area. In some
special cases, the constrain sets possess particularly rich geometric properties, i.e.,
they are manifolds in the meaning of classical differential geometry. Then some con-
strained optimization problems can be rewritten as optimizing a real-valued function
f(x) on a manifold M:

min
x∈M

f(x). (4)

Here, M can be the Stiefel manifold, the Grassmann manifold and the fixed rank
matrices manifold and so on. In order to better understand manifolds and some
related definitions, e.g., charts, atlases and tangent spaces, we refer to [21] and
the references therein. In general, the dimensions that some classical constrained
techniques work are much bigger than the corresponding manifold (see e.g., [1, 28]).

2.1 The Algorithm

Alternating projection method is popular in searching a point in the intersection of
convex sets because of its simplicity and intuitive appeal. Its basic idea is iteratively
projecting a point one set and then the other. In contrast to the well known cases,
this paper concerns with the extensions of convex sets to non-convex sets. Here, one
set is the m× n fixed rank matrices manifold

Mr :=
{

X ∈ R
m×n, rank(X) = r

}

, (5)

and the other one is the convex set of m× n nonnegative matrices

Mn :=
{

X ∈ R
m×n,Xi,j ≥ 0, i = 1, ...,m, j = 1, ..., n

}

. (6)

In order to introduce the main algorithm, we need to define two projections that
project the given matrix onto Mr and Mn, respectively. By the Eckart-Young-
Mirsky theorem [12], the projection onto fixed rank matrix set Mr can be expressed
as follows:

π1(X) =

r
∑

i=1

σi(X)ui(X)vTi (X), (7)
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where σi(X) is the i-th singular values of X, and their corresponding left and right
singular vectors: ui(X) and vi(X). The projection onto the nonnegative matrix set
Mn can be expressed as follows:

π2(X) =

{

Xij , if Xij ≥ 0,
0, if Xij < 0.

(8)

In particular, since the manifold Mr is not convex, the projection mapping π1(X)
can no longer be single valued (for example when the r-th singular value has multi-
plicity higher than 1). Then the algorithm of alternating projection on Mr and Mn

can be given as Algorithm 1. The framework of this algorithm is the same as the
general case, while the only difference is that the projections are respectively chosen
as π1 and π2 given in (7) and (8).

Algorithm 1 Alternating Projections On Manifolds

Input: Given a nonnegative matrix A ∈ R
m×n this algorithm computes nearest

rank-r nonnegative matrix.
1: Initialize X0 = A;
2: for k = 1, 2, ...
3: Yk+1 = π1(Xk);
4: Xk+1 = π2(Yk+1);
5: end
Output: Xk when the stopping criterion is satisfied.

We note in Algorithm 1 that the projection of a given matrix onto the manifold
Mr is done by truncating small singular values in the singular value decomposition
of the given matrix. The computational complexity of this procedure is of (mnr)
operations.

Different from the convex sets case, the intersection of Mr and Mn decides
whether the sequence generated by Algorithm 1, converges or not. In order to show
the convergence of Algorithm 1, we compute the dimension of the intersection of
Mr and Mn.

Theorem 1. Let Mr and Mn be defined as (5)-(6). Then

Mrn := Mr ∩Mn =
{

X ∈ R
m×n, rank(X) = r, Xij ≥ 0, i = 1, ...,m, j = 1, ..., n

}

(9)
is a smooth manifold with dimension (m+ n)r − r2.

The proof of Theorem 1 can be found in Supplementary. Moreover, we need to
define the angle α(A) of A ∈ Mrn where

α(A) = cos−1(σ(A)) and σ(A) = lim
ξ→0

sup
B1∈F

ξ
1 (A),B2∈F

ξ
2 (A)

{

〈B1 −A,B2 −A〉

‖B1 −A‖F ‖B2 −A‖F

}

,
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with

F ξ
1 (A) = {B1 | B1 ∈ Mr\A, ‖B1 −A‖F ≤ ξ,B1 −A⊥TMr∩Mn(A)},

F ξ
2 (A) = {B2 | B2 ∈ Mn\A, ‖B2 −A‖F ≤ ξ,B2 −A⊥TMr∩Mn(A)},

and TMr∩Mn(A) is the tangent space of Mr ∩Mn at point A (the definition of the
tangent space can be found in Supplemary). The angle is calculated based on the
two points belonging M1 and M2 respectively.

A point A in Mrn is nontangential if α(A) has a positive angle [2], i.e., 0 ≤
σ(A) < 1. It is interesting to note that if there is one nontangential point, majority
of points are also nontangential because of the manifold smoothness. We show that
Mrn contains a non-empty set Mnt

rn of nontangential points. The proof can be found
in Supplementary.

Theorem 2. Mnt
rn 6= ∅.

By using this property, Andersson and Carlsson [2] have shown the following
theorem.

Theorem 3. Let Mr, Mn and Mrn be given as (5), (6) and (9), the projections
onto Mr and Mrn be given as (7)-(8), respectively. Denote π as the projection onto
Mrn. Suppose that P ∈ Mnt

rn is a non-tangential intersection point, then for any
given ǫ > 0 and 1 > c > σ(P ), there exist an ξ > 0 such that for any A ∈ Ball(P, ξ)
(the ball neighborhood of P with radius ξ contains the given nonnegative matrix A)
the sequence {Xk}

∞
k=0 generated by the alternating projection algorithm initializing

from given A satisfies the following results:

(1) the sequence converges to a point X∞ ∈ Mrn,

(2) ‖X∞ − π(A)‖F ≤ ǫ‖A− π(A)‖F ,

(3) ‖X∞ −Xk‖F ≤ const · ck‖A− π(A)‖F ,

where π(A) ≡ argminrank(X)=r,X≥0 ‖A−X‖2
F
(the optimized solution).

According to Theorem 3, we know Algorithm 1 can converge and find a matrix
that can be sufficiently close the best nonnegative approximation π(A).

3 Numerical Results

In this section, we conducted several experiments to demonstrate that the proposed
NLRM method can obtain a better low rank matrix approximation, and can provide
a significant index based on singular values that can be used to identify important
singular basis vectors in the approximation.
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3.1 The First Experiment

In the first experiment, we randomly generated m-by-r nonnegative matrices B
and r-by-n nonnegative matrices C where their matrix entries follow a uniform
distribution in between 0 and 1. The given non-negative matrix A was computed
by the multiplication of B with C. We employed the proposed NLRM algorithm
(Algorithm 1) to test the relative residual ‖A − Xc‖F /‖A‖F and compared with
testing NMF algorithms: A-MU [13], HALS [4], A-HALS [13], PG [23] and A-PG
[23]. Here Xc are the computed solutions by different algorithms.

Tables 1-3 shows the relative residuals of the computed solutions from the pro-
posed algorithm and the testing NMF algorithms for synthetic data sets of sizes
100-by-80, 200-by-160 and 500-by-400 respectively. When there is no noise (the sec-
ond column in the tables), the input data matrix A is exactly a nonnegative rank
r matrix. Therefore, the proposed NLRM algorithm can provide exact recovery re-
sults in the first iteration. However, there is no guarantee that other testing NMF
algorithms can determine the underlying nonnegative low rank factorization. In the
tables, it is clear that the testing NMF algorithms cannot obtain the underlying low
rank factorization. One of the reason may be that NMF algorithms can be sensitive
to initial guesses. In the tables, we illustrate this phenomena by displaying the mean
relative residual and the range containing both the minimum and the maximum rel-
ative residuals by using ten initial guesses randomly generated. We find in the tables
that the relative residuals computed by the proposed NLRM algorithm are always
smaller than the minimum relative residuals by the testing NMF algorithms.

On the other hand, the performance of the proposed algorithm was evaluated
when a Gaussian noise of zero mean and variance σ (= 0.001, 0.005, 0.01) were added
in the generated matrices A. The relative residuals of the computed solutions by the
proposed NLRM algorithm and the other NMF algorithms are reported in Tables
1-3. We see from the tables that the relative residuals computed by the proposed
method are always smaller than the minimum relative residuals by the testing NMF
algorithms. All these results show that the performance of the proposed NLRM
algorithm is better than that of the testing NMF algorithms.

3.2 The Second Experiment

In the second experiment, we randomly generated m-by-n nonnegative matrices A
where their matrix entries follow a uniform distribution in between 0 and 1. The
low rank minimizer is unknown in this setting. Table 4 shows that the relative
residuals ‖A−Xc‖F /‖A‖F of the computed solution Xc from the proposed NLRM
algorithm and the testing NMF algorithms. In the testing NMF algorithms, we use
10 different initial guesses and report the results of the mean and the range (the
minimum and the maximum values) of the relative residuals in the tables. We see
from Table 4 that the relative residuals computed by the proposed NLRM method
are smaller than the minimum relative residuals by the testing NMF algorithms. All
these results show that the performance of the proposed NLRM algorithm is better
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Table 1: The relative residuals ‖A−Xc‖F /‖A‖F by different algorithms for 100-by-
80 synthetic data matrices with several noise levels.

r = 10
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 9.15e-16 1.72e-04 8.62e-04 1.70e-03

A-MU (mean) 1.43e-03 1.43e-03 1.68e-03 2.26e-03
A-MU (range) [8.66e-04, 2.30e-03] [8.85e-04, 2.30e-03] [1.20e-03, 2.50e-03] [1.90e-03, 2.90e-03]

HALS (mean) 1.36e-03 1.38e-03 1.63e-03 2.22e-03
HALS (range) [7.22e-04, 2.30e-03] [7.33e-04, 2.30e-03] [1.10e-03, 2.40e-03] [1.80e-03, 2.90e-03]

A-HALS (mean) 1.25e-03 1.37e-03 1.61e-03 2.23e-03
A-HALS (range) [6.84e-04, 2.40e-03] [5.22e-04, 2.30e-03] [5.22e-04, 2.30e-03] [6.84e-04, 2.40e-03]

PG (mean) 1.06e-03 8.24e-04 1.26e-03 1.96e-03
PG (range) [2.36e-04, 2.00e-03] [3.03e-04, 2.00E-03] [9.39e-04, 1.80e-03] [1.80e-03, 2.20e-03]

A-PG (mean) 2.03e-03 2.04e-03 2.21e-03 2.66e-03
A-PG (range) [1.40e-03, 2.90e-03] [1.40e-03, 2.90e-03] [1.60e-03, 3.00e-03] [2.20e-03, 3.40e-03]

r = 20
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 8.32e-16 1.22e-04 6.07e-04 1.20e-03

A-MU (mean) 2.20e-04 2.54e-04 6.49e-04 1.21e-03
A-MU (range) [9.74e-05, 4.41e-04] [1.56e-04, 4.51e-04] [6.15e-04, 7.36e-04] [1.20e-03, 1.30e-03]

HALS (mean) 2.16e-04 2.53e-04 6.51e-04 1.22e-03
HALS (range) [5.93e-05, 5.00e-04] [1.36e-04, 4.98e-04] [6.10e-04, 7.47e-04] [1.20e-03, 1.30e-03]

A-HALS (mean) 5.47e-05 1.42e-04 6.12e-04 1.20e-03
A-HALS (range) [2.29e-05, 1.19e-04] [1.25e-04, 1.88e-04] [6.09e-04, 6.20e-04] [1.20e-03, 1.20e-03]

PG (mean) 1.15e-04 1.40e-04 6.17e-04 1.20e-03
PG (range) [4.33e-05, 1.76e-04] [1.22e-04, 1.90e-04] [6.08e-04, 6.41e-04] [1.20e-03, 1.20e-03]

A-PG (mean) 5.23e-04 5.37e-04 8.06e-04 1.32e-03
A-PG (range) [3.30e-04, 6.98e-04] [3.51e-04, 7.10e-04] [6.90e-04, 9.30e-04] [1.30e-03, 1.40e-03]

r = 40
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 2.61e-15 8.43e-05 4.21e-04 8.43e-04

A-MU (mean) 1.82e-03 1.84e-03 1.92e-03 2.03e-03
A-MU (range) [1.20e-03, 2.30e-03] [1.20e-03, 2.30e-03] [1.30e-03, 2.50e-03] [1.60e-03, 2.40e-03]

HALS (mean) 2.82e-03 2.83e-03 2.87e-03 3.00e-03
HALS (range) [2.40e-03, 3.20e-03] [2.40e-03, 3.30e-03] [2.50e-03, 3.30e-03] [2.60e-03, 3.40e-03]

A-HALS (mean) 1.33e-05 8.64e-05 4.23e-04 8.43e-04
A-HALS (range) [1.31e-06, 7.48e-05] [8.43e-05, 9.35e-05] [4.21e-04, 4.35e-04] [8.43e-04, 8.44e-04]

PG (mean) 4.39e-04 2.42e-04 4.84e-04 1.02e-03
PG (range) [4.07e-05, 7.64e-04] [9.74e-05, 7.83e-04] [4.23e-04, 6.98e-04] [8.44e-04, 1.70e-03]

A-PG (mean) 3.40e-04 3.64e-04 5.87e-04 9.48e-04
A-PG (range) [2.15e-06, 1.00e-03] [8.43e-05, 1.00e-03] [4.21e-04, 1.10e-03] [8.43e-04, 1.30e-03]
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Table 2: The relative residuals ‖A−Xc‖F /‖A‖F by different algorithms for 200-by-
160 synthetic data matrices with several noise levels.

r = 10
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 5.25e-16 1.33e-04 6.67e-04 1.30e-03

A-MU (mean) 3.38e-03 3.39e-03 3.45e-03 3.65e-03
A-MU (range) [1.70e-03, 4.90e-03] [1.80e-03, 4.90e-03] [1.90e-03, 4.90e-03] [2.30e-03, 5.00e-03]

HALS (mean) 4.49e-03 4.48e-03 4.47e-03 4.61e-03
HALS (range) [3.30e-03, 6.00e-03] [3.30e-03, 5.90e-03] [3.40e-03, 5.60e-03] [3.50e-03, 5.70e-03]

A-HALS (mean) 4.07e-03 4.23e-03 4.10e-03 4.05e-03
A-HALS (range) [2.30e-03, 5.70e-03] [3.00e-03, 5.30e-03] [2.80e-03, 5.60e-03] [2.50e-03, 5.70e-03]

PG (mean) 2.79e-03 2.09e-03 1.97e-03 2.60e-03
PG (range) [8.70e-04, 4.10e-03] [2.67e-04, 4.10e-03] [1.00e-03, 3.40e-03] [1.50e-03, 4.40e-03]

A-PG (mean) 3.02e-03 3.03e-03 3.24e-03 3.39e-03
A-PG (range) [6.98e-04, 5.20e-03] [7.09e-04, 5.20e-03] [9.58e-04, 5.20e-03] [1.50e-03, 5.40e-03]

r = 20
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 6.41e-15 9.24e-05 4.62e-04 9.25e-04

A-MU (mean) 1.73e-03 1.73e-03 1.80e-03 1.97e-03
A-MU (range) [1.40e-03, 2.50e-03] [1.40e-03, 2.50e-03] [1.50e-03, 2.60e-03] [1.70e-03, 2.70e-03]

HALS (mean) 1.55e-03 1.55e-03 1.63e-03 1.82e-03
HALS (range) [1.40e-03, 1.70e-03] [1.40e-03, 1.70e-03] [1.50e-03, 1.80e-03] [1.70e-03, 2.00e-03]

A-HALS (mean) 1.29e-03 1.39e-03 1.40Ee-03 1.63e-03
A-HALS (range) [1.00e-03, 1.70e-03] [1.10e-03, 1.80e-03] [8.55e-04, 1.80e-03] [1.40e-03, 1.90e-03]

PG (mean) 1.80e-03 1.92e-03 1.73e-03 1.88e-03
PG (range) [1.40e-03, 2.30e-03] [1.60e-03, 2.10e-03] [1.50e-03, 2.10e-03] [1.60e-03, 2.30e-03]

A-PG (mean) 9.84e-04 9.86e-04 1.10e-03 1.35e-03
A-PG (range) [7.59e-04, 1.20e-03] [7.65e-04, 1.20e-03] [9.02e-04, 1.30e-03] [1.20e-03, 1.50e-03]

r = 40
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 8.76e-16 6.28e-05 3.14e-04 6.28e-04

A-MU (mean) 6.05e-04 6.09e-04 6.84e-04 8.74e-04
A-MU (range) [5.26e-04, 6.61e-04] [5.31e-04, 6.64e-04] [6.16e-04, 7.30e-04] [8.24e-04, 9.08e-04]

HALS (mean) 3.54e-03 3.56e-03 3.63e-03 3.72e-03
HALS (range) [2.90e-03, 4.80e-03] [2.90e-03, 4.80e-03] [2.90e-03, 4.90e-03] [2.90e-03, 5.10e-03]

A-HALS (mean) 2.37e-05 6.88e-05 3.15e-04 6.28e-04
A-HALS (range) [1.51e-05, 4.15e-05] [6.37e-05, 8.13e-05] [3.14e-04, 3.17e-04] [6.28e-04, 6.29e-04]

PG (mean) 3.05e-03 2.84e-03 3.21e-03 3.22e-03
PG (range) [1.70e-03,4.70e-03] [1.30e-03, 6.10e-03] [1.40e-03, 5.70e-03] [1.50e-03, 5.20e-03]

A-PG (mean) 6.05e-04 6.09e-04 6.83e-04 8.74e-04
A-PG (range) [5.04e-04, 7.43e-04] [5.07e-04, 7.46e-04] [5.93e-04, 8.06e-04] [8.05e-04, 9.71e-04]
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Table 3: The relative residuals ‖A−Xc‖F /‖A‖F by different algorithms for 500-by-
400 synthetic data matrices with several noise levels.

r = 10
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 1.33e-15 8.07e-05 4.03e-04 8.07e-04

A-MU (mean) 1.21e-03 1.22e-03 1.28e-03 1.47e-03
A-MU (range) [6.06e-04, 3.00e-03] [6.14e-04, 3.00e-03] [7.38e-04, 3.10e-03] [1.00e-03, 3.20e-03]

HALS (mean) 4.05e-03 4.09e-03 4.14e-03 4.34e-03
HALS (range) [1.00e-03, 6.60e-03] [1.10e-03, 6.60e-03] [1.10e-03, 6.70e-03] [1.30e-03, 8.40e-03]

A-HALS (mean) 3.39e-03 4.33e-03 3.45e-03 4.14e-03
A-HALS (range) [1.10e-03, 5.80e-03] [8.69e-04, 6.60e-03] [8.58e-04, 5.00e-03] [1.20e-03, 6.90e-03]

PG (mean) 5.17e-03 5.38e-03 4.52e-03 5.71e-03
PG (range) [2.60e-03, 7.60e-03] [2.40e-03, 7.40e-03] [1.50e-03, 6.20e-03] [2.40e-03, 7.30e-03]

A-PG (mean) 3.26e-04 3.74e-04 4.22e-04 8.15e-04
A-PG (range) [3.93e-05, 2.30e-03] [9.01e-05, 2.50e-03] [4.06e-04, 4.54e-04] [8.08e-04, 8.31e-04]

r = 20
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 1.56e-15 5.81e-05 2.91e-04 5.81e-04

A-MU (mean) 4.38e-03 4.38e-03 4.38e-03 4.42e-03
A-MU (range) [4.10e-03, 4.80e-03] [4.10e-03, 4.80e-03] [4.10e-03, 4.80e-03] [4.20e-03, 4.80e-03]

HALS (mean) 4.67e-03 4.67e-03 4.69e-03 4.73e-03
HALS (range) [4.40e-03, 5.00e-03] [4.40e-03, 5.00e-03] [4.40e-03, 5.00e-03] [4.40e-03, 5.10e-03]

A-HALS (mean) 4.32e-03 4.29e-03 4.48e-03 4.41e-03
A-HALS (range) [3.80e-03, 4.70e-03] [4.10e-03, 4.50e-03] [4.20e-03, 4.90e-03] [4.10e-03, 4.80e-03]

PG (mean) 8.87e-03 9.03e-03 8.82e-03 8.82e-03
PG (range) [8.10e-03, 9.60e-03] [8.30e-03, 1.01e-02] [8.10e-03, 9.60e-03] [8.10e-03, 9.40e-03]

A-PG (mean) 4.58e-03 4.58e-03 4.59e-03 4.61e-03
A-PG (range) [4.10e-03, 5.10e-03] [4.10e-03, 5.10e-03] [4.10e-03, 5.10e-03] [4.20e-03, 5.10e-03]

r = 40
Method no noise σ = 0.001 σ = 0.005 σ = 0.01

NLRM 1.78e-15 4.10e-05 2.05e-04 4.10e-04

A-MU (mean) 2.10e-03 2.10e-03 2.10e-03 2.11e-03
A-MU (range) [1.90e-03, 2.30e-03] [1.90e-03, 2.30e-03] [1.90e-03, 2.30e-03] [1.90e-03, 2.30e-03]

HALS (mean) 5.58e-03 5.58e-03 5.51e-03 5.46e-03
HALS (range) [4.50e-03, 7.10e-03] [4.50e-03, 7.10e-03] [4.50e-03, 7.20e-03] [4.20e-03, 7.20e-03]

A-HALS (mean) 2.05e-03 1.98e-03 2.26e-03 1.78e-03
A-HALS (range) [1.60e-03, 3.30e-03] [1.40e-03, 2.70e-03] [1.50e-03, 5.00e-03] [1.50e-03, 2.60e-03]

PG (mean) 7.53e-03 7.83e-03 7.74e-03 7.77e-03
PG (range) [6.60e-03, 8.90e-03] [6.80e-03, 8.90e-03] [6.70e-03, 9.00e-03] [6.60e-03, 9.70e-03]

A-PG (mean) 2.55e-03 2.55e-03 2.56e-03 2.60e-03
A-PG (range) [2.50e-03, 2.70e-03] [2.50e-03, 2.70e-03] [2.50e-03, 2.70e-03] [2.50e-03, 2.70e-03]
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than that of the testing NMF algorithms.
Moreover, we considered the CBCL face database [36]. In the face database,

there are m = 2469 facial images, each consisting of n = 19 × 19 = 361 pixels,
and constituting a face image matrix A ∈ R

361×2469
+ . We tested several values of

r = 20, 40, 60, 80 for nonnegative low rank minimization and compared the proposed
NLRM algorithm with the testing NMF algorithms. In the testing NMF algorithms,
we used 10 different initial guesses and report the results of relative residuals of the
mean and the range in the tables. We see from Table 5 that the relative residuals
computed by the proposed NLRM method are smaller than the minimum relative
residuals by the testing NMF algorithms. Again the performance of the proposed
algorithm is better than that of the testing NMF algorithms.

3.3 The Third Experiment

In practice, it is necessary to determine the value of rank for nonnegative matrix
approximation. In this experiment, we show the advantage of the proposed NLRM
algorithm for providing a significant index based on singular values that can be used
to identify important singular basis vectors in the approximation.

Similar to the first experiment, we randomly generated m-by-n nonnegative ma-
trices with actual ranks (10, 20, 40) and added Gaussian noise of zero mean and
variance σ. In Figure 1, we display the distribution of singular values of the matrix
approximation with rank r (= 20, 30, 50) for the generated 100-by-80 matrix with
actual rank 10, 200-by-160 matrix with actual rank 20, and 500-by-400 matrix with
actual rank 40 respectively. In this setting, we employ a matrix approximation with
rank r (= 20, 30, 50) being larger than the actual rank (= 10, 20, 40) of the generated
nonnegative matrix. When there is no noise (σ = 0), we see from Figures 1(a), 1(b),
and 1(c) that there is a big jump in between the k-th singular value and the (k+1)th
singular value for actual ranks k = 10, k = 20, and k = 40 respectively. When there
is a noise (σ = 0.001, 0.005, 0.01), there is still a jump in between the k-th singular
value and the (k + 1)th singular value (k is the actual rank), and the height of the
jump depends on the noise level. This observation is also valid for other randomly
generated matrices in the first experiment. According to these figures, the distribu-
tion of singular values can provide us information to determine a suitable low rank
matrix approximation.

On the other hand, we randomly generated m-by-n nonnegative matrices with
full rank. In Figures 2-3, we display the relative residuals of the use of different
numbers of the computed singular vectors by the proposed NLRM algorithm. More
precisely, the computed solution is given as follows: Xc =

∑r
i=1 σiuiv

T
i . We plot

‖A − Xc(j)‖F /‖A‖F with respect to j (the number of singular vectors to be used
in the matrix approximation), where Xc(j) =

∑j
i=1 σiuiv

T
i in the figures. Note

that we employ singular vectors ui and vTi according to the descending order of
the singular values σi (σ1 ≥ σ2 ≥ · · · ≥ σj). We see from the figures that when j
increases, the corresponding relative residual decreases. These results show that the
matrix approximation to the given nonnegative matrix according to the ordering
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Table 4: The relative residuals ‖A−Xc‖F /‖A‖F by different algorithms for synthetic
data matrices.

m = 100, n = 80
Method r = 10 r = 20 r = 40

NLRM 0.4047 0.3228 0.1874

A-MU (mean) 0.4087 0.3434 0.2487
A-MU (range) [0.4086, 0.4089] [0.3428, 0.3447] [0.2477, 0.2502]

HALS (mean) 0.4087 0.3426 0.2448
HALS (range) [0.4086, 0.4088] [0.3421, 0.3431] [0.2438, 0.2458]

A-HALS (mean) 0.4087 0.3424 0.2449
A-HALS (range) [0.4086, 0.409] [0.342, 0.3427] [0.2437, 0.2462]

PG (mean) 0.4087 0.3422 0.2445
PG (range) [0.4086, 0.4089] [0.3418, 0.3426] [0.2425, 0.2465]

A-PG (mean) 0.4088 0.3428 0.2450
A-PG (range) [0.4086, 0.4091] [0.3420, 0.3436] [0.2442, 0.2463]

m = 200, n = 160
Method r = 10 r = 20 r = 40

NLRM 0.4503 0.4054 0.3252

A-MU (mean) 0.4522 0.4151 0.3586
A-MU (range) [0.4521, 0.4523] [0.4148, 0.4156] [0.358, 0.3591]

HALS (mean) 0.4522 0.4149 0.3569
HALS (range) [0.4521, 0.4523] [0.4147, 0.4151] [0.3565, 0.3574]

A-HALS (mean) 0.4522 0.4149 0.3568
A-HALS (range) [0.4521, 0.4523] [0.4145, 0.4152] [0.3565, 0.3572]

PG (mean) 0.4521 0.4147 0.3568
PG (range) [0.4521, 0.4522] [0.4145, 0.415] [0.3564, 0.3572]

A-PG (mean) 0.45215 0.41478 0.35741
A-PG (range) [0.4521, 0.4522] [0.4146, 0.4151] [0.3569, 0.3582]

m = 500, n = 400
Method r = 10 r = 20 r = 40

NLRM 0.4803 0.4607 0.4238

A-MU (mean) 0.4807 0.4635 0.4357
A-MU (range) [0.4807, 0.4807] [0.4634, 0.4635 ] [0.4357, 0.4358]

HALS (mean) 0.4807 0.4633 0.4352
HALS (range) [0.4807, 0.4808] [0.4633, 0.4634] [0.4352, 0.4353]

A-HALS (mean) 0.4807 0.4634 0.4352
A-HALS (range) [0.4807, 0.4807] [0.4633, 0.4634] [0.4351, 0.4353]

PG (mean) 0.4807 0.4633 0.4353
PG (range) [0.4807, 0.4807] [0.4633, 0.4634] [0.4351, 0.4354]

A-PG (mean) 0.4807 0.4634 0.4353
A-PG (range) [0.4807 0.4807] [0.4633, 0.4635] [0.4352, 0.4354]
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Figure 1: The distribution of singular values of (a) the generated 100-by-80 matrix
with actual rank 10, (b) the generated 200-by-160 matrix actual rank 20, and (c)
the generated 500-by-400 matrix with actual rank 40.
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Figure 2: The comparison of relative residuals with respect to the number of com-
ponents to be used in the matrix approximation with (a) r = 20 for the generated
100-by-80 matrix, (b) r = 50 for the generated 200-by-160 matrix, and (c) r = 100
for the generated 500-by-400 matrix.
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Figure 3: The comparison of relative residuals with respect to the number of com-
ponents to be used in the matrix approximation with (a) r = 80 for the generated
100-by-80 matrix, (b) r = 160 for the generated 200-by-160 matrix, and (c) r = 400
for the generated 500-by-400 matrix.
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Table 5: The relative residuals ‖A − Xc‖F /‖A‖F by different algorithms for face
data.

m = 361, n = 2469
Method r = 20 r = 40 r = 60 r = 80

NLRM 0.1170 0.0839 0.0654 0.0529

A-MU (mean) 0.1220 0.0911 0.0751 0.0639
A-MU (range) [0.1218, 0.1222] [0.0907, 0.0914] [0.0746, 0.0755] [0.0632, 0.0651]

HALS (mean) 0.1220 0.0902 0.0721 0.0598
HALS (range) [0.1218, 0.1224] [0.09, 0.0905] [0.0719, 0.0723] [0.0596, 0.0601]

A-HALS (mean) 0.1220 0.0901 0.0719 0.0595
A-HALS (range) [0.1217, 0.1222] [0.0898, 0.0904] [0.0717, 0.072] [0.0594, 0.0597]

PG (mean) 0.1219 0.0902 0.0740 0.0633
PG (range) [0.1217, 0.122] [0.0899, 0.0909] [0.0731, 0.0747] [0.0626, 0.0645]

A-PG (mean) 0.1221 0.0908 0.0754 0.0658
A-PG (range) [0.1218, 0.1226] [0.0905, 0.0913] [0.075, 0.0757] [0.0652, 0.0684]

of singular values, is an effective strategy. As a reference, when r is equal to the
full rank number, the relative residual by the proposed NLRM algorithm, is close
to the machine precision (around 1e-16). In contrast, there is no index to show
the columns of m-by-r computed matrix Bcomp and the rows of r-by-n computed
matrix Ccomp in the NMF approximation BcompCcomp to the nonnegative matrix A.
Here we normalize the row vectors of Ccomp such that the sum of squares of each
row of Ccomp is equal to 1, and then reorder the resulting column vectors of Bcomp

according to their sum of squares. We plot ‖A−Xnmf (j)‖F /‖A‖F with respect to j

where Xnmf (j) =
∑j

i=1[Bcomp](:, i)[Ccomp](i, :) and [Bcomp](:, i) is the i-th column of
reordered Bcomp and [Ccomp](i, :) is the i-th row of the normalized Ccomp. In Figures
2-3. In the figures, we see that when j increases, the relative residual decreases by
the testing NMF algorithms. However, their relative residuals are still larger than
those by the proposed NLRM algorithm. It is interesting to note that even r is
equal to the full rank number of the given nonnegative matrix, the relative residuals
computed by the testing NMF algorithms are not close to the machine precision.
The reason may be that there is no guarantee that the testing NMF algorithms give
global optimal solutions.

Also we computed the relative residuals for face data matrix by the above men-
tioned procedure in Figure 4. We see from the figure that the relative residuals by
the proposed NLRM algorithm are significantly smaller than those by the testing
NMF algorithms for different values of r = 20, 40, 60, 80, 361. According to Figures
2-4, we summarize that the proposed NLRM algorithm can provide a significant
index based on singular values that can be used to identify important singular basis
vectors in the approximation.
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Figure 4: The comparison of relative residuals with respect to the number of com-
ponents to be used in the face data matrix approximation with (a) r = 20 (b) r = 40
(c) r = 60 (d) r = 80 (e) r = 361 (full rank).
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4 Concluding Remarks

In this paper, we proposed and developed a new algorithm for computing NLRM
approximation for nonnegative matrices. The new method is different from clas-
sical nonnegative matrix factorization method. We have shown the convergence
of the proposed algorithm based on the results in manifold. Moreover, we have
demonstrated numerical results that the minimized distance by the proposed NLRM
method can be smaller than that by the NMF method. According to the ordering
of singular values, the proposed method identifies important singular basis vectors,
while this information cannot be obtained in the classical NMF. As a future research
work, there are several areas to be studied:

1. The computational cost of the proposed method involves the computation of
singular value decomposition. We plan to study tangent space method for low
rank matrix projection so that the computational complexity can be reduced
for large scale data science applications.

2. We study applications of nonnegative low rank matrix approximation and
check how the proposed method can provide a significant index based on sin-
gular values that can be used to identify important singular basis vectors in
the approximation.

3. In classical NMF applications, researchers have suggested to use the other
norms (such as l1 norm and KL divergence) in data fitting ‖A−BC‖ instead
of Frobenius norm to deal with other machine learning applications. It is
interesting to develop the related algorithms for nonnegative low rank matrix
approximation.
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Supplementary Information

The supplementary information consists of the theoretical proofs of Theorems 1-3.
Some basic definitions, propositions of algebraic geometry and differential geom-

etry are needed to prove the main results. We only provide some results here and
for details we refer to [1, 21] and references therein.

In order to show the convergence of Algorithm 1, we need to prove the inter-
section of Mr given as (5) and Mn given as (6) is a manifold first. In many real
applications, some manifolds are actually real algebraic varieties which are defined
as the vanishing of a set of polynomials on R

n, thus some algebraic geometry meth-
ods can help us to study the above problem. Note that all complex varieties are
real varieties, but not conversely. For a given real algebraic variety V ∈ R

n, if we
identity R

n as a subset of Cn and denote IR(V) as the set of real polynomials that
vanish on V, then V has a related complex variety given by its Zariski closure

VZar = {z ∈ C
n : p(z) = 0, ∀p ∈ IR(V)},

which is defined as the subset in C
n of common zeros to all polynomials that vanish

on V. Moreover, H. Whitney in [29] showed that a real algebraic variety V can be
decomposed as V =

⋃m
j=0 V

′
j where each V ′

j is either void or a C
(∞)-manifold with

dimension j. If V ′
m 6= ∅, then m equals the algebraic dimension of VZar. Each V ′

j
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contains at most a finite number of connected components. This result shows that
the main part of a variety is a manifold.

Varieties have singular points which is different from manifolds. Note that a
point A ∈ V is nonsingular if it is nonsingular in the sense of algebraic geometry as
an element of Vzar. This result changes to be much simpler, if we restrict on the irre-
ducible variety. Here a algebraic variety V is said to be irreducible if there does not
exist non-trivial real algebraic varieties V ′

1 and V ′
2, such that V = V ′

1

⋃

V ′
2. Denote ∇

as the gradient operator and set NV(z) = {∇p(z) : p ∈ IR(V)}. Suppose that V ∈ R
n

is an irreducible real algebraic variety of dimension m, then dimNV(z) ≤ n−m and
z ∈ V is non-singular if and only if dimNV(z) = n −m. In practice, it is not easy
to check a given variety is irreducible or not, thus the following results are needed.

Definition 1 (Definition 6.7 in [2]). Suppose we are given a number j ∈ N and an
index set I such that for each i ∈ I, there exist an open connected Ωi ⊆ R

j and a
real analytic map φi : Ωi → V. Then V is said to be covered with analytic patches, if
for each A ∈ V, there exists an i ∈ I and a radius rA such that

Vrn ∩BallRn(A, rA) = Imφi ∩BallRn(A, rA).

Proposition 1 (Proposition 6.8 in [2]). Let V be a real algebraic variety. If V is
connected and can be covered with analytic patches, then V is irreducible.

Moreover, the following proposition proposed us a simple method to compute
the dimensions of some varieties involved which are tricky to compute.

Proposition 2 (Proposition 6.9 in [2]). Under the assumption of Proposition 1,
suppose in addition that an open subset of V is the image of a bijective real analytic
map defined on a subset of Rd. Then V has dimension d.

With the above tools in hand we can prove the following results. The idea of the
proof follows from [2].

Proof of Theorem 1: The proof can be divided into two parts. Firstly, we need
to prove the following set

Vrn =
{

X ∈ R
m×n, rank(X) ≤ r, Xi,j ≥ 0, i = 1, ...,m, j = 1, ..., n

}

(10)

is an irreducible variety with dimension (m+ n)r − r2. Then we need to prove Vns
rn

(the set of all the non-singular points in Vrn) equals the set of all the nonnegative
matrices with rank equal to r.

Denote K as set of m × n matrices over R. If all elements of a matrix A ∈
K are considered as variables, K is a linear manifold with dimension mn. The
same statement is also satisfied for the nonnegative matrix set Mn. Denote Vr :=
{X ∈ R

m×n, rank(X) ≤ r}. Recall that a matrix in K has rank being greater than
r if and only if one can find a nonzero (r + 1) × (r + 1) invertible minor. The
determinant of each such minor is a polynomial, and Vr is clear the variety obtained
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from the collection of such polynomials. Thus Vr is a real algebraic variety. The
same statement is also true for Vrn, which is derived by adding that a matrix entry
is the square of a variable (i.e., nonnegative constraints) to the variety defining on
Vr. In order to use Proposition 1, we need to show that Vrn is covered with analytic
patches and connected, and then Vrn can be irreducible.
(i) (Covered with analytic patches) Denote U ∈ R

m×r′ , V ∈ R
n×r′ and a diagonal

matrix Σ ∈ R
r′×r′ where r′ ≤ r. Here we assume r′ ≥ 1. For r′ = 0, it is a trivial

case. Suppose that π(i) = r′ for all i = 1, ...,m. We set ui,π(i) as an undetermined

variable. Now we can construct a real analytic mapping θ from Û (the first (r′ − 1)
rows of U), Σ and V to Vrn as follows:

θ(u1,1, u1,2, ..., u1,r′−1, ..., um,1, ..., um,r′−1, σ1, ..., σr′ , v1,1, ..., vn,r′)

=











u1,1 · · · u1,r′−1 u1,r′

u2,1 · · · u2,r′−1 u2,r′
...

. . .
...

...
um,1 · · · um,r′−1 um,r′





















σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr′





















v1,1 · · · v1,r′−1 v1,r′

v2,1 · · · v2,r′−1 v2,r′
...

. . .
...

...
vn,1 · · · vn,r′−1 vn,r′











T

.

(11)

Note that the entries of the matrix in (11) can be nonnegative when the associated
inequalities of m undetermined variables are satisfied. Such m undetermined vari-
ables are decoupled in these inequalities. There are infinitely many real solutions
of m undetermined variables for given values of Û , Σ, and V . It is saying that Vrn

is the image of θ. Let Γ be a particular connected component of (Û ,Σ, V ). We
establish a function ψ with π and Γ as follows:

ψπ,Γ(y) = U(y)Σ(y)V (y)T , y ∈ Γ. (12)

Denote I as the set of all possible π and Γ. It can be found that for each matrix in
Vrn is in the image of at least one ψπ,Γ where (π,Γ) ∈ I. Then by Definition 1, Vrn

can be covered by {ψπ,Γ}(π,Γ)∈I.
(ii) (Connected) In order to show Vrn is connected, we need to show that for any
two nonnegative matrices A,B ∈ Vrn, there exist a continuous map f from the
unit interval [0, 1] to Vrn such that f(0) = A and f(1) = B. Without loss of
generality, we show that for an arbitrary A ∈ Vrn, it is connected with 1 matrix (all
the entries are equal to 1) instead. It is sufficient to prove Vrn is path connected.
Suppose that A,B ∈ Vrn are arbitrary and path connected with the 1 matrix,
respectively. Thus there are two continuous maps f and g which are from the
unit interval [0, 1] to Vrn with f(0) = A, f(1) = 1, g(0) = 1 and g(1) = B.
Setting τ(x) = (1 − x)f(x) + xg(x), it is easy to see that τ(x) is continuous and
satisfying τ(0) = f(0) = A and τ(1) = g(1) = B. Then Vrn is path connected.
Let A ∈ Vrn. Suppose that all the singular values of A are ordered decreasingly
with σ1 = 1 (if σ1 6= 1, we can divide or multiply some factor such that σ1 = 1.
Set π(i) = r′ = rank(A), i = 1, ...,m as above and choose Γ such that the matrix
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representation can be expressed as (12). Now if σ2 6= 1, we can proceed until it is
not without leaving Γ. Then the values of y corresponding to the first and second
column of Û and V can be continuously moved until all elements of the first column
of Û and V are positive, respectively. At this point, we can reduce all values of Û
and V except the first column to zero, increase the first value of each row whenever
necessary to stay in Γ. Then we can move y so that the values in the first column
become the same. Finally, we can let these values increase simultaneously until they
reach 1. Then the matrix 1 is derived, which is saying that Vrn is connected. Hence
it is irreducible.
(iii) Now we would like to apply Proposition 2 so that Vrn possesses dimension
(m+ n)r − r2. Here we need to find an open subset of Vrn which can be expressed
as the image of a bijective real analytic map defined on a subset of R

(m+n)r−r2 .
Now we set Υ as a subset of Vrn in which the matrix rank is r. There are r sin-
gular values. According to (11) and the singular value decomposition theory [12],
we know that for a matrix in Υ, the columns of Û are orthogonal and the dimen-
sion is (mr − r(r+1)

2 −m), and the rows of V are orthogonal and the dimension is

(nr− r(r+1)
2 ). In addition, there are m undetermined variables in the last column of

U , and there are r independent variables on the main diagonal matrix Σ. Therefore,
the combined dimension is (m + n)r − r2. Now we can identify three sets of ma-

trices with R
mr−

r(r+1)
2 , Rnr−

r(r+1)
2 and R

r respectively. Denote the inverses of these
identifications by

ι1 : R
mr−

r(r+1)
2 → R

m×r; ι2 : R
r → R

r×r; ι3 : R
mr−

r(r+1)
2 → R

n×r; (13)

and denote Ω ⊂ R
(m+n)r−r2 as the open set corresponding to those matrices having

the same structure as Υ. Define φ : Ω → Vrn by

φ(y1, y2, y3) = ι1(y1)× ι2(y2)× ι3(y3)
T . (14)

It is easy to see that φ is bijective correspondence with an open set of Vrn and φ is
a polynomial. By Proposition 2, Vrn possesses dimension (m+ n)r − r2 as desired.

In the second step, we mainly prove Vns
rn equals all the nonnegative matrices

with rank equal to r. Recall that Vrn is an irreducible real algebraic variety with
dimension (m+ n)r − r2, then we need to prove

dimNVrn(A) = mn− (m+ n)r + r2,

if and only if rank(A) = r. It is sufficient to show that dimNVrn(A) ≤ mn −
(m + n)r + r2 is strict when rank(A) < r and the reverse inequality holds when
rank(A) = r. Now for a given polynomial p ∈ I(Vrn), and two orthogonal matrices
U and V , qU,V (⋄) = p(U ⋄V T ), which is also in I(Vrn). Let A be a fixed nonnegative
matrix with rank(A) = k ≤ r. By using the singular value decomposition, we can
produce two orthogonal matrices U and V such that

UAV T = diag{σ1, ..., σk, 0, ..., 0} = Ek,
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where the first k diagonal values of Ek are positive numbers and 0 otherwise. In par-
ticular ∇qU,V (A) = U∇p(UAV T )V T = U∇p(Ek)V

T , implying that dimNVrn(A) =
dimNVrn(Ek). If k = r, all the (r + 1)× (r + 1) subdeterminants of the matrices in
K form polynomials in I(Vrn), thus

dimNVrn(Er) ≥ mn− (m+ n)r + r2,

which proves that any rank r element of Vrn is nonsingular. Moreover, if k < r,
consider some fixed u ∈ R

m
+ and v ∈ R

n
+, define the map ϑu,v : R+ → Vrn via

ϑu,v(x) = Ek + xuvT . Considering

dim

{

Span

{

d

dx
ϑu,v(0) : u ∈ R

m
+ , v ∈ R

n
+

}}

= mn,

hence dimNVrn(Ek) = 0, which shows that Ek is singular.
Combine the above conclusions, we can get Vrn is an irreducible real algebraic

variety with dimension (m + n)r − r2, and Vns
rn is a C

∞-manifold of dimension
(m+ n)r − r2. �

Proof of Theorem 2: Suppose that the angle α(A) of A ∈ Mr ∩ Mn is well
defined, then A is tangential if α(A) = 0, and is nontangetial if α(A) > 0. Moreover,
A ∈ Mr ∩Mn is nontangential if and only if

TMr(A) ∩ TMn(A) = TMr∩Mn(A), (15)

where TMr(A) and TMn(A) denote the differential geometry tangent spaces of man-
ifolds Mr and Mn at point A, respectively. Denote Mnt

rn ⊆ Mrn as the set of
all nontangential points of Mr ∩ Mn. Recall that the tangent space of Mr at
A = Um×r · Σr×r · V

T
n×r can be expressed as

TMr(A) =

{

[U,U⊥]

(

R
r×r

R
r×(n−r)

R
(m−r)×r 0(m−r)×(n−r)

)

[V, V⊥]
T

}

,

where U⊥ ∈ R
m×(m−r) and V⊥ ∈ R

n×(n−r) stand for the orthogonal completions of
U and V, respectively. In addition, it is not difficult to derive TMn(A) = Span{Eij}
with Eij = 1 or 0, for all i = 1, ...,m and j = 1, ..., n. Thus

dim(TMr(A) ∩ TMn(A)) ≤ (m+ n)r − r2. (16)

Recall Theorem 1, Mrn is a smooth manifold with dimension (m+ n)r − r2, which
is homeomorphism to its tangent space TMrn(A). Thus,

dim(TMr(A) ∩ TMn(A)) ≤ dim(TMrn(A)), (17)

which is sufficient to say Mnt
rn is not empty. �

Note that Vrn is an irreducible variety with dimension (m+n)r−r2, and Mnt
rn is

not empty, then it follows from Theorem 6.6 in [2] that Vrn \M
nt
rn is a real algebraic

variety of dimension strictly less than (m+n)r− r2. This result tell us the majority
of points are nontangential if one is. Moreover, (17) is satisfied, then by Theorem
5.1 in [2], we can get Theorem 3.
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