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Richtmyer-Meshkov instability (RMI) plays important role in nature and technology, from supernovae 

and fusion to scramjets and nano-fabrication. Canonical Richtmyer-Meshkov instability is induced by a 

steady shock and impulsive acceleration, whereas in realistic environments the acceleration is usually 

variable. This work focuses on RMI induced by acceleration with a power-law time-dependence, and 

applies group theory to solve the classical problem. For early-time dynamics, we find the dependence of 

RMI growth-rate on the initial conditions and show it is free from the acceleration parameters. For late 

time dynamics, we find a continuous family of regular asymptotic solutions, including their curvature, 

velocity, Fourier amplitudes, and interfacial shear, and we study the solutions stability. For each of the 

solutions, the interface dynamics is directly linked to the interfacial shear, and the non-equilibrium 

velocity field has intense fluid motion near the interface and effectively no motion in the bulk. The quasi-

invariance of the fastest stable solution suggests that nonlinear coherent dynamics in RMI is characterized 

by two macroscopic length-scales - the wavelength and the amplitude, in excellent agreement with 

observations. We elaborate new theory benchmarks for experiments and simulations, and put forward a 

hypothesis on the role of viscous effects in interfacial nonlinear RMI. 
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Rayleigh-Taylor instability (RTI) develops at the fluid interface when fluids of different densities 

are accelerated against their density gradients; Richtmyer-Meshkov instability (RMI) develops when the 

acceleration is induced by a shock and is impulsive [1-4]. Intense interfacial Rayleigh-Taylor (RT) / 

Richtmyer-Meshkov (RM) mixing of the fluids ensues with time [5,6]. RTI/RMI and RT/RM mixing play 

important role in a broad range of processes in nature and technology, including stellar evolution, plasma 

fusion, and fossil fuel industry [7-13]. In this work we study the long-standing problem of RMI with 

variable acceleration [14]. We employ group theory to solve the boundary value problem for the early- 

and late-time RM evolution [15], directly link RM dynamics to the interfacial shear, identify its 

invariance properties, and reveal the interfacial and multi-scale character of RM dynamics. Our theory 

finds substantial differences between RM and RT dynamics with variable accelerations [14], excellently 

agrees with existing observations, and elaborates new diagnostic benchmarks for experiments and 

simulations. 
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RMI with variable acceleration commonly occur in fluids, plasmas, materials [7-14]: RMI leads 

to appearance of light-years-long structures in clouds of molecular hydrogen, influences formation of hot 

spot in inertial confinement fusion, controls combustion processes in scramjets, and drives materials’ 

transformation under impact in nano-fabrication. In these vastly different physical conditions, RM flows 

have similar qualitative features of their evolution. The post-shock RM dynamics is a superposition of 

two motions, which are the background motion of the fluid bulk and the growth of the interface 

perturbations [1,2,6,16-19]. In the background motion, both fluids and their interface move as whole unit 

in the direction of transmitted shock; this motion occurs even for an ideally planar interface and is super-

sonic for strong shocks. The growth of the interface perturbations is due to impulsive acceleration by the 

shock; it develops only when the flow fields are perturbed; its growth rate is sub-sonic and the associated 

motion is incompressible [1,2,6,16-23]. RM unstable interface is transformed to a composition of small-

scale shear-driven vortical structures and a large-scale coherent structure of bubbles and spikes, where the 

bubble (spike) is a portion of the light (heavy) fluid penetrating the heavy (light) fluid. Small-scale non-

uniform structures appear also in the bulk, including hot and cold spots, high and low pressure regions, 

cumulative jets, checker-board velocity patterns [5,6,16-20]. Self-similar RM mixing develops, and 

energy supplied initially by the shock gradually dissipates [5,6,16-23]. While RM and RT flows are 

similar in many regards, there are also important distinctions [3-6,15,20]. RTI is driven by the 

acceleration, and it starts to develop when the flow fields and/or the interface are slightly perturbed near 

the equilibrium state. RT flows are free from the background motion. Interfacial RT mixing induced by 

constant acceleration accelerates, whereas interfacial RM mixing induced by impulsive acceleration 

decelerates [1-6,14-23]. 

RMI/RTI and RM/RT mixing are a challenge to study in theory, experiments and simulations 

[14-34]. In theory we have to develop new approaches for non-equilibrium multi-scale RM/RT dynamics, 

identify properties of asymptotic solutions, and capture symmetries of RM/RT flows [5,15,25-30]. 

Experiments have to meet tight requirements for the flow implementation, diagnostics and control 

[2,6,20-24]. Simulations have to employ highly accurate numerical methods and massive computations 

for capturing shocks, tracking interfaces, and accurately modeling small-scale processes over a large span 

of scales [16-19,30-34]. Besides, substantial span of temporal and spatial scales is required for bias-free 

interpretation of experimental and numerical data describing RM/RT evolution [14-34]. Significant 

success has been recently achieved in the understanding of RMI and RTI as well as RM and RT mixing 

[5,15,25]. Particularly, group theory approach has found a multi-scale character of nonlinear RMI and 

RTI and an order in RT mixing with constant acceleration, thus explaining the observations [5,15,25]. 

In realistic environments, RT and RM flows are usually driven by variable acceleration [8-14]. 

For instance, in supernova blast, inertial confinement fusion and nano-fabrication, accelerations are 
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induced by variable strong shocks [8-14,35,36]. Only limited information is currently available on RM 

and RT dynamics under these conditions [14]. An important case is acceleration with a power-law time-

dependence, since power-law functions may lead to new scaling properties of the dynamics and be used 

to adjust the acceleration’s time-dependence in applications [8-14,35,36]. For accelerations with power-

law time-dependence, early-time and late-time dynamics can be RM or RT type depending on the 

exponent of the acceleration power-law [14]. Particularly, the interfacial dynamics is driven by the 

acceleration and is RT-type for exponent values larger than -2, and driven by the initial growth-rate and is 

RM-type otherwise [14]. 

In this work we study the long-standing problem of RMI with variable acceleration for a three-

dimensional spatially extended periodic flow. We apply group theory to solve the boundary value 

problem involving boundary conditions at the interface and the outside boundaries and the initial value 

problem [5,14,15,25]. For early-time dynamics, we find the dependence of RMI growth-rate on the initial 

conditions and show it is free from the acceleration parameters. For late-time dynamics, we directly link 

the interface dynamics to the interfacial shear, find a continuous family of regular asymptotic solutions, 

and study the solutions stability. For each of the family solutions, the perturbed velocity field has intense 

fluid motion near the interface and effectively no motion in the bulk. We identify parameters of the 

critical, Atwood, Taylor and flat bubbles, including their curvature, velocity, Fourier amplitudes, and 

interfacial shear. The Atwood bubble – the fastest stable solution – has a quasi-invariance property 

suggesting that nonlinear coherent RM dynamics is set by the interplay of two macroscopic length-scales 

- the wavelength and the amplitude. We discuss connections of RM dynamics to the theory of plug flow 

in ideal fluids, and put forward a hypothesis on the role of viscous effects in the interfacial RMI. Our 

theory excellently agrees with existing observations, and elaborates new benchmarks for observations 

[6,8-14,20-23]. 

RM dynamics of ideal fluids is governed by the conservation of mass, momentum and energy 

   axvPEtExPxvvtvxvt iiij jjiiii 10,0,0
3

1
    

with spatial coordinates    zyxxxx ,,,, 321  ; time t ; fields of density, velocity, pressure and energy 

 EP,,,v , with  22v eE  and e being specific internal energy [14,35]. These equations are 

augmented with boundary conditions, including boundary conditions at the interface and at the outside 

boundaries of the domain, and with initial conditions prescribing initial perturbations of the flow fields in 

the bulk and at the interface [5,14,15,25-29,35]. 

To the leading order (i.e., for unperturbed interface and flow fields), the boundary conditions 

define the post-shock flow fields, including densities of the fluids, velocities of the transmitted and 

reflected shocks, and the velocity of the background motion of the fluids and the interface [16-19,28, 29]. 
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In the frame of reference moving in the z direction with the velocity of the background motion, boundary 

conditions at the interface and at the outside boundaries are 

         b,,arbitraryW,arbitrary,P, zz 10000   vvτvnv  

where  ...  denotes the jump of functions across the interface;  τn  are the normal and tangential unit 

vectors of the interface with   0,  τnn ;  t,z,y,x  is a local scalar function, with 

0  at the interface and 0  ( 0 ) in the bulk of the heavy (light) fluid marked hereafter with sub-

script  lh . Specific enthalpy is  PeW . Density jump at the interface is parameterized by the 

Atwood number    lhlhA   with 10  A  and        1001 hlA  as  [1-6]. 

Initial perturbations cause the instability to develop and non-equilibrium RM flow to occur 

[5,6,14-20]. The flow is periodic in the plane  yx,  normal to acceleration g, gg ., which is directed 

from the heavy to light fluid,  g,,  00g  along the z axis and adds to pressure term gz . The 

acceleration is a power-law function of time aGtg  , where a  is exponent,   ,a , G  is pre-

factor, 0G , and dimensions are 1dim a , 2dim  asmG . The acceleration can be due to an 

external force and/or be an effective acceleration due to variable velocity of the background motions 

induced by, e.g., variable shocks [14,20-36]. 

Initial conditions include initial perturbations of the interface and the flow fields with wavelength 

 and initial growth-rate 0v  at initial time 0t  [5,6,15,25]. For given   and 0v  for 2a , the dynamics 

has two time-scales,    21~  a
G G  and  00 ~ v ; at 2a  the time-scale is  00 ~ v , and 

value  G  parameterizes the acceleration strength [14,29]. We presume that initial time is 

 00  ,t G . For 2a  the time-scales are   10 G , and the fastest process is set by the 

acceleration; this is the acceleration driven Rayleigh-Taylor type dynamics. For 2a  the time-scales 

are   10  G ; the fastest process is set by the initial growth-rate; this is the initial growth-rate driven 

Richtmyer-Meshkov type dynamics. At 2a  a transition occurs from RT to RM type dynamics with 

varying parameter  G . This work is focused on the initial growth-rate driven RM dynamics with 

2a . Time is  00 0 t,tt . The cases of RT-type dynamics for 2a  and RT-RM transition 

at 2a  are considered elsewhere [14,29]. 

We employ group theory to solve the problem of RMI with variable acceleration [5,14,15]. This 

approach solves the nonlinear boundary value problem and initial value problems with account for the 

non-local and singular character of RM dynamics, employs canonical forms of Fourier series and spatial 
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expansions, and strictly obeys the conservation laws. See for details [5,14,15]. By using techniques of 

theory of space discrete groups (also known as Fedorov or Schoenflies groups), we first identify the 

groups which enable structurally stable dynamics, such as groups of hexagon p6mm, square p4mm, 

rectangle p2mm in 3D; group pm11 in 2D. We next apply irreducible representations of a relevant group 

to expand flow fields as Fourier series, and further make spatial expansions in a vicinity of a regular point 

at the interface. Governing equations are reduced to a dynamical system in terms of surface variables and 

moments. We solve the system in various asymptotic regimes [5,14,15,25,27].  

We focus on the large-scale coherent dynamics with scales ~  and presume that shear-driven 

interfacial vortical structures are small with scales   [5,14,15,25,27]. For convenience, we further 

transfer to the frame of reference moving with velocity  tv  in the z -direction, where   tztv  0  

and 0z  are the velocity and position of the bubble (spike) in laboratory reference frame. For large-scale 

coherent structure fluid motion is potential. For symmetry group p6mm, the velocity is    lhlh v , 

with              termscrosstfmcosmkzmkexpztt,z, h
m i

imh 







  



 0
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1

3 rkr  and lh   

upon zz,~,lh mm  . Here  y,xr , ik  are the vectors of the reciprocal lattice with 

ijji  2ak , ia  are the spatial periods in the  y,x  plane,  34  ii k, ka , 321 ,,j,i  , 

 mm
~  are the Fourier amplitudes of the heavy (light) fluid,  lhf  are time-dependent functions, and 

m  is integer. Fluid interface is  t,y,xzz *  with  





1

2

N

N
N

* termscrosstz r , where N  

are surface variables, 1  is the principal curvature at the bubble (spike) tip, N  is approximation 

order [5,15,25,27]. 

To the first order 1N , the dynamical system is [5,15,25,27,38] 

     

  vMMgMMMgMMM

anyMMMMMM

lh

lh






 



00
2
101

2
101

112121

~,8~~4~84

2,~,04~~2,042




 

where  M~M  are the heavy (light) fluid moments,    





0m

nn
nnnn termscrossmk~M~M , each of 

which is an infinite sum of weighted Fourier amplitudes, and the interface is  22* yxz  . 

With length-scale 1k  and time scale   100
 kv , for early-time dynamics,    0tt , 

only first order harmonics are retained in the expressions for moments     21011 ,,n,~kM~M n
nn  . 
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For a nearly flat interface the solution is            dtkdkvCtCAk   4,ln2 12
1  

where  21C  are integration constants defined by initial conditions         10000  ktv,kt,tv,t . 

For                0000000 2,4,~ ttvAtvvtttkvkttt  suggesting that positions 

of bubbles (spikes) with  0000  v,v,  are defined by the initial velocity field, with bubbles 

(spikes) formed for    0000 vtv . For 2a , with 0  and G0 , the instability growth-

rate is independent of the acceleration parameters , since the contributions of acceleration-induced terms 

to early-time dynamics are negligible,          dtkdkv,stAIt~k s
GsG   421 , 

where pI  is the modified Bessel function of the p th order and   22 as  [14,38,39]. 

At late times, spikes are singular (for 10  A  the singularity is finite-time) and bubbles are 

regular [5,14,15,25,27]. For t  regular asymptotic solutions depend on time as 1~~,, tMMv  and 

k~ , and higher order harmonics are retained in the expressions for moments. Group theory is further 

applied to solve the closure problem, find the family of regular asymptotic solutions, and identify 

properties of nonlinear RMI [5,14,15,25,27]. Note that for nonlinear dynamics the acceleration leads to 

time-dependence of regular asymptotic solutions   2a
Gt~M~,M,v  ; for 2a , G 0 , these 

contributions are negligible when compared to 1~~,, tMMv  induced by the initial growth-rate [14]. 

For the family of nonlinear regular asymptotic solutions, the bubble velocity 0v  depends on its 

curvature ,, 0  at 1N  as 

                  akAkkkkAktv 36494864964523
12221    

The function domain is    k,, crcr 830  , and the range is  maxmin v,vv , achieving value 

0minv  at cr  and value maxvv   at 0 . The velocity of RM bubbles is a monotone 

increasing function on curvature,   0v  for  0,cr . The fastest solution corresponds to a flat 

bubble with   03  maxmax ,Aktv . The multiplicity of nonlinear solutions is due to the singular and 

non-local character of RM dynamics. The number of the family parameters is set by the flow symmetry. 

For group p6mm the dynamics is highly isotropic,  22 yx~z*  , and interface morphology is captured 

by principal curvature  , Figure 1 [5,14,15,25,27,38,39]. At 1N , the Fourier amplitudes are 

     kkv  834141 - ,      kk  83812  ,      kkv~  834141   

and      kkv~  83812 - . 



 

7 

In higher orders, 1N , solutions can be found similarly. For 1N  solutions exist and 

converge with increase in N . For  0,cr  the lowest-order amplitudes 11  ~,  are dominant, and 

the values of mm
~,   decay with increase of m . For cr~   the convergence no longer holds [5,15]. 

The multiplicity of nonlinear regular asymptotic solutions is due to the presence of shear at the 

interface, Figure 1. We define shear   as the spatial derivative of the jump of tangential velocity at the 

interface,  yx , with       yxv yxyx  , and find that 11 M~M   near the bubble tip. 

Shear   depends on the bubble curvature   as 

             bkAkkkAt 3649486452312
1221    

with    12649 21 kkv   . For  0,cr , shear   achieves maximum value max  at 

0 max , and minimum value min  at min̂ . For 1AA* , value min̂  is 0 mincr
ˆ  

with     8223 kˆ
min  at 1A  and  kˆ

min 83  at 92 *AA . For *AA 0  value 

is crmin
ˆ  . To conveniently describe the solutions for 10  A  we define the minimum value min  

as minmin ̂  for 1AA*  and crmin   for *AA 0 . For  0,min  the bubble velocity v  

is the 1-1 function on interfacial shear  maxmin ,,  , and     264912 kkv  . We present 

elsewhere cumbersome function  v . 

Our theory links with one another the interface morphology, shear and velocity in nonlinear RMI, 

and resolves the long-standing problem of multiplicity of asymptotic nonlinear solutions, Figure 1 

[14,15,37,38]. Our theory further provides the value of the growth-rate of shear-driven Kelvin-Helmholtz 

instability (KHI) as  ~KHI . Since 1 t~  this suggests that the development of KHI is suppressed in 

a vicinity of RM bubbles with variable acceleration, in excellent agreement with experiments [6,14-20]. 

Consider some special solutions in the family. We call these solutions the critical bubble, the 

Taylor bubble, the Atwood bubble, and the flat bubble, Figure 1. For the critical bubble with curvature 

 kcr 83 , the solution is 120  t,v crcr  and crcrkv  0 , and is independent of the Atwood 

number. The family has a solution which we call the ‘Taylor bubble’ since its curvature is the same as in 

Ref.[4] except for the difference in the wavevector value. For the Taylor bubble the solution is 

 kT 81 ,      AAktvT 5334  ,    AAtT 5336   with   TTkv  32 . At 1N  for 

the Taylor’s bubble the Fourier harmonics   02  T  is zero; for 1N  this property does not hold. The 

Taylor’s bubble velocity is close to that of the so-called Layzer-type bubble, with which experiments and 
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simulations tend to compare well [40]. We call the fastest solution  maxv,  the ‘Atwood bubble’ to 

emphasize its dependence on the Atwood number,    maxA v,v,  . For the Atwood bubble 

   maxA ,v,,v,   with   AAkv  43  and AtA 4 . For the flat bubble, 0 f , the solution is 

the same as for the Atwood bubble,    Af ,v,,v,  . For the Taylor and Atwood bubbles velocities 

and shears of are decreasing functions of the Atwood number, in agreement with available observations 

[6,20-22,29,34]. 

Analysis of asymptotic stability of solutions, with small departures    t,~  and (un)stable 

solutions for      0Re0Re  , finds that at 1N  the family solutions are stable; the fastest stable 

solution    A,v,~,v,   is the physically significant solution, Figure 1. This solution has the 

(quasi) invariant value         1225134
122 



Addvvt

A
A . 

This (quasi) invariance implies that nonlinear RM dynamics is multi-scale, with two macroscopic 

length scales contributing – the wavelength and the amplitude [5,15,25]. The multi-scale character of the 

dynamics can be understood by viewing RM coherent structure as a standing wave with the growing 

amplitude [35]. The multi-scale character of nonlinear RMI is consistent with the existence of amplitude 

scale in early-time RMI, at which the maximum initial growth-rate of RMI is achieved [18]. Our theory 

further finds that non-equilibrium RM dynamics with variable acceleration is essentially interfacial: It has 

intense fluid motion in a vicinity of the interface, effectively no motion away from the interface and 

vortical structures produced by shear at the interface, Figure 2. This velocity pattern is observed in 

experiments and simulations, in excellent agreement with our results [16-24]. 

Similarly, solutions can be found for other symmetries in 3D and 2D flows. 3D flows tend to 

conserve isotropy in the plane. 3D highly symmetric dynamics is universal, except for the difference in 

the wavevector value. For 3D low symmetric dynamics with group p2mm, there is a two-parameter 

family of regular asymptotic solutions, and only nearly isotropic bubbles are stable. Dimensional 3D-2D 

crossover is discontinuous [5,15,25]. 

Our theory finds that in RMI with variable acceleration, nonlinear bubbles decelerate and flatten. 

Flattening and deceleration of RM bubbles is observed in experiments and simulations, in excellent 

agreement with our results [5,6,15-20]. According to our theory, in nonlinear RMI with variable 

acceleration flattened bubbles move quicker and decelerate stronger when compared to curved bubbles: 

Since bubble velocity decays with time as ktC~ , the deceleration is 
2ktC~ . According to our 

results, the Atwood and Taylor (as well as Layer-type) RM bubbles move quicker and have larger 

interfacial shear for fluids with similar densities rather than for fluids with very different densities 
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[6,15,20,29,34,39]. This result has clear interpretation: for fluids with similar densities shear-driven 

interfacial vortical structures are more intense leading to stronger energy dissipation, stronger 

deceleration and larger bubble velocity when compared to the case of fluids with very different densities. 

Our analysis is focused on large-scale dynamics presuming that interfacial vortical structures are 

small. This assumption is applicable for fluids very different densities and with a finite density ratio. For 

fluids with very similar densities  0A  other approaches should be employed [40]. While for fluids 

with very similar densities our theory is no longer applicable, a singular character of the velocity of the 

fastest stable Atwood bubble for  0A  indicates that for  0A  and t  the bubble velocity 

may decay quicker than inverse time [5,6,15,20,25,38]. 

Singular character of the interfacial shear for the Atwood bubble at  0A  is consistent with 

the theory of plug flow in an ideal fluid, in which an infinitely large shear occurs in a vicinity of a flat 

immovable boundary [35,41]. The singularity of the plug flow is associated with absence of a boundary 

layer in ideal fluid and is akin to the d’Alembert's paradox [41]. Just as the d’Alembert's paradox is 

resolved by Prandtl’s discovery that flow at high Reynolds number is a singular perturbation problem 

[41], an attempt to model RM dynamics with variable acceleration at any density ratio may require us to 

accurately account for the viscous effects. We address the testing of this hypothesis to the future. We note 

that the importance of viscous effects in RM dynamics is qualitatively consistent with the recently found 

sub-diffusive (i.e., slower than diffusion or dissipation) character of self-similar RM mixing with variable 

acceleration, in which larger velocities correspond to smaller length scales [14]. 

According to our results, for variable acceleration with 2a , RM dynamics depends on the 

initial conditions and is independent of the acceleration. Hence, one can scrupulously study the effect of 

initial conditions on RM dynamics by analyzing properties of unstable interface for various accelerations 

[8-14]. Note that accurate quantification of nonlinear RMI in observations may be a challenge, since the 

interface velocity is usually ~0.1% of the largest velocity scale in the post-shock fluid system, and since 

the interface velocity is a power-law function of time, which requires substantial span of temporal and 

spatial scales for accurate diagnostics [15-20]. In addition to the interface velocity, we elaborate theory 

benchmarks which have not been discussed before. These are the fields of velocity and pressure, interface 

morphology and bubble curvature, interfacial shear and its link to the bubble velocity and curvature, and 

spectral properties of velocity and pressure, Figure 1,2, Eqs.(1-3). By diagnosing dependence of these 

quantities on the density ratios, flow symmetries, initial conditions, and accelerations, by identifying their 

universal properties, and by accurately measuring departures of data in real fluids from theoretical 

solutions in ideal fluids, one can further advance knowledge of RM dynamics in realistic environments, 
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better understand RM relevant processes in nature and technology, and improve methods of numerical 

modeling and experimental diagnostics of RM dynamics in fluids, plasmas, materials. 

To conclude, we have solved the long-standing problem of RMI with variable acceleration by 

applying group theory. We have directly linked the interface velocity, morphology and shear, revealed the 

interfacial and multi-scale character of RM dynamics, achieved excellent agreement with available 

observations, and elaborated new theory benchmarks for future experiments and simulations. 
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Figure captions 

Figure 1: One parameter family of regular asymptotic solution for 3D flow with group p6mm at 

some Atwood numbers. (a) bubble velocity versus bubble curvature; (b) bubble velocity versus interfacial 

shear; (c) interfacial shear versus bubble curvature; (d) stability of regular asymptotic solutions. 

Figure 2: Qualitative velocity field in laboratory reference frame for the Atwood bubble near the 

bubble tip (a) in the volume; (b) in the plane. 
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