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Abstract

Explicit exponential stability tests are obtained for the scalar neutral differential equation
() — a(t)i(g(t) = = > bp(t)x(he(t),
k=1

together with exponential estimates for its solutions.

Estimates for solutions of a non-homogeneous neutral equation are also obtained, they are valid
on every finite segment, thus describing both asymptotic and transient behavior. For neutral dif-
ferential equations, exponential estimates are obtained here for the first time. Both the coefficients
and the delays are assumed to be measurable, not necessarily continuous functions.
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1. Introduction

In recent papers [3, 4] we obtained new exponential stability conditions for a scalar linear neutral
differential equation

() —a(t)i(g(t)) = —b(t)z(h(t), t = to. (1.1)

Here the functions a, b, g, h are assumed to be Lebesgue measurable, b is essentially bounded on
[to, 00), a satisfies
]a(t)] <A< 1, t >t (1.2)

The condition on the delay in the neutral term
mes E =0 = mes g (E) =0, (1.3)

where mes FE is the Lebesgue measure of the set F, guarantees that u(g(t)) is properly defined
and is Lebesgue measurable for any measurable u. The delays in both terms of (LI]) are variable
but bounded: for some 7 > 0 and 0 > 0,0 <t —g(t) <o, 0<t—h(t) <7 for t > ty. All the
functions are considered in the space Lo, of Lebesgue measurable essentially bounded functions
with the essential supremum norm || - ||; on a certain segment J C [tg — max{7, o}, c0).
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Proposition 1. [3] If at least one of the following conditions holds

1 a
0< b0 < b(®), [8lltn.o0)™ < =+ Naltgoo) + Bl || 5] <1 (1.4)
e [to,oo)
Bl 11,00 -
a [Bllzo,cc) —i—Hb b <1, where by(t):= min{b(t),i}; (1.5)
b1 [to,00) 1- HaH[to,oo) b [to,00) Te
a 1 +
bl oo | || + <t—ht—7> <1 —=|lalli, oo)s 1.6
oMo | 5], O Wime) |, el 00 (1.6)

where ut = max{u,0}, equation (L1) is uniformly exponentially stable.

Proposition 2. [4, Theorem 1(a)] Assume that 0 < ag < a(t) < Ag <1, 0 < by <b(t) < By and
O'A(]Bg(l — ao)
TBy+ —F———5—

< 1— Ay. Then equation (I1l) is uniformly exponentially stable.
(1 — Ao)?bo

In the present paper, we consider a generalization of (II) to the case of several delays in the
non-neutral part

(1) — a(®)i(g(t) = = > be()z(hx (1)) (1.7)
k=1

We refer the reader to the review of known stability results for neutral equations in [3]. For a
particular case of constant coefficients and delays sharp results are obtained in [2]. The recent
paper [5] contains exponential estimates for solutions of delay differential equations without the
neutral term (a(t) =0 in (7)), see also [10]. The purpose of the present paper is two-fold.

1. Investigate stability of (7)) and get sufficient conditions which involve all the delays in the
non-neutral part. Among other results, we obtain a new exponential stability test which has
a very simple form and can be applied to a wide class of neutral equations.

2. Develop explicit exponential estimates for solutions of (I7) and its non-homogeneous version,
dependent on the right-hand side and the initial functions. These inequalities are valid on
every finite segment, thus both describing asymptotic and transient behavior. For neutral
differential equations, exponential estimates are obtained here for the first time.

Note that our assumptions refer to a half-line [¢y, 00), which is essential for exponential stability
tests. However, once all the parameters are considered on a finite segment [tg, t1], solution estimates
on this interval remain valid. Only few asymptotic formulas for solutions of neutral differential
equations are known, see [, 12, [13] and references therein, and the present paper fills this gap.

The paper is organized as follows. Section 2 includes some definitions and auxiliary results,
among them an estimate for the fundamental function of an equation with a non-delay term.
Section 3 is the main part of the paper where we obtain stability tests and develop solution estimates
for equation (7)) and its non-homogeneous version. Section 4 presents illustrating examples and
discussion.



2. Preliminaries

We consider scalar delay differential equation (7)) where, similarly to (L)), a,bg,g, hy are
Lebesgue measurable, a satisfies (L2]) and by < by(t) < By for t >ty > 0, implication (L3]) holds
and there are o > 0, 7, > 0 such that 0 <t —g(t) <0, 0<t— hi(t) <7 for t > tg,i=1,...,m.

Along with (7)), we consider an initial value problem for a non-homogeneous equation

m

() — a(t)i(g(t) + > bu(t)x(hi(t)) = f(1), t > to, (2.1)

k=1

a(t) = o(t), t <to, &(t) =1(t), t <to, (2.2)

where f : [tg,00) — R is a Lebesgue measurable locally essentially bounded function, ¢ : (—oo, tg] —
R and ¢ : (—o0,t9) — R are Borel measurable bounded functions.

Further, we assume that the above conditions hold for (L7) and (2.1))-(22]) without mentioning
it, as well as similar conditions for all other neutral equations considered in the paper.

Definition 1. A locally absolutely continuous on [tg,00) function x : R — R is called a solution
of problem (21)-(Z2) if it satisfies equation (Z1) for almost all t € [ty,00) and the equalities in
(223) fort < tg. For each s > tg, the solution X (t,s) of the problem

(1) — al)i(g(t)) + 3 bp(O)z(h(t) = 0, 2(t) =0, &(t) =0, t <s, a(s) =1 (2.3
k=1

is called the fundamental function of equation (1.7). We assume X(t,s) =0 for 0 <t < s.

Definition 2. We will say that equation (1.7) is uniformly exponentially stable if there exist

M > 0 and v > 0 such that the solution of problem (21))-(2.2) with f = 0 has the estimate

lz(t)] < Me " 1) sup (o) + [¢(t)]), t > to, where M and y do not depend on to > 0, @
te(—o0,to]

and . The fundamental function X (t,s) of equation (I.7) has an exponential estimate if it

satisfies | X (t,s)| < Mge~10(t=5) for some tg >0, My >0, v >0 andt > s > ti.

For a fixed bounded interval J = [to, t1], consider the space L [to,t1] of all essentially bounded
on J functions with the norm |[ly|[; = esssup,c; |[y(t)], also [|flljty,00) = €SSSUPsy [f(E)], 1 is
the identity operator. Define a linear bounded operator on the space L[to,t1] as (Sy)(t) =

>t . . .
{ g(t)y(g(t)), ggi; - to’ Note that there exists a unique solution of problem (2.1I)-(2.1), see, for

) 0-
example, [1], and it can be presented as

t

to+o
z(t) = X(t to)zo+ [ X(ts)[(I - 5)_1f](8)d8+/ X(t,9)[(I = 8)~ a()(g(-))](s)ds

m o rto+Tk 0 o
X [T X - ) et O)Is)ds,
k=1"t0
(2.4)
where 1(g(t)) = 0 for g(t) > to, @(hr(t)) = 0 for hi(t) > to, and in Le[to,t1], for any t; > to,
(=871 < : (2.5)

1- ”CLH[to,oo) '



Let us start with a uniform estimate
Y(tLs)| <K t>5>1 (2.6)

for the fundamental function Y (¢, s) of the equation with a non-delay term

§(t) —ao()g(g(t)) = e(t)y(t) = D di(t)y(hu(1)), t = to, (2.7)
k=0
where 0 <t —g(t) <o, t— hg(t) <7k, k=0,...,m. Denote d(t) := zmzdk(t).
k=0

Lemma 1. If [Jao|[s,00) < 1, there is an ag > 0 such that d(t) — c(t) > ag and

mold
Ky = (HCH[to,oo) + Zk:O || kH[to,oo)) (‘ ) <1 (28)
[t07oo)

1 — {|aol[ftg,00)
then the fundamental function Y (t,s) of (2.74) satisfies (2.6) with K = (1 — Ko)~*.

m
+ Z T
[t()700) k=0

dy,
d—c

ag
d—c

Proof. For brevity of notations, we set y(t) = Y (t,t9). Then, y satisfies (2.7]), where the initial
value is y(tp) = 1, with the zero initial functions. Let J = [tg,¢1], where t; > ty is arbitrary.
Equality (Z7)) implies the estimate, due to (2.3]),

el + S Ikl o
umm( o) & ko [kl >)uqu. (2.9)
1 Hao”[to,oo)

Further, since d(t)y(t) — S5 di ()y(h(t)) = Y5 di(®)[y(t) — y(he(t))], from [T),

§(t) = —=[d(t) — ey (1) + ao()g(g(t) + Y di(t) /h y(&)de.

k=0 k()

Integrating from tg to t, we get

t
(1) = R O=OME [ o L g 5) — ()]

to

Caols) NS () [T .
x [d(s) _C(S)y(g( ))+Zd(s)—c(s) /hk(s) y(§)d§] ds.

k=0
Therefore, by (2.9) and the definition of Ky in (28], we have

m
+ Z Ty
[t()700) k=0

ag
d—

d—

lylls <1+ (' ) 9lls <1+ Kollyll,-

[t07oo)

Then ||Y (¢,t0)|l; < (1 — Ko)~!, and the expression in the right-hand side does not depend on .
Hence [|Y (2, t0)ljt9,00) < (1 — Ko)~!. Again, the same inequality holds with ty replaced by any
s > to. Thus estimate (2.6]) holds. O



3. Main Results
We start with an exponential estimate which later will be used to analyze exponential stability.

Theorem 1. Assume that there exist constants A > 0 and o« > 0 such that

Ze)‘(t b (¢ bk ) + Aa(t)e Mt=9®) _ X >, t > o, e)‘UHaH[tO’oo) <1, (3.1)
)‘—’_kzl e)\Tk”ka[to,oo) +)‘e>\o”aH[to,oo) f: bk

M = = — H (14 Ao)er + — e)‘Tka> <1. (3.2)
1-e Ha” [to,00 ( [to,00) k=1 [t0,00)

Then for the solution of problem (2.1), the following estimate is valid
—A(t—to) et -1

"T(t)’ < Moe ‘.Z'(to)‘ + )\(1 — ||aH[t0,oo)) ”CLH[to,oo)”wH[to—o‘,to]
- e — 1 M, (3:3)
+ bk oo) [P —T + 0 f ’

kzz:l )\(1 — HaH[to,oo)) H ”[to, )H H[to &to] )\(1 — ||aH[t0,oo)) H H[to,t}

where Mo = (1 — M;)~!
Proof. Consider first the case f = 0. After the substitution z(t) = e~ *(¢=%0) 2(¢) into (2.I)), we get
3(t) — a(t)eMIO) 2(g(1)) = Az(t) — A9 g )= > Dy () 2(hi (). (3.4)
k=1

Equation (3.4 has the form of (2.7)) with

ap(t) = a()er IO () = X, do(t) = Aa(t)eMIO) | ho(t) = g(t), di(t) = Oy, (1),

k=1,...,m. Again, d(t) = de(t), in (BI) we have p=d — c.
k=0
Then

do
d—c

dg
d—c

ag
d—c

a a

h )\e)\o7
Pllite,00)

|
[t()’oo)_ p

e)\o

[t07oo)

Ak =1,...,m,
[t07oo)

9

[to,oo)_ [to,OO)_

HCH[to,oo) +Zzn:0 HdkH[to,oo) < )‘+Zk 16)\Tk‘|bk||tooo +)\€)\0Ha||tooo
L — {lao|lzy,00) - 1 — e lall 4,009
Let Z(t,s) be the fundamental function of (84]). Inequalities (81)) and (B.2) imply 21]). B

Lemma(ll |Z(t,s)| < My. If X(¢,s) is a fundamental function of (2.1) then for X (¢,s) the expo-
nential equality X (¢,s) = e M=) Z(t, 5) is valid. Hence | X (t,s)| < Mpe M=),




By (24), the solution z of (ZI))-(22]) satisfies
to+o
|(8)] <[X (2, to)] |zol +/t X ()T = 8)"  als)l [¥(g(s))lds

m to+Tk
+Z/ X (t,8)| (T = S) 7 br(5)| [o(Rr(s))| ds
k=1""o

—A(t— M, Nt o o
SMOC )\(t to)‘x(to)‘ + )\(1 Haj’[ )) Ha”[to,oo) (e A(t to )_e )\(t to)) H'l/}”[to_o_’to}
- tp,00
Mo . —N(t—to— A\(E—t
- D bllizg oy (7707 = €770 ) llgg—r, 1)
A (1 - ||aH[t0,oo)) 1 [to,00) ( ) [to—Tkto]

which implies (3.3) with f = 0.
For the general case we apply (24)), the estimate for X (¢,s) and the inequalities
t

X(t,s)(I = 8)"'(f(s)) ds

to

My
<
A (1 - ”CLH[to,oo)

) £ t0,1-

O

From continuity of p in A, where p is defined in (B1]), Theorem [ immediately implies the
following exponential stability test.

m

Theorem 2. Assume that for some o > 0, b(t) := Zbk(t) > a, [la|lpy,00) <1 and

k=1
mog - m
<Zk_1 11081l )) Hg‘ Y on bi -1
1 - ”CLH[to,OO) b llfto,00) =1 b [t0,00)
Then equation (I.7) is uniformly exponentially stable.
1

m
and me’k < 1-2[a||4y,00)- Then
k=1

Corollary 1. Assume that by, > 0 are constants, ||a||j,,) < 3
equation (1.7) is uniformly exponentially stable.
Consider (LI which is equation (LT) for m = 1.

Corollary 2. Assume that for some a > 0, b(t) > « for any t > to, ||lallj,,00) < 1, and

(I

Then equation (I1l) is uniformly exponentially stable.

+T) Blloser < 1~ lalliooo-
[t07oo)



4. Examples and Discussion

To compare known exponential stability results obtained in |3, 4] and the test obtained in
Theorem 2 consider equation (LI).

Let us illustrate our results with an example where Theorem [2] implies exponential stability,
while Propositions [[land 2l fail. If anyone of assumptions (L4)-(L&) holds, conditions of Corollary 2]
also hold. However it is possible (see Example [I) that all conditions of Proposition [I fail, but
conditions of Corollary 2] hold. The paper [3] also studies equation (7)) with several delay terms.
Exponential stability tests in [3] depend on the greatest delay 7 = max{r;} with the assumption
that bg(t) > 0. Theorem [Il depends on all delays 7, without any assumption on the sign of by ().

Conditions in Proposition 2] unlike in Corollary Bl depend on the delay of a neutral term. So
for small o Proposition [2is better than Corollary 2, but for large o, Corollary 2lis better (see again
Example [l below).

Example 1. Consider the equation

z(t) — 0.152(t —0) = —x <t - é —0.1sin t> , 0>0. (4.1)
Here t — h(t) = L + 0.1sint < 7:=1+0.1 > 1. Conditions (I.4)-(I18) of Proposition [ fail, but
conditions of Corollary[d (m = 1) hold. Hence by Corollary[dl equation (4.1)) is exponentially stable.
Assumptions of Proposition [2 are satisfied for equation ({.1]) if o < 2.165. Thus, for o > 2.2, say,
o = 3, the results of Corollary (2 lead to exponential stability of (4.1) while Propositions [ and
cannot establish this result.

We omit here comparison with other known stability results since [3] contains this part. Most
of these results are for autonomous equations, or equations with a non-delay term, see for example
[8,19, [11]. As we mentioned earlier, we are not aware of exponential estimates for solutions for
neutral differential equations. Exponential estimates for solutions of delay differential equations
without a neutral term can be found in recent paper [5]. The present paper partially generalizes
the results obtained in [5] to the neutral case.

Let us illustrate exponential estimates for a solution of equation (4J]) with either constant or
variable o.

Example 2. Consider the initial value problem

1

#(t) — 0.153(t — 0.5) = —a (t — 2 _0dsint), t>0,
e

x(t) = cost,z(t) =sin2t + 2, t < 0,2(0) = 1.

(4.2)

1
We apply Theorem[dl, where m = 1, a(t) = 0.15, b(t) =1, 0 = 0.5, E—O.l ~ 0.2679 < t—h(t) <1 =

1
— 4+ 0.1 = 0.4679. Thus inequality (31]) holds for A\ = 0.1 with M; ~ 0.96, My < 25.61. Hence for
e

the fundamental function of the equation in (Z.3) we have an estimate | X (t,s)| < 25.61e01(t=9)
t > s> 0. Next, we have for the initial conditions ¥(t) = sin2t+2, p(t) = cost, ||¢|| = 3, ||¢] = 1.
By (33), for the solution of problem ({{.3) we have the following estimate

2 (t)] < 42.4e7 0 (4.3)



see the comparison to the numerical solution in Fig. 1, left. Next, consider variable o

1

z(t) — 0.152(t — 2.7 — 0.3cos t) = —x (t — ——0.1sin t> , >0,
e

x(t) = cost,z(t) =sin2t + 2, t < 0,z(0) = 1.

(4.4)
All the parameters are as above, only instead of o = 0.5 we have 2.4 <t — o(t) < 3. Inequality
(31)) holds for A = 0.06 with My < 25.5. In this case,

|2(t)| < 54.5e006, (4.5)

see the comparison to the numerical solution in Fig. [, right.

le+10

100000

solution of (4.4)‘ +
,,,,,,,,,,,,,,,, 54.5.exp(-0.06 X)_ -~

solution of (4.2‘) + _
14 T B 424 exp(-0.1x) ==z 3 15

lel0F 105 |
1e-20 F e
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1e-70 I I I I 1e-30 I I I I
0 20 40 60 80 100 0 20 40 60 80

t t

Figure 1: The absolute value of the numerical solution of (£2]) compared to estimate (L3)) (left)
and the numerical solution of (44 compared to estimate (4.5]) (right), with the logarithmic scale
in z.

Finally, let us state possible directions for further research extending the results of the present
paper.

1. Obtain explicit estimates of solutions for nonlinear neutral differential equations.

2. Extend the estimates of solutions to a vector DDE, or to higher order neutral equations,
for recent results on third order neutral equations see [7]. Consider other types of neutral
equations, such as equations with a distributed delay, and stochastic differential equations.

3. In this paper, we presented pointwise estimates. It would be interesting to obtain estimates
in an integral form.

4. In Corollary [ the right-hand side is equal to 1 — 2||a|| implying ||a|| < 3. Can we extend the
results to [ja|| € (0.5,1)7

5. Derive exponential estimates dependent on the neutral delay o = esssup;s, (t — g(t)) for

problem (Z.1])-([22]).
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