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On the refinement matrix mask of interpolating Hermite splines

Lucia Romania, Alberto Viscardia,∗

aDipartimento di Matematica, Alma Mater Studiorum Università di Bologna,
Piazza di Porta San Donato 5, 40126 Bologna, Italy

Abstract

We propose a new computational approach for constructing the refinement matrix mask of interpolating
Hermite splines of any order and with general dilation factor. Our strategy exploits the refinability properties
of cardinal B-splines with simple knots and simplifies the constructive procedures proposed so far.

Keywords: Cardinal Hermite Spline Interpolation; Cardinal B-Splines; Vector Subdivision; Refinement
Matrix Mask; Arbitrary Dilation Factor

1. Introduction

Hermite subdivision schemes with dilation factor m ∈ N\{1} form a special subclass of vector subdivision
schemes which started to be investigated in the early 90’s (see, e.g., [3, 4, 7, 8]) but is still subject of recent
research [1, 2, 5, 6, 10]. The distinctive feature of Hermite schemes is the fact that the sequence of vector data

p[j+1] = { p[j+1]
k }k∈Z, generated at refinement level j+1 (j ∈ N0) by the application of a subdivision matrix

A[j] to the previous data p[j] so that p[j+1] = A[j]p[j], contains vectors p
[j+1]
k = [ p

[j+1]
k,0 , . . . , p

[j+1]
k,n ]T ∈ Rn+1

(n ∈ N0 := N ∪ {0}) whose components correspond to the evaluation at m−(j+1)Z of a certain function and
its derivatives up to order n (see, e.g., Figure 1).

In the present paper we investigate Hermite subdivision schemes capable of generating, in the limit,

interpolating Hermite splines. Precisely, for any given initial sequence of vector data {p[0]
k ∈ Rn+1}k∈Z, the

vector-valued limit function f = [f0, . . . , fn]T ∈ C0(R,Rn+1), linear combination of the shifts of the basic

limit functions {φ[0]0,s}ns=0 of the scheme, is formed by a first scalar-valued function f0 ∈ Cn(R) which is a

polynomial spline of degree 2n+1 satisfying fs(k) = f
(s)
0 (k) = p

[0]
k,s, for all k ∈ Z and s ∈ {0, . . . , n}. For any

arbitrary dilation factor m and order n, such a Hermite scheme is described by the finite matrix sequence
{Ak ∈ R(n+1)×(n+1)}m−1k=1−m which is called the refinement matrix mask and is the building block to define

the subdivision matrices {A[j]}j∈N0 .
The construction of such a refinement matrix mask is already known in the literature for m = 2, n ∈ N0.

The authors in [7] constructed the matrices {Ak}k=−1,0,1 by introducing the transformation matrices HL

and HR yielding {Ak = HLÃkHR}k=−1,0,1 with {Ãk}k=−1,0,1 the refinement matrix mask of degree-(2n+1)
B-splines with knots of multiplicity n+ 1 derived in [9]. An alternative approach, proposed more recently in

[10], constructs explicitly the degree-(2n+1) polynomials defining the basic limit functions {φ[0]0,s}ns=0 on the
intervals [−1, 0] and [0, 1] which cover their supports. The refinement mask {Ak}k=−1,0,1 is then obtained
from the refinement equation, exploiting the evaluation of those polynomials.

The goal of our work is to provide an easier construction of the refinement matrix mask of interpo-
lating Hermite splines for any arbitrary order and dilation factor, by exploiting the refinability properties
of degree-(2n + 1) cardinal B-splines with simple knots. In Section 2 we recall basic facts about vector
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subdivision schemes, in Section 3 we review the main properties of the subclass of interpolating Hermite
spline subdivision schemes and finally, in Section 4, we present our novel construction.
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Figure 1: The application of the Hermite spline scheme in Example 4.1 (m = 2, n = 1) to the initial data p[0] = {p[0]
k ∈ R2}k∈Z

with p
[0]
−1 = [2, 1]T , p

[0]
0 = [1, 0]T , p

[0]
1 = [3,−1]T and p

[0]
k = 0 for k 6∈ {−1, 0, 1}. The first column represents the initial data

p[0] over Z. The second and the third columns represent the data after one subdivision step (i.e. p[1] over Z/2) and after

two subdivision steps (i.e. p[2] over Z/4) respectively. The last column shows the two components of the vector-valued limit

function f(x) = [f0(x), f1(x)]T =
∑

s=0,1

∑
k∈Z

p
[0]
k,sφ

[0]
0,s (x− k), where f0 is a C1 cubic spline and f1 = f ′0 is a C0 quadratic spline.

2. Basic facts about vector subdivision schemes

A univariate (shift-invariant) vector subdivision scheme of order n ∈ N0 takes as input an initial sequence
of vector data (control points)

p[0] :=

[
· · ·

(
p
[0]
−1

)T
,
(
p
[0]
0

)T
,
(
p
[0]
1

)T
, · · ·

]T
, p

[0]
k :=


p
[0]
k,0
...

p
[0]
k,n

 ∈ Rn+1, k ∈ Z,

and, at each refinement level j ∈ N0, computes from p[j] the refined sequence of vector data p[j+1] by
applying the rules

p
[j+1]
h =

∑
k∈Z

A
[j]
h−mk p

[j]
k , j ∈ N0, h ∈ Z, (1)

for some dilation factor m ∈ N \ {1} and refinement mask {A[j]
k ∈ R(n+1)×(n+1)}k∈Z. Equation (1) can be

rewritten in matrix form as
p[j+1] = A[j] p[j] (2)

where the involved matrices A[j] (called subdivision matrices) are block m-slanted matrices defined by

A[j] :=



. . .
...

...
...

A
[j]
m−1 A

[j]
−1 A

[j]
−m−1

A[j]
m A

[j]
0 A

[j]
−m

A
[j]
m+1 A

[j]
1 A

[j]
1−m

...
...

...
. . .


. (3)
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The vector scheme in (1) is said to be convergent if and only if there exist continuous vector-valued functions

φ
[j]
k,s : R −→ Rn+1

x 7−→

ϕ
[j]
0,s(m

jx− k)
...

ϕ[j]
n,s(m

jx− k)

 , s ∈ {0, . . . , n}, j ∈ N0, k ∈ Z,

that, by introducing the matrix notation Φ
[j]
k (x) :=

[
φ
[j]
k,0(x), . . . , φ

[j]
k,n(x)

]
, satisfy the refinement equation

Φ
[j]
h (x) =

∑
k∈Z

Φ
[j+1]
k (x) A

[j]
k−mh, h ∈ Z. (4)

For any j ∈ N0, (4) can be rewritten in matrix form as

Φ[j](x) = Φ[j+1](x) A[j] with Φ[j](x) :=
[
. . . , Φ

[j]
−1(x), Φ

[j]
0 (x), Φ

[j]
1 (x), . . .

]
. (5)

For any input vector sequence p[0], a convergent vector scheme generates in the limit a continuous vector-
valued function f = [f0, . . . , fn]T that, in light of (2) and (5), fulfils f(x) = Φ[j](x) p[j], for all j ∈ N0. In
particular, for j = 0

f(x) =
∑
k∈Z

Φ
[0]
k (x)p

[0]
k =

n∑
s=0

∑
k∈Z

p
[0]
k,s φ

[0]
k,s (x) with fr(x) =

n∑
s=0

∑
k∈Z

p
[0]
k,s ϕ

[0]
r,s (x− k) , r = 0, . . . , n. (6)

f has the regularity of the least regular function among its components f0, . . . , fn. Due to (6), the n + 1

vector-valued functions φ
[0]
0,s(x) = [ϕ

[0]
0,s(x), . . . , ϕ[0]

n,s(x)]T , s ∈ {0, . . . , n} are called the basic limit functions
of the vector scheme and each of them is obtained by refining the initial sequence of vector data defined by

p
[0]
k,r = δk,0δr,s, r ∈ {0, . . . , n}, k ∈ Z.

Note that, when n = 0, the above description recovers the known results on scalar subdivision with dilation
factor m.

3. A short review of the subclass of interpolating Hermite spline subdivision schemes

The interpolating Hermite spline scheme of order n ∈ N0 is a special instance of convergent vector
subdivision scheme that, for any choice of m ∈ N \ {1}, generates interpolating Hermite splines of degree
2n+ 1. The following properties [5, 7] make it a special member of the class of vector subdivision schemes.

i) For all j ∈ N0, each matrix in the jth level refinement mask {A[j]
k ∈ R(n+1)×(n+1)}k∈Z satisfies

A
[j]
k = D−j−1 Ak Dj with D =


1

m−1

. . .

m−n

 ;

moreover, the refinement mask is compactly supported on [1−m,m−1]∩Z, i.e. Ak is the zero matrix
for k > m− 1 and k < 1−m.

ii) For all r, s ∈ {0, . . . , n},

ϕ[0]
r,s(x) =

dr

dxr
ϕ
[0]
0,s(x) and ϕ[j]

r,s(k) = δk,0 δr,s, ∀j ∈ N0, k ∈ Z.

In particular, the latter requires, for every j ∈ N0, A
[j]
0 to be the (n+ 1)-dimensional identity matrix

which implies A0 = D due to i).
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iii) For all s ∈ {0, . . . , n}, ϕ[0]
0,s ∈ Cn(R) is a polynomial spline of degree d = 2n+ 1.

Remark 3.1. Condition i) implies,

supp(ϕ[0]
r,s) ⊆ [−1, 1], ∀r, s ∈ {0, . . . , n}. (7)

Indeed, consider, for every j ∈ N0, k
[j]
L , k

[j]
R ∈ Z such that

p
[j]

k
[j]
L

, p
[j]

k
[j]
R

6= 0 and p
[j]
k = 0 for k < k

[j]
L ∨ k > k

[j]
R .

From (1) and i) one gets, for every j ∈ N0,

m ( k
[j]
L − 1 ) + 1 ≤ k

[j+1]
L and k

[j+1]
R ≤ m ( k

[j]
R + 1 ) − 1. (8)

Since the vectors {p[j]
k }k∈Z are attached to m−jZ, using (8) we have that, for f in (6),

n⋃
r=0

supp(fr) = lim
j→∞

[
k
[j+1]
L − 1

mj+1
,
k
[j+1]
R + 1

mj+1

]
⊆ lim

j→∞

[
k
[j]
L − 1

mj
,
k
[j]
R + 1

mj

]
⊆
[
k
[0]
L − 1, k

[0]
R + 1

]
.

As previously observed, for every s ∈ {0, . . . , n}, f = φ
[0]
0,s is obtained by p[0] satisfying p

[0]
k,r = δk,0δr,s,

r ∈ {0, . . . , n}, k ∈ Z, for which k
[0]
L = k

[0]
R = 0.

Remark 3.2. In light of ii) and iii), for any initial data p[0], f0 in (6) is a Cn spline of degree d and, for all
r ∈ {0, . . . , n},

fr(x) =
dr

dxr
f0(x) with fr(m−jk) = p

[j]
k,r, j ∈ N0, k ∈ Z. (9)

4. Constructing the mask of Hermite splines from cardinal B-splines with simple knots

Let Nd ∈ Cd−1(R) be the cardinal B-spline of degree d = 2n+ 1 supported on [−n− 1, n+ 1] and defined
over the knot vector {−n − 1, −n, . . . , 0, . . . , n, n + 1} with all simple knots. Nd satisfies the refinement
equation (see, e.g., [11])

Nd(x) =

(m−1)(n+1)∑
k=−(m−1)(n+1)

bk Nd(mx− k) (10)

where
1

m

(m−1)(n+1)∑
k=−(m−1)(n+1)

bk z
k = z−(m−1)(n+1)

(
1− zm

m(1− z)

)d+1

, z ∈ C, |z| = 1.

In light of (10), for any given sequence of control points c[0] = {c[0]k ∈ R}k∈Z, we can express the associated
spline as

f(x) =
∑
k∈Z

c
[0]
k Nd(x− k) =

∑
k∈Z

c
[j]
k Nd(mjx− k), j ∈ N0,

where c
[j+1]
h =

∑
k∈Z

bh−mk c
[j]
k , h ∈ Z. (11)

Thus, for all j ∈ N0, s ∈ {0, . . . , n}, y ∈ R,

1

msj
f (s)(m−jy) =

1

msj

ds

dxs
f(x)

∣∣∣
x=m−jy

=
∑
k∈Z

c
[j]
k N

(s)
d (y − k),

4



and, in particular,
1

msj
f (s)(m−jh) =

∑
k∈Z

c
[j]
k N

(s)
d (h− k), h ∈ Z. (12)

Now, in view of (9), we can interpret f (s)(m−jh) as the control point p
[j]
h,s for our Hermite scheme. Thus,

after left-multiplying both sides of (1) by Dj+1, due to i) we obtain

f (0)(m−j−1h)
f (1)(m−j−1h)

mj+1

...
f (n)(m−j−1h)

mn(j+1)

 = Dj+1p
[j+1]
h =

bh+m−1
m c∑

k=dh−m+1
m e

Dj+1A
[j]
h−mkD

−jDjp
[j]
k =

bh+m−1
m c∑

k=dh−m+1
m e

Ah−mk



f (0)(m−jk)
f (1)(m−jk)

mj

...
f (n)(m−jk)

mnj

 . (13)

Now, the vectors with the samples of f (s), s = 0, . . . , n can be expressed via (12) with respect to the integer
samples of Nd and its derivatives. Moreover, on the left-hand side, we can use (11) to express c[j+1] with

respect to c[j] = {c[j]k }k∈Z. Thus (13) can be stated in the equivalent matrix form

N B c[j] = N c[j+1] =



. . .
...
D
A1 A1−m
...

...
Am−1 A−1

D
A1 A1−m
...

...
Am−1 A−1

D
...

. . .



N c[j], (14)

where the framed D indicates the row indices from 0 to n and the column indices from 0 to n, and the
matrices B, N are defined entry-wise, for h, k ∈ Z, by

B(h, k) = bh−mk and N(h, k) = N
(s)
d (`− k) for h = (n+ 1)`+ s, s ∈ {0, . . . , n}. (15)

Since we want (14) to hold for every choice of c[j], the next result follows.

Theorem 4.1. Let n ∈ N0, d = 2n + 1 and m ∈ N \ {1}. The refinement mask {Ak}m−1k=1−m of the
interpolating Hermite spline scheme of order n and dilation factor m that fulfills i), ii) and iii) is uniquely
determined by the equations

A0 = D ∈ R(n+1)×(n+1) and A :=

 A1 A1−m
...

...
Am−1 A−1

 = NLBLN
−1
R ∈ R(m−1)(n+1)×2(n+1), (16)

where

NL = N( n+ 1 : n+ (n+ 1)(m− 1), 1− n : m+ n− 1 ) ∈ R(m−1)(n+1)×(m+d−2),

BL = B( 1− n : m+ n− 1, −n : n+ 1 ) ∈ R(m+d−2)×2(n+1),

NR = N( 0 : d, −n : n+ 1 ) ∈ R2(n+1)×2(n+1),

are finite portions of the bi-infinite matrices in (14). Moreover, by construction, the interpolating Hermite
spline scheme reproduces polynomials up to degree d and cardinal B-splines of degree d.
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Proof. A0 = D is already asked in condition ii). For the remaining matrices, we observe that the block
A can be extracted from the bigger matrix in (14) with row indices from n + 1 to n + (n + 1)(m − 1) and
column indices from 0 to 2n+ 1 = d. Thus, on the right-hand side, we need only to consider the rows of N

with indices from 0 to d. Since, for every s ∈ {0, . . . , n}, supp(N
(s)
d ) = [−n− 1, n+ 1], due to (15), we can

also cut the columns of N considering only indices from −n to n+ 1, leading to

NR =



Nd(−n) Nd(1− n) · · · Nd(n) 0

N
(1)
d (−n) N

(1)
d (1− n) · · · N

(1)
d (n) 0

...
...

... 0

N
(n)
d (−n) N

(n)
d (1− n) · · · N

(n)
d (n) 0

0 Nd(−n) · · · Nd(n− 1) Nd(n)

0 N
(1)
d (−n) · · · N

(1)
d (n− 1) N

(1)
d (n)

0
...

...
...

0 N
(n)
d (−n) · · · N

(n)
d (n− 1) N

(n)
d (n)


∈ R(d+1)×(d+1). (17)

In a similar fashion we can cut the matrices on the left-hand side considering only the rows of N with indices
from n+ 1 to n+ (n+ 1)(m− 1) and the columns of B with indices from −n to n+ 1. The only non-zero
entries of N contained in those rows are the ones with column index between 1− n and m+ n− 1, extrema
included. For B the only non-zero entries contained in the considered columns lie on the rows with indices
from −(m− 1)(n+ 1)−mn to (m− 1)(n+ 1) +m(n+ 1). Thus the useful indices for the cut are the ones
between α and β where

α = max
m≥2,n≥0

{ 1− n, −(m− 1)(n+ 1)−mn } = 1− n,

β = min
m≥2,n≥0

{ m+ n− 1, (m− 1)(n+ 1) +m(n+ 1) } = m+ n− 1.

From (17), it is clear that det (NR) 6= 0. Thus N−1R in (16) is well-defined as well as the matrices
{Ak}m−1k=1−m. Since all the matrices involved in (14) are properly slanted, (14) holds for every choice of the

sequence c[j].
Now we only have to prove that for every initial sequence p[0], the scheme produces a Cn polynomial

spline of degree d and its derivatives. In view of (2) and (14), we observe that, after a subdivision step, each
of the added new control vectors depends only on two consecutive control vectors from the previous step.
Since the refinement rules have been chosen to reproduce degree-d cardinal B-splines and thus polynomials
up to degree d, the first component of the vector-valued limit function will be a polynomial of degree d on
every unitary interval with integer extrema. The fact that we are interpolating the first n derivatives yields
Cn regularity, so concluding the proof.

Remark 4.2. When m = 3 one has that NL = NR, for every n ∈ N0.

Since the entries of B are given in (10) (see (15)) and the entries of N can be easily obtained by recalling
the properties of cardinal B-splines and their derivatives, Theorem 4.1 gives us an easy-to-implement method
for constructing the refinement mask {Ak ∈ R(n+1)×(n+1)}m−1k=1−m for any order n ∈ N0 and dilation factor
m ∈ N \ {1}. We conclude providing some illustrative examples.

Example 4.1 (m = 2, n = 1, d = 3). Figure 1 shows the result of its application to some initial data.

{bk}2k=−2 = { 1, 4, 6, 4, 1 } / 8, NL =

[
1/6 2/3 1/6
−1/2 0 1/2

]
, NR =

NL
0
0

0
0

NL

 ,
A0 =

[
1 0
0 1/2

]
, A =

[
A1 A−1

]
=

[
1/2 1/8 1/2 −1/8
−3/4 −1/8 3/4 −1/8

]
.
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Example 4.2 (m = 2, n = 2, d = 5).

{bk}3k=−3 = { 1, 6, 15, 20, 15, 6, 1 } / 32,

NL =

1/120 13/60 11/20 13/60 1/120
−1/24 −5/12 0 5/12 1/24

1/6 1/3 −1 1/3 1/6

 , NR =


NL

0
0
0

0
0
0

NL

 ,

A0 =

1 0 0
0 1/2 0
0 0 1/4

 , A =
[
A1 A−1

]
=

 1/2 5/32 1/64 1/2 −5/32 1/64
−15/16 −7/32 −1/64 15/16 −7/32 1/64

0 −3/8 −1/16 0 3/8 −1/16

 .
Example 4.3 (m = 3, n = 2, d = 5).

{bk}6k=−6 = { 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1 } / 243,

NL = NR =


1/120 13/60 11/20 13/60 1/120 0
−1/24 −5/12 0 5/12 1/24 0

1/6 1/3 −1 1/3 1/6 0
0 1/120 13/60 11/20 13/60 1/120
0 −1/24 −5/12 0 5/12 1/24
0 1/6 1/3 −1 1/3 1/6

 ,

A0 =

1 0 0
0 1/3 0
0 0 1/9

 , A =

[
A1 A−2
A2 A−1

]
=


64/81 16/81 4/243 17/81 −2/27 2/243
−40/81 0 2/243 40/81 −13/81 4/243
−40/81 −32/81 −10/243 40/81 −8/81 1/243
17/81 2/27 2/243 64/81 −16/81 4/243
−40/81 −13/81 −4/243 40/81 0 −2/243
40/81 8/81 1/243 −40/81 32/81 −10/243

 .

Acknowledgements. This research has been accomplished within RITA (Research ITalian network on
Approximation). The authors are members of the INdAM Research group GNCS which has partially
supported this work.

References

[1] C. Conti, M. Cotronei, T. Sauer, Factorization of Hermite subdivision operators preserving exponentials and polynomials,
Adv. Comput. Math. 42 (2016), 1055–1079.

[2] M. Cotronei, C. Moosmüller, T. Sauer, N. Sissouno, Level-dependent interpolatory Hermite subdivision schemes and
wavelets, Constr. Approx. 50 (2019), no. 2, 341–366.

[3] N. Dyn, D. Levin, Analysis of Hermite-interpolatory subdivision schemes, Spline functions and the theory of wavelets
(Montreal, PQ, 1996), 105–113, CRM Proc. Lecture Notes, 18, Amer. Math. Soc., Providence, RI, 1999.

[4] N. Dyn, D. Levin, Subdivision schemes in geometric modelling, Acta Numer. 11 (2002), 73–144.
[5] J. Fageot, S. Aziznejad, M. Unser, V. Uhlmann, Support and approximation properties of Hermite splines, J. Comput.

Appl. Math. 368 (2020), 112503, 15 pp.
[6] B. Jeong, J. Yoon, Construction of Hermite subdivision schemes reproducing polynomials, J. Math. Anal. Appl. 451

(2017), no. 1, 565–582.
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