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Università degli Studi di Trieste

Dipartimento di Matematica e Geoscienze

Via A. Valerio 12/1, 34127 Trieste, Italy

E-mail: obersnel@units.it, omari@units.it

Abstract

We prove a result of Ambrosetti-Prodi type for the scalar periodic ODE x′ = f(t, x) − s, where, seemigly
for the first time in the literature, f(·, x) is allowed to have indefinite sign as |x| → +∞. Our result requires
that f satisfies a one-sided growth control; in case such a control fails, non-existence occurs for large s > 0,
although multiplicity of solutions can still be detected provided f(·, 0) = 0 and s > 0 is small enough.
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1 Statements

The Ambrosetti-Prodi problem for an equation of the form

F (x) = s (1.1)

consists of determining how varying the parameter s affects the number of solutions x. Usually, an Ambrosetti-
Prodi type result yields the existence of a number s0 such that (1.1) has zero, at least one or at least two
solutions according to s < s0, s = s0 or s > s0. This terminology has become current after the founding work
by A. Ambrosetti and G. Prodi [1] in 1972. Since then Ambrosetti-Prodi type results have been proved for
several classes of boundary value problems: a thorough bibliography would include nearly two hundred titles.

Here, we revisit the simplest case of the scalar periodic ODE

x′ = f(t, x) (1.2)

and the associated periodic Ambrosetti-Prodi problem

x′ = f(t, x)− s. (1.3)

Throughout we assume that s ∈ R is a parameter and

(h1) f : R×R→ R is T -periodic with respect to the first variable and satisfies the L1-Carathéodory conditions.

Hereafter, by a T -periodic solution of (1.2) or (1.3) it is meant a T -periodic function x : R→ R which is locally
absolutely continuous and satisfies the equation for a.e. t ∈ R.

Under the coercivity condition

f(t, x)→ +∞, as |x| → +∞ uniformly a.e. in t, (1.4)

the periodic Ambrosetti-Prodi problem for (1.3) has been investigated by several authors, since the early eighties
until very recent years: we refer to the bibliografies in [5, 6, 7] for a rather complete list of references. Thanks
to its simplicity, (1.3) is in fact a quite good sample problem: manifold techniques can be effectively tested on
it and the obtained results can suggest possible extensions to more general and complicated contexts.

In the case where f is a Bernoulli-type nonlinearity, i.e.,

(h2) there exist a, b ∈ L1(0, T ) and p > 0 such that f(t, x) = a(t)|x|p + b(t) for a.e. t ∈ [0, T ] and all x ∈ R,

∗This work has been performed under the auspices of INdAM-GNAMPA.
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the coercivity assumption (1.4) amounts to requiring that ess inf [0,T ] a > 0. However, when modeling, for
instance, population dynamics, it is interesting to include cases where the function a vanishes on sets of positive
measure or changes sign, in order to describe the occurrence of seasonal periods which inhibit or adversely
affect the growth rate of the population under consideration. A real outbreak of papers devoted to the study
of nonlinear problems which are indefinite in sign dates back to the eighties of the last century both in the
PDEs and the ODEs settings, together with a parallel renewed interest towards ecological models (see, e.g., the
monograph [2]).

First relevant progresses in relaxing the uniform coercivity assumption (1.4) were achieved in the recent
papers [7, 8, 3]; precisely, the following result for equation (1.3) was obtained in [7].

Theorem 1.1. [7, Theorem 3.3] Assume (h1),

(h3) there exist a, b ∈ L1(0, T ) such that f(t, x) ≥ a(t)|x|+ b(t) for a.e. t ∈ [0, T ] and all x ∈ R,

(h4) there exists x ∈ R such that ess supt∈[0,T ] f(t, x) < +∞,

(h5) for every K1,K2, σ ∈ ]0,+∞[, there exists d > 0 such that, for every x ∈ C0([0, T ]) with x(0) = x(T ), if

max
[0,T ]
|x| ≤ K1 min

[0,T ]
|x|+K2 (1.5)

and either min[0,T ] x ≥ d or max[0,T ] x ≤ −d, then
∫ T
0
f(t, x) dt > σ.

Then, there exists s0 ∈ R such that equation (1.3) has zero, at least one or at least two T -periodic solutions
according to s < s0, s = s0 or s > s0.

It is easy to check (see, e.g., [7, Corollary 4.1]) that (h5) holds whenever the function a which appears in
(h3) satisfies both

(h6) a(t) ≥ 0 for a.e. t ∈ [0, T ]

and

(h7)
∫ T
0
a(t) dt > 0.

Accordingly, condition (h5) permits to consider nonlinearities which are just locally coercive, although bounded
from below by a L1-function.

In this short note we want to push further into the direction of relaxing the coercivity assumption on f , by
showing that the non-negativity condition (h6) can be dropped at all, while still achieving all the conclusions
of Theorem 1.1. Namely, we can prove the following result.

Theorem 1.2. Assume (h1), (h4),

(h8) there exist a, b ∈ L1(0, T ) and p ∈ ]0, 1] with f(t, x) ≥ a(t)|x|p + b(t) for a.e. t ∈ [0, T ] and all x ∈ R,

and (h7). Then, there exists s0 ∈ R such that equation (1.3) has zero, at least one or at least two T -periodic
solutions according to s < s0, s = s0 or s > s0.

Assumptions (h8) and (h7) basically require f being coercive on the average and allow that

both lim|x|→+∞ f(t, x) = +∞ and lim|x|→+∞ f(t, x) = −∞ on sets of positive measure.

It is worth stressing on the other hand that condition (h5) prevents f from exhibiting this behavior, at least if
f has the Bernoulli-type structure (h2), as expressed by the following statement.

Proposition 1.3. Assume (h2). Then, condition (h5) is equivalent to conditions (h6) and (h7).

Remark 1.1 The proof of Theorem 1.2 is based on the direct construction of lower and upper solutions.
Thus, from the results in [5], it is possible to infer various information on the qualitative properties of the
obtained solutions. Indeed, for each s > s0, equation (1.3) has at least one T -periodic solution which is weakly
asymptotically stable from below, at least one T -periodic solution which is weakly asymptotically stable from
above and at least one weakly stable T -periodic solution (all these solutions may possibly coincide), as well as,
in addition, at least one unstable T -periodic solution, while for s = s0 it has at least one unstable solution.

A question that may arise looking at Theorem (1.2) is whether or not one can assume p > 1 in condition (h8).
The answer is in general negative as shown by the following statement.
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Proposition 1.4. Assume (h1) and

(h10) there exist p > 1, I = [t1, t2] ⊆ [0, T ] and δ > 0 such that f(t, x) ≤ −δ|x|p for a.e. t ∈ I and all x ∈ R.

Then, there exists σ ∈ R such that, for all s ≥ σ, equation (1.3) has no T -periodic solutions.

In spite of the negative result of Proposition 1.4, we may still prove a positive result provided that f(·, 0) = 0
and s is sufficiently small.

Proposition 1.5. Assume (h1),

(h11) f(·, 0) = 0 and there exist a ∈ L1(0, T ) and p > 1 such that f(t, x) ≥ a(t)|x|p for a.e. t ∈ [0, T ] and all
x ∈ R,

and (h7). Then, there exists σ > 0 such that, for all s ∈ ]0, σ[, problem (1.3) has at least one positive T -periodic
solution and at least one negative T -periodic solution.

Remark 1.2 It remains open the question if conclusions similar to the above can be proven for boundary value
problems associated with second order ODEs or PDEs: a preliminary step in this direction is given by the
perturbative result established in [3, Proposition 5.1].

2 Proofs

Proof of Theorem 1.2. As already announced the proof of Theorem 1.2 is based on the construction of
lower and upper solutions and the application of the existence results in [5], together with an extensive use of
Lemma 2.1 in [7].

Step 1. We verify that for every s ∈ R there is ξ0 ∈ R such that, for all ξ ≥ ξ0, any solution x of the Cauchy
problem

x′ = a(t)|x|p + b(t)− s, x(0) = ξ, (2.1)

is a proper lower solution of the T -periodic problem for the equation

x′ = a(t)|x|p + b(t)− s, (2.2)

and hence, by (h8), a proper lower solution of the T -periodic problem for (1.3).
We begin with the case p ∈ ]0, 1[ and start by proving the following claim.

Claim. For every m ∈ R there exists ξm ≥ m such that, for every ξ ≥ ξm, any solution x of (2.1) satisfies
min[0,T ] x > m. Assume, by contradiction, that there exists m0 ∈ R such that, for every n ∈ N, with n > m0,
there is a global solution xn of (2.1) satisfying xn(0) ≥ n and min[0,T ] xn ≤ m0. Let sn, tn ∈ [0, T ] be such that
sn < tn, m0 ≤ xn(t) ≤ n on [sn, tn], xn(sn) = n and xn(tn) = m0. We have

n−m0 = xn(sn)− xn(tn) ≤
∫ tn

sn

|a(t)| |xn(t)|p dt+

∫ tn

sn

|b(t)− s| dt ≤ ‖a‖L1 np + ‖b− s‖L1 .

Letting n go to +∞ we get a contradiction, thus proving our claim.
To conclude the proof of Step 1 in case p ∈ ]0, 1[ suppose, by contradiction, that there exist sequences (ξn)n in
R, with limn→+∞ ξn = +∞, and (xn)n of global solutions of (2.1), with ξ = ξn, satisfying xn(T ) ≤ xn(0), for all
n. Possibly relabelling the sequences (ξn)n and (xn)n, by the claim above we can suppose that min[0,T ] xn ≥ n.
Hence we find

0 ≥
∫ T

0

x′n(t)(
xn(t)

)p dt =

∫ T

0

a(t) dt+

∫ T

0

b(t)− s(
xn(t)

)p dt ≥ ∫ T

0

a(t) dt− n−p
∫ T

0

∣∣b(t)− s∣∣ dt.
Taking the limit we get the contradiction 0 ≥

∫ T
0
a(t) dt > 0.

The validity of Step 1 when p = 1 can be verified by a direct inspection. Indeed, set A(t) =
∫ t
0
a(τ) dτ and

define the function

x(t) = eA(t)
(
ξ +

∫ t

0

e−A(τ)
(
b(τ)− s

)
dτ
)
.

Choose

ξ > max
{

max
t∈[0,T ]

(
−
∫ t

0

e−A(τ)
(
b(τ)− s

)
dτ
)
, (e−A(T ) − 1)−1

∫ T

0

e−A(τ)
(
b(τ)− s

)
dτ
}
.
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Then, we have x(t) > 0 on [0, T ], x(T ) > x(0), and x is a solution of (2.1).

Step 2. A symmetric counterpart of Step 1 holds. For every s ∈ R there is η0 ∈ R such that, for all ξ ≤ η0, any
solution x of the Cauchy problem (2.1) is a proper lower solution of the T -periodic problem for the equation
(2.2) and hence, by (h8), a proper lower solution of the T -periodic problem for (1.3).

Step 3. We show that there exists s∗ ∈ R such that, for all s > s∗, equation (1.3) has at least two T -periodic
solutions. Indeed, it is easily verified that there exists s∗ ∈ R such that, for all s > s∗, the constant β = x
defined in (h4) is a proper upper solution of the T -periodic problem for equation (1.3). Furthermore, by the
results proved in Step 1 and Step 2, the T -periodic problem for equation (1.3) admits also two proper lower
solutions α1, α2 satisfying α1(t) < β(t) < α2(t) for all t ∈ [0, T ]. Therefore, equation (1.3) has at least two
T -periodic solultions x1, x2, sastisfying α1(t) ≤ x1(t) ≤ β(t) ≤ x2(t) ≤ α2(t) for all t ∈ [0, T ] and x1 6= α1, β,
x2 6= α2, β.

Step 4. We prove that the set of the parameters s for which equation (1.3) has at least one T -periodic solution
is bounded from below. Let us introduce the set

S = {s ∈ R : equation (1.3) has at least one T -periodic solution}

and define s0 = inf S . We claim that s0 ∈ R. Assume, by contradiction, that inf S = −∞. Then,
there exist a sequence (sn)n in R, with limn→+∞ sn = −∞, and a sequence (xn)n of T -periodic solutions
of equation (1.3) with s = sn. We claim that limn→+∞ ‖xn‖∞ = +∞. Indeed, otherwise, we would get

0 =
∫ T
0
x′n(t) dt =

∫ T
0
f(t, xn(t)) dt − snT, and, by (h1), there would exist a function ϕ ∈ L1(0, T ) such

that |snT | =
∣∣ ∫ T

0
f(t, xn(t)) dt

∣∣ ≤ ∫ T
0
ϕ(t) dt < +∞, which is a contradiction. Moreover, by (h8) we have

x′n(t) = f(t, xn(t))− sn ≥ f(t, xn(t)) ≥ a(t)|xn(t)|p + b(t) a.e. in [0, T ]. After reversing time into the equation,
we can apply [7, Lemma 2.1] (with λ = 1, ψ = f , a0(t) = |a(t)|, b0(t) = |a(t)| + |b(t)|). It follows that the
sequence (xn)n diverges uniformly either to +∞ or to −∞ in [0, T ]. Assume, e.g., that the former condition
holds and that p ∈ ]0, 1[, the proof being similar in the other cases. We find

0 =

∫ T

0

x′n(t)(
xn(t)

)p dt ≥ ∫ T

0

a(t) dt+

∫ T

0

b(t)(
xn(t)

)p dt,
which, letting n→ +∞ and using (h7), yields the contradiction 0 ≥

∫ T
0
a(t) dt > 0.

Step 5. We show the existence of at least one T -periodic solution of equation (1.3) for s = s0. Let (sn)n be a
sequence in S converging to s0 and let (xn)n be the corresponding sequence of T -periodic solutions of equation
(1.3) with s = sn. Let us verify that there is R > 0 such that ‖xn‖∞ ≤ R for all n. Indeed, otherwise, we can
find a subsequence of (xn)n, we still denote by (xn)n, such that limn→+∞ ‖xn‖∞ = +∞. Arguing similarly as
in the proof of Step 4, by using again [7, Lemma 1], we see that the sequence (xn)n diverges uniformly either to
+∞ or to −∞ in [0, T ], thus easily leading to a contradiction as above. Therefore (xn)n is bounded in L∞(0, T ).
Hence, by (h1), there exists a function ϕ ∈ L1(0, T ) such that, for all large n and every t1, t2 ∈ [0, T ],

∣∣xn(t1)− xn(t2)
∣∣ =

∣∣ ∫ t2

t1

x′n(t) dt
∣∣ =

∣∣ ∫ t2

t1

(
f(t, xn(t))− sn

)
dt
∣∣ ≤ ∣∣ ∫ t2

t1

(
|f(t, xn(t))|+ |sn|

)
dt
∣∣

≤
∣∣ ∫ t2

t1

ϕ(t) dt
∣∣+
(
|s0|+ 1

)
|t1 − t2| =

∣∣Φ(t1)− Φ(t2)
∣∣+
(
|s0|+ 1

)
|t1 − t2|,

where Φ(t) =
∫ t
0
ϕ(τ) dτ . This implies that (xn)n is also uniformly equicontinuous and therefore there exists

x0 ∈ C0([0, T ]), with x0(0) = x0(T ), such that limn→+∞ xn(t) = x0(t) uniformly in [0, T ]. In addition, we
have that, for a.e. t ∈ [0, T ], limn→+∞ f

(
t, xn(t)

)
= f

(
t, x0(t)

)
and, for all large n,

∣∣f(t, xn(t))
)
| ≤ ϕ(t). The

dominated convergence theorem guarantees that the sequence
(
f(·, xn) − sn

)
n
, and thus (x′n)n, converges in

L1(0, T ) to the function f(·, x0) − s0. Therefore, we see that x0 is absolutely continuous in [0, T ] and satisfies
x′0 = f(t, x0)− s0, x0(T ) = x0(0), that is, x0 defines a T -periodic solution of equation (1.3), with s = s0.

Step 6. To conclude the proof we verify that, for each s ∈ ]s0,+∞[, equation (1.3) has at least two T -periodic
solutions. Fix s ∈ ]s0,+∞[. As s0 = inf S , there is s̃ ∈ S such that s0 < s̃ < s. Let x̃ be a T -periodic solution
of equation (1.3) with s = s̃. As s̃ < s, x̃ is a proper upper solution of the T -periodic problem for equation
(1.3). Thus, from Step 1 and Step 2 we infer the existence of two T -periodic solutions x1, x2 of equation (1.3)
satisfying x1(t) ≤ x̃(t) ≤ x2(t) on [0, T ] and x1 6= x2, as x1 6= x̃ and x2 6= x̃.
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Proof of Proposition 1.3. In view of [7, Corollary 4.1], it is enough to show that (h5) implies (h6) and (h7).

We first prove that (h7) holds. Taking K1 = 1, any K2 > 0 and σ =
∫ T
0
|b(t)| dt+ 1, condition (h5) implies that

there exists d > 0 such that, for all x ∈ R, with x ≥ d,∫ T

0

f(t, x) dt =
(∫ T

0

a(t) dt
)
|x|p +

∫ T

0

b(t) dt > σ =

∫ T

0

|b(t)| dt+ 1.

Hence, we conclude that
∫ T
0
a(t) dt > 0. Next, we show that (h6) holds. Assume, by contradiction, that a(t) < 0

on a set of positive measure or, equivalently, that
∫ T
0
a−(t) dt > 0. As we already know that

∫ T
0
a(t) dt > 0 we

have
∫ T
0
a+(t) dt >

∫ T
0
a−(t) dt > 0. Take any K2 > 0 and set

K1 =
(∫ T

0
a+(t) dt∫ T

0
a−(t) dt

) 1
p

> 1, σ =

∫ T

0

|b(t)| dt+ 1.

By (h5) there exists d > 0 such that, if x ∈ C0([0, T ]) satisfies x(0) = x(T ), (1.5) and min[0,T ] x ≥ d, then∫ T

0

f(t, x(t)) dt =

∫ T

0

a(t)|x(t)|p dt+

∫ T

0

b(t) dt > σ. (2.3)

Define a function u by setting, for all t ∈ [0, T ], u(t) = K1d if a(t) ≤ 0, u(t) = d if a(t) > 0. The absolute
continuity of the Lebesgue integral implies that for every ε > 0 there is δ > 0 such that, for every measurable
set M ⊆ [0, T ], if |M | < δ, then

∫
M
|a(t)| dt < ε. Set ε = 1

2(K1d)p
. The Lusin theorem [4, Theorem 7.10] implies

that there exists v ∈ C0([0, T ]), having compact support in ]0, T [, such that

max
[0,T ]
|v| ≤ max

[0,T ]
|u| = K1d and |M | < δ,

where M = {t ∈ [0, T ] : v(t) 6= u(t)}. Observe that these conditions still hold replacing v with x ∈ C0([0, T ])
defined by x(t) = max{v(t), d} for all t ∈ [0, T ], and M with N = {t ∈ [0, T ] : x(t) 6= u(t)}. Indeed, we have
N ⊆ M , x(0) = x(T ) = d and max[0,T ] |x| ≤ max[0,T ] |v| ≤ K1d = K1 min[0,T ] |x|. Thus, (1.5) and hence (2.3)
hold. Let us compute∫ T

0

a(t) |x(t)|p dt =

∫ T

0

a(t)x(t)p dt =

∫ T

0

a(t)u(t)p dt+

∫ T

0

a(t)
(
x(t)p − u(t)p

)
dt

≤
∫ T

0

a+(t) dp dt−
∫ T

0

a−(t) (K1d)p dt+

∫
N

|a(t)|
∣∣x(t)p − u(t)p

∣∣ dt
≤ dp

(∫ T

0

a+(t) dt−Kp
1

∫ T

0

a−(t) dt
)

+ 2(K1d)p
∫
N

|a(t)| dt ≤ 1.

On the other hand, (2.3) implies that
∫ T
0
a(t)|x(t)|p dt > 1, thus getting a contradiction.

Proof of Proposition 1.4. Let us suppose, for simplicity, that δ = 1 and t1 = 0. Pick x0 ∈ R satisfying

x0 >
(

8
t2(p−1)

) 1
p−1

. Set τ1 = t2
4 , τ2 = 3

4 t2. Note that the maximal solution x1 of the Cauchy problem x′ =

−|x|p, x(τ1) = x0 is the function x1(t) =
(
x1−p0 + (p− 1)(t− t2

4 )
) 1

1−p

, which is defined on the interval

I1 =
]
t2
4 −

x1−p
0

p−1 ,+∞
[
⊂
]
t2
8 ,+∞

[
.

Similarly, the maximal solution x2 of the Cauchy problem x′ = −|x|p, x(τ2) = −x0 is the function x2(t) =

−
(
x1−p0 − (p− 1)(t− 3

4 t2)
) 1

1−p

, which is defined on the interval

I2 =
]
−∞, 34 t2 +

x1−p
0

p−1
[
⊂
]
−∞, 78 t2

[
.

Set σ = 8
t2
x0 and let s ≥ σ. We claim that no solution x of the equation (1.3) exists on the whole interval [0, t2].

Indeed, consider such a solution and assume it is defined up to τ0 = t2
2 , with x(τ0) = φ.

If |φ| ≤ x0, as x′(t) ≤ −s on [τ1, τ0], we have x(τ1) ≥ x0. Since x′(t) ≤ −|x(t)|p on ] t28 , τ1], x is not defined for
t ≤ t2

8 .
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If φ > x0, since x′(t) ≤ −|x(t)|p on ] t28 , τ0], again we conclude that x is not defined for t ≤ t2
8 .

If φ < −x0, since x′(t) ≤ −|x(t)|p on [τ0,
7
8 t2[, we conclude that x is not defined for t ≥ 7

8 t2.

Proof of Proposition 1.5. Let us extend the function a by T -periodicity onto R and set A(t) =
∫ t
0
a(τ) dτ .

Without loss of generality, we may assume A(t) > 0 for all t ∈ ]0, T ]. If this is not the case, we set

−m = min{A(t) : t ∈ ]0, T ]} ≤ 0 and t0 = max{t ∈ ]0, T ] : A(t) = −m} < T.

We claim that
∫ t
t0
a(τ) dτ > 0 for all t ∈ ]t0, t0 + T ]. Indeed, if t0 < t ≤ T , we have

−m <

∫ t

0

a(τ) dτ =

∫ t0

0

a(τ) dτ +

∫ t

t0

a(τ) dτ = −m+

∫ t

t0

a(τ) dτ

and hence
∫ t
t0
a(τ) dτ > 0. If T < t ≤ t0 + T , we have∫ t

t0

a(s) ds =

∫ T

t0

a(s) ds+

∫ t

T

a(s) ds = A(T ) +m+

∫ t−T

0

a(s) ds ≥ A(T ) > 0.

Replacing the interval [0, T ] with [t0, t0 + T ] yields the conclusion.

Pick K > 0 such that A(t) < K for all t ∈ [0, T ]. Take any z0 satisfying 0 < z0 <
(
(p−1)K

) 1
1−p and let z be the

solution of the Cauchy problem z′ = a(t)|z|p, z(0) = z0, whose solution is z(t) = z0
(
1− (p− 1)zp−10 A(t)

)− 1
p−1 .

By our choice of z0 we easily verify that z is defined on [0, T ] and z(t) > z0 > 0 for all t ∈ ]0, T ]. By the
continuous dependence of the solutions of the Cauchy problem with respect to initial data there exists ε1 > 0
such that the solution u of the problem z′ = a(t)|z|p−ε1, z(0) = z0, is still defined on [0, T ] and satisfies u(t) > 0
for all t ∈ ]0, T ] and, in particular, u(T ) > u(0). Accordingly, u is a proper lower solution of the T -periodic
problem for equation (1.3), with s = ε1. As β = 0 is a proper upper solution of the T -periodic problem for
equation (1.3), and β(t) < u(t) on [0, T ], there exists a T -periodic solution x of (1.3), with s = ε1, satisfying
0 ≤ x(t) ≤ u(t) on [0, T ], x 6= 0, x 6= u.
Finally, let σ1 be the supremum of the set of numbers s such that the equation (1.3) has a positive T -periodic
solution. Then, for all ε1 < σ there is η1 satisfying ε1 < η1 ≤ σ and a positive T -periodic solution xη1 of (1.3)
with s = η1. The function xη1 is a lower solution of the T -periodic problem for equation (1.3), with s = ε1. As
0 is an upper solution of the same problem, there exists a positive T -periodic solution xε1 of (1.3) with s = ε1.
In order to show the existence of negative solutions we can argue in a similar way, by choosing z0 satisfying

−
(
(p − 1)K

) 1
1−p < z0 < 0. We can check that the solution of the Cauchy problem is given by z(t) = z0

(
1 +

(p − 1)(−z0)p−1A(t)
)− 1

p−1 , which satisfies z0 ≤ z(t) < 0 on [0, T ]. As in the previous case, we use lower and
upper solutions to obtain a number σ2 > 0 such that equation (1.3) has a negative T -periodic solution for all
s ∈ ]0, σ2[.
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