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Abstract

In this paper we improve the cubature rules discussed in [12] for the computation of integrals by radial
basis functions (RBFs). More precisely, we introduce in the context of meshless cubature a leave-one-out
cross validation criterion for the optimization of the RBF shape parameter. This choice allows us to get
highly reliable and accurate results for any kind of both infinity and finite regularity RBF. The efficacy
of this approximation scheme is tested by numerical experiments on complicated polygonal regions. The
related Matlab software is provided to the scientific community in [5].

Keywords: meshless cubature, radial basis functions, multivariate approximation, scattered data,
polygonal regions
2020 MSC: 65D05, 65D12, 65D15, 65D32

1. Introduction

In [12] analytical formulas for computing integrals of the most popular radial basis functions (RBFs)
are obtained. In particular, the previous work provides an efficient way to compute moments and cubature
weights for a wide class of infinity and finite smooth RBFs, either globally or compactly supported. The
resulting cubature rules can successfully be applied on general polygonal regions. However, due to severe
ill-conditioning of the cubature matrix, the numerical method in [12] is able to provide good and predictable
results for low-regularity (and shape parameter free) RBFs. On the contrary, when the basis functions need
to be suitably scaled and/or high-regularity RBFs are considered, this direct method may result in deeply
unpredictable and meaningless results, as observed in [12].

In this article we enhance the method [12] proposing in the context of RBF cubature the use of a technique
that corresponds to a variant of cross validation, known as leave-one-out cross validation (LOOCV). By
doing so, we are able to predict a “good” or a (near) optimal value of the RBF shape parameter. This
procedure was originally introduced in RBF interpolation by Rippa [10], and more recently has widely been
used in several fields of applied mathematics and scientific computing (see e.g. [3, 4, 6, 8]). As shown in
our numerical experiments, the selection of optimal RBF shape parameters via LOOCV allows us to obtain
precise and trustworthy results for any – even C∞ smooth – type of RBF. The improved cubature process
is tested by taking some 2D benchmark test functions and nonconvex or multiply disconnected polygonal
regions, already considered in [12].

The paper is organized as follows. In Section 2 we give some preliminaries on RBF interpolation and
cubature. In Section 3 we present the LOOCV method for selecting an optimal shape parameter. In Section
4 we show some numerical results in order to illustrate the performance of our cubature formulas for a wide
range of RBFs. Section 5 contains conclusions.
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2. Problem statement

In this section we give a brief overview on RBF methods recalling some basic definitions and results,
which are useful in the context of scattered data approximation. For further details on theoretical and
computational issues, we refer the reader to [2, 8, 13].

2.1. RBF interpolation

Given a compact domain Ω ⊂ Rd, we denote by X = {(xi, fi)}
N
i=1 a set of scattered data. The N

distinct data points (or nodes) x1, . . . ,xN are assumed in Ω, while the corresponding data or function

values f1, . . . , fN ∈ R are obtained by possibly sampling any (unknown) function f : Ω → R.
If we consider a RBF φ : R≥0 → R that is strictly conditionally positive definite (SCPD) of order m,

setting φi(x) := φ(||x− xi||2), we can determine a unique interpolating function s : Ω → R expressed as a
linear combination of the basis functions φi, i.e.,

s(x) =

N
∑

i=1

ciφi(x) +

N+M
∑

i=N+1

ciπi−N (x), (1)

where {πk}
M
k=1 form a basis for the M =

(

m−1+d
m−1

)

-dimensional linear space Pd
m−1 of d-variate real valued

polynomials of total degree less than or equal to m − 1, and || · ||2 denotes the Euclidean norm. The
real (unknown) coefficients c1, . . . , cN+M are obtained by enforcing the interpolation conditions, that is,
s(xi) = fi, for i = 1, . . . , N . Moreover, from RBF theory we know that a SCPD function of order 0 (i.e.,
m = 0) is called strictly positive definite (SPD), and so the polynomial in (1) vanishes [7].

Solving the interpolation problem in the general case of a SCPD function φ of order m results in a linear
system of the form

Ac = b, (2)

where

A :=

[

A P
PT O

]

, b :=

[

f

0

]

.

The entries of the (symmetric) interpolation matrix A in (2) are Ai,j := φ(||xi − xj ||2), Pik := πk(xi),
with i, j = 1, . . . , N , k = 1, . . . ,M , and O is a M × M zero matrix. Furthermore, c := [c1, . . . , cN+M ]T ,
f := [f1, . . . , fN ]T and 0 is a zero vector of length M . It is also important to note that in the particular case
of a SPD RBF the matrix reduces simply to A = A, and the polynomial part disappears.

Usually, in literature, several RBFs are scaled in terms of a shape parameter ε > 0 such that

φε(r) = φ(εr).

In the following, for the sake of simplicity, we refer to φi(x) as φε(||x−xi||), keeping always implicit (unless
necessary) the dependence on ε. For these RBFs the selection of a suitable value of ε is a crucial task,
but also a big issue (cf. [4]). Though there are also families of RBFs that do not need a scaling of their
argument (i.e., they are shape parameter free), in this work we only take into account RBFs depending on ε.
In Table 1 we list some of the most popular SCPD RBFs together with their orders, see e.g. [7]. Note that
Gaussian, Inverse MultiQuadric and MultiQuadric functions are globally supported, while the Wendland
functions are compactly supported and their support is given by [0, 1/ε], see [13].

2.2. RBF cubature by moment computation

In the numerical cubature we consider the problem of computing an approximate value of the integral

I(f) :=

∫

Ω

f(x) dx,
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RBF φε(r) SCPD order

Gaussian C∞ (GA) exp(−ε2r2) 0

Inverse MultiQuadric C∞ (IMQ) (1 + ε2r2)−1/2 0

MultiQuadric C∞ (MQ) (1 + ε2r2)1/2 1

Wendland C4 (W4) max (1− εr, 0)
6
(35ε2r2 + 18εr + 3) 0

Wendland C2 (W2) max (1− εr, 0)
4
(4εr + 1) 0

Matérn C2 (M2) exp(−εr)(εr + 1) 0

Matérn C0 (M0) exp(−εr) 0

Table 1: Some of the most popular RBFs.

where f(x) is an integrable function, which is generally known only on a scattered data set X. A direct
approach to solve this problem consists in integrating the RBF interpolant s in (1), i.e.,

I(f) ≈ I(s) =

∫

Ω

s(x) dx =

N
∑

i=1

ci

∫

Ω

φi(x) dx+

N+M
∑

i=N+1

ci

∫

Ω

πi−N (x) dx.

Defining the moment vectors Iφ = {I(φi)}
N
i=1, Iπ = {I(πk)}

M
k=1 and denoting by 〈·, ·〉 the scalar product

in Rd, we obtain that

I(s) = 〈c, I〉 , with I :=

[

Iφ
Iπ

]

. (3)

For a more comprehensive study and a detailed error analysis, the reader can refer to [12].

2.3. RBF moment computation

In [12] the authors introduced a triangulation-free algorithm for moment computation of the most com-
mon RBFs on polygonal regions that we briefly describe in this section.

Let Ω be a simple polygon, i.e. without self intersections, described counterclockwise by the sequence
of vertices {vj}j=1,...,n+1, where vn+1 = v1. In view of Gauss-Green theorem in polar coordinates, we have
that the moment IΩ(φk) =

∫

Ω
φ(ε‖x− xk‖2) dx of the scaled RBF φ centered in xk with shape parameter

ε, is such that

IΩ(φk) =

∮

∂Ω

(
∫

rφ(ε r)dr

)

dθ =
n
∑

j=1

∫

vjvj+1

∫

rφ(ε r)dr dθ.

where r = ‖x− xk‖2 and vjvj+1 is the segment joining the vertex vj with vj+1.
Now set µ0 = 1 if the non-degenerate triangle with vertices xk,vj ,vj+1 is ordered counterclockwise and

µ0 = −1 otherwise. Next, let r0 be the length of the segment xkvj , θ0 and θ∗ respectively the absolute
values of the angles ̂xkvjvj+1 and ̂vjxkvj+1, Ψ(ρ) :=

∫ ρ

0
tφ(t)dt, cθ0,ε := ε r0 sin(θ0). In [12] it is proven

that
∫

vjvj+1

∫

rφ(ε r)dr dθ = µ0 ε
−2

∫ θ∗+θ0

θ0

Ψ(cθ0,ε/ sin(s)) ds. (4)

with 0 ≤ θ0 < θ∗ + θ0 < π, cθ0,ε > 0. Since

∫ θ∗+θ0

θ0

Ψ(cθ0,ε/ sin(s)) ds =

∫ θ∗+θ0

π/2

Ψ(cθ0,ε/ sin(s)) ds−

∫ θ0

π/2

Ψ(cθ0,ε/ sin(s)) ds

3



the required moment is at hand as soon as one is able to evaluate

Ic,π/2,t∗(Ψ) =

∫ t∗

π/2

Ψ(c/ sin(s)) ds, c > 0, t∗ ∈ (0, π).

In the appendix of [12] there is an explicit formulation of Ic,π/2,t∗(Ψ) for Multiquadrics, Inverse Multi-

quadrics, Thin-Plate Splines, Radial Powers of the form φ(r) = rk with k = 3, 5, 7, RBFs with compact
support such as the Wendland RBFs W0, W2, W4, W6, while for the Gaussian and the Matérn RBFs
φ(r) = exp(−r) and φ(r) = (1 + r) exp (−r), the authors were only able to determine Ψ in closed form and
next compute the required integrals by suitable shifted Gauss-Legendre rules.

We finally point out that some care should be taken with RBFs that are compactly supported (see [12]
for additional details). We conclude observing that if Ω consists of a simple polygon Ω0 with some non

overlapping simple polygonal holes Ω1, . . . ,ΩM , then IΩ(φk) = IΩ0
(φk)−

∑M
j=1 IΩj

(φk) where all the values
IΩ0

(φk), . . . , IΩM
(φk) can be computed by the technique described above.

3. Selecting an optimal shape parameter via LOOCV

As it is well-known, from the uncertainty or trade-off principle [11] we know that using a RBF one
cannot have high accuracy and stability at the same time. In fact, when the best accuracy is typically
achieved, i.e., in the flat limit ε → 0, the interpolation matrix might suffer from severe ill-conditioning. In
order to get trustworthy solutions, it is therefore essential to find an optimal value of the shape parameter
ε.

3.1. Error computation

A popular strategy for estimating the RBF shape parameter ε based on the given data set X =
{(xi, fi)}

N
i=1 is the LOOCV method [10]. In this technique an optimal value of ε is selected by mini-

mizing a cost function that collects the errors for a sequence of partial fits to the data. To estimate the
unknown true error, we split the data into two parts: a training data set consisting of N − 1 data to obtain
a “partial interpolation”, and a validation data set that contains a single (remaining) data used to compute
the error. After repeating in turn this procedure for each of the N given data, the result is a vector of error
estimates and the cost function is used to determine the optimal value of ε, see [9].

For this discussion we define by

x
[k] := [x1, . . . ,xk−1,xk+1, . . . ,xN ]T , f[k] := [f1, . . . , fk−1, fk+1, . . . , fN ]T ,

the vectors of data points and corresponding values with the removed data (xk, fk), denoted by the super-
script [k]. In the sequel, all other qualities are represented similarly.

The key idea is to predict the parameter ε considering the partial RBF interpolant to the data (x[k], f[k]),
i.e.,

s[k](x) =

N
∑

i=1, i6=k

ciφi(x) +

N+M
∑

i=N+1

ciπi−N (x).

If ek is the error estimator

ek(ε) = fk − s[k](xk), (5)

the norm of the vector of errors e = [e1, . . . , eN ]T as a function of ε can be used to minimize the cost function
and find the optimal value of ε. Thus, this vector is computed by removing in turn each node of X, then
comparing the resulting fit with the known value at the removed point.
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Since this LOOCV implementation is quite expensive, the error computation can be simplified by using
the rule

ek(ε) =
ck

A−1
kk

, (6)

where ck is the kth coefficient of the solution vector c = A−1b in (2), and A−1
kk is the kth diagonal element

of the inverse of the full RBF matrix A−1. Notice that this formulation needs to only solve a single linear
system, considering the entire data set X.

In summary, the problem is solved by minimizing the cost function

LOOCV(ε) = ||e(ε)||∞ = max
k=1,...,N

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

. (7)

where || · ||∞ denotes the ∞-norm, even if in principle any norm is enabled.

Remark 3.1. One may wonder whether it is convenient writing the cubature formula (3) in a more standard
form, as a linear combination of function values with cubature weights. This is clearly possible, following
the lines of [12], by solving the relevant moment matching system with the transposed interpolation matrix.
In the present context, however, there is no computational advantage, since the optimal shape parameter is
function dependent and so are consequently the weights, preventing from using them for different functions.

3.2. Computational complexity and implementation details

While the naive implementation of LOOCV algorithm by the estimator (5) is rather costly (i.e., of the
order O(N4)), the use of the single formula (6) reduces the computational complexity to O(N3). Further-
more, all entries of the error vector e can be computed simply by a single statement in Matlab, provided
that the component rule (6) is vectorized. Finally, in order to quickly find an optimal shape parameter,
the minimum of the cost function (7) can be determined by the Matlab function fminbnd. For further
implementation details, see the Matlab codes available in [5].

4. Numerical results

In this section we report some results of extensive experiments carried out to test our numerical cubature
technique. Since we want to verify accuracy and effectiveness of our integration formulas for ε-dependent
RBFs w.r.t. the ones studied in [12], we consider the same 2D complex polygonal domains Ωs, s = 1, 2, see
Figure 1. In particular, we analyze the precision/behavior of infinity smooth RBFs such as GA, IMQ and
MQ, and finite regularity RBFs like W4, W2, M2 and M0 (cf. Table 1). As test functions, we take

f1(x, y) = exp(x− y), f2(x, y) =
√

(x− 0.3)2 + (y − 0.3)2.

In order to measure the quality of our results, we compute themaximum relative errors (MREs) assuming
as reference (or exact) values the ones obtained by the algebraic cubature algorithm in [1], with algebraic
degree of exactness equal to 1000.

In Tables 2 and 3 we show the cubature MREs obtained by selecting optimal values of the shape pa-
rameter ε. As discussed in Section 3, the ε-detection via LOOCV is determined by the use of Matlab

fminbnd minimization routine. The optimal shape parameters are searched for ε ∈ [0.5, 15], while all other
routine parameters were set by their default values. Although the cubature matrix A may be extremely
ill-conditioned (in particular, with C∞ RBFs and small values of ε), the LOOCV approach still enables to
make good predictions of ε, thus permitting to get reliable results, a feature not available in the previous
work [12].
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Figure 1: Polygonal regions Ω1 (top) and Ω2 (bottom) with scattered data points.

Test N GA IMQ MQ W4 W2 M2 M0

200 2e−7 5e−7 4e−7 2e−4 6e−4 2e−4 2e−3
f1 400 1e−7 1e−5 3e−7 1e−5 4e−5 9e−6 3e−4

800 7e−8 6e−7 2e−7 1e−6 2e−5 8e−6 6e−5

200 4e−3 1e−3 7e−4 9e−4 5e−4 1e−4 2e−3
f2 400 4e−3 8e−4 3e−4 2e−4 1e−4 1e−4 6e−4

800 2e−3 3e−5 2e−5 1e−5 4e−6 5e−6 3e−5

Table 2: MREs computed by RBF cubature on Ω1.

5. Conclusions

In this paper we solved the main open problem in [12]. While the original method provided reasonably
accurate and numerically stable cubature rules for finite regularity RBFs, such as thin plate splines, radial
powers and W2 (for ε = 1 fixed), this new approach based on the LOOCV criterion for the ε-prediction
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Test N GA IMQ MQ W4 W2 M2 M0

200 6e−6 2e−4 3e−6 8e−4 2e−3 4e−4 4e−3
f1 400 2e−7 3e−6 7e−6 7e−5 3e−4 3e−5 7e−4

800 6e−8 7e−7 9e−8 2e−5 9e−5 9e−6 4e−4

200 7e−4 5e−5 1e−4 5e−4 1e−3 1e−4 7e−4
f2 400 6e−4 1e−4 1e−4 5e−5 6e−4 1e−4 2e−4

800 5e−4 3e−5 2e−5 2e−5 7e−5 4e−6 1e−4

Table 3: MREs computed by RBF cubature on Ω2.

leads to a two-fold benefit: (i) obtaining highly reliable and precise results for any kind of RBF, even infinity
smooth; (ii) reducing the cubature error for those finite regularity RBFs, such as W2, for which an optimal
choice of ε is noteworthy.
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