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Abstract

In kernel-based approximation, the tuning of the so-called shape parameter
is a fundamental step for achieving an accurate reconstruction. Recently, the
popular Rippa’s algorithm [14] has been extended to a more general cross vali-
dation setting. In this work, we propose a modification of such extension with
the aim of further reducing the computational costs. The resulting Stochastic
Extended Rippa’s Algorithm (SERA) is first detailed and then tested by means
of various numerical experiments, which show its efficacy and effectiveness in
different approximation settings.
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1. Introduction

Let Ω ⊂ Rd be some bounded domain with sufficiently smooth boundary.
For some shape parameter ε > 0, we consider a strictly positive definite, radial,
and translation invariant kernel κε : Ω× Ω −→ R in the form of

κε(x,y) = ϕε(‖x− y‖) for x,y ∈ Ω,

where ‖·‖:= ‖·‖`2(Rd) is the Euclidean norm with some univariate radial basis
function ϕε : [0,∞) −→ R, say, Gaussian RBF ϕε(r) = exp(−(εr)2).

We aim to recover an unknown function f : Ω −→ R based on n ∈ N
nodal values at X = {x1, . . . ,xn} denoted by fX = (f(x1), . . . , f(xn))ᵀ with
an ansatz

S(x) =

n∑
i=1

ciκε(x,xi), (1)
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by imposing interpolation conditions at X. The vector of coefficients c =
(c1, . . . , cn)ᵀ in (1) is uniquely determined as the solution of the linear system

Kε(X,X)c = fX . (2)

The entries of the kernel matrix in (2) are given by [Kε(X,X)]ij = κε(xi,xj)
for xi,xj ∈ X. If Kε is severely ill-conditioned and some regularization is
needed (e.g. Tikhonov regularization), then the interpolation conditions might
be relaxed for an improved stability; for a complete introduction concerning
kernel-based approximation, refer to e.g. [5, 7].

The quality of a constructed approximant is often strongly influenced by
the value of the shape parameter, and consequently many strategies have been
proposed in the literature for its tuning; see e.g. [2, 3, 8, 15] and [7, Chapter 14]
for an overview. To perform such tuning, a possibility consists in performing
a Cross Validation (CV) scheme [9]. First, the dataset (i.e., X and fX in our
context) is divided into k ∈ N (possibly equal-sized) disjoint subsets, k ≤ n.
Then, k different interpolants, a.k.a. models, as in (1) are built upon k − 1
training folds. Their performance is then assessed on the respective remaining
validation fold. By setting p ≈ n/k, p ∈ N, this procedure can be intended as an
approximation of Leave-p-Out CV (LpOCV), where all possible combinations
of p elements are taken into account as validation set [4]. In the particular case
p = 1, the resulting Leave-One-Out CV (LOOCV) scheme computes an exact
n-fold CV, and it has been widely employed by the scientific community and
also generalized to other contexts e.g. in [6, 13]. In this paper, with an abuse
of definition, we will refer to LpOCV meaning k-fold CV with k ≈ n/p.

The purpose of this work is providing a modification of the Extended Rippa’s
Algorithm (ERA), which is described in Section 2, for achieving an even better
trade-off between computational time and accuracy of the resulting interpolant.
The proposed approach, which is valid also in the more general setting of other
single-parameter family of kernel matrix systems, say, Tikhonov regularization,
is detailed in Section 3 and tested in Section 4.

2. Extended Rippa’s Algorithm (ERA)

Assuming p � n, a naive implementation of LpOCV leads to a compu-
tational cost of order O(n4/p) for inverting approximately k ≈ n/p different
(n−p)× (n−p) linear systems, i.e., the cost of constructing circa k interpolants
whose related kernel matrix is of order n−p. Recently in [12], an ERA has been
proposed for a more efficient computation of LpOCV. The algorithm involves
the computation of the matrix inverse K−1

ε := [Kε(X,X)]−1, which is O(n3),
and the resolution of approximately n/p different p × p linear systems, which
is O(np2) (see [12, Section 2.2]). More precisely, by using the notation of [12],
let a value of ε be fixed; let v = (v1, . . . , vp)ᵀ ∈ {1, . . . , n}p, be one of the k
vectors of distinct validation indices, then the vector of ε-dependent validation
errors ev = ev(ε) related to the nodes xv1 , . . . ,xvp satisfies [K−1

ε ]v,vev = cv,
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where the vectorized index v extracts the i-th rows and j-th columns subsys-
tem with i, j ∈ v of the original. Augmenting all k validation error vectors
e(ε) := [eᵀv1

, . . . , eᵀvk
]ᵀ(ε) to form the full error, we define the LpOCV optimal

value by ε∗ = arg min‖e(ε)‖.

3. Stochastic Extended Rippa’s Algorithm (SERA)

The computational cost of the ERA is dominated by the calculation of K−1
ε .

In this section, we propose a stochastic strategy for approximating K−1
ε with

the aim of further speeding up the calculations. The scheme that we propose is
inspired by an idea in [16, Section 3.1], where the diagonal of K−1

ε is estimated by
means of a stochastic procedure, in the framework of LOOCV Rippa’s scheme
(see also [1]). In our more general LpOCV setting, many submatrices of K−1

ε

need to be approximated, thus some modifications are required.
Therefore, we propose the following stochastic low-rank approximation of

K−1
ε (see Algorithm 1), and we refer to the resulting scheme that makes use of

such an approximation as SERA.

Algorithm 1. Inverse matrix approximation in SERA

Inputs:
Kε: n× n kernel matrix;
s: natural number, 0 < s < n.
Core

1. Generate an n × s matrix Ws whose entries follow normal distri-
bution wij ∼ N (0, 1).
2. Define Us = KεWs.
3. Calculate the Moore–Penrose inverse U+

s := (Uᵀ
sUs)

−1Uᵀ
s , say, by

SVD.
4. Compute Vs = WsU

+
s and employ it as an approximation of K−1

ε .
Output:
Vs: n× n matrix approximating K−1

ε .

Remark 1. The column space of Us is a random subspace of the column space
of Kε. Furthermore, we point out that Vs = WsU

+
s = K−1

ε UsU
+
s , and UsU

+
s is

the orthogonal projector onto the column space of Us.

Proposition 1. The matrix Vs in Algorithm 1 has rank at most s. Moreover,
the computational cost required for its calculation is O(s2n+ sn2).

Proof. The first claim is ensured by a property concerning the rank of the prod-
uct of matrices. Then, Step 2 is O(n2s), Step 3 is O(ns2) (using SVD) and
finally Step 4 is O(n2s).

The overall complexity of SERA is then O(s2n + sn2 + np2) (see Section
1), which is quadratic with respect to n. Therefore, comparing the stochastic
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approximation to the exact ERA that is O(n3), there is convenience if s is
relatively small with respect to n. However, the smaller the value of s, the
poorer the approximation quality of Vs, with a possible loss in terms of accuracy.
Besides investigating these two intertwined aspects, in the next section we show
that the results obtained by the stochastic approach on a fine evaluation (test)
grid are comparable to the ones attained by the exact scheme.

4. Numerics

The experiments have been carried out in Matlab on a Intel(R) Core(TM)
i7-1165G7 CPU@2.80GHz processor. The Matlab software with the implemen-
tation of the proposed scheme is available for the scientific community at

https://github.com/cesc14/RippaExtCV .

In order to provide statistical significance, for each considered value of s, we
run SERA 100 times and we report the results by using boxplots; on each box,
the central red mark indicates the median, the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively, the whiskers stretch to
the most extreme data points not considered outliers, and finally the outliers
are displayed by using red crosses. We observe that if we set s = b

√
nc and we

repeat SERA b
√
nc time, then the overall cost is still O(n3), i.e., the same order

of ERA.

4.1. ERA vs. SERA
Let Ω = [−1, 1]2 and let f : Ω −→ R be the test function in [12] defined as

f(x) =
sin(x1)

x21 + 1
· cos(x2)

x22 + 1
, x = (x1, x2).

In the following, we test the proposed scheme in two numerical experiments. In
both tests, we take the classical L2-norm for the error and we tune the shape
parameter ε by using both ERA and SERA. After that, we test the performance
of the approximation schemes resulting from the parameter tuning by evaluating
the error with respect to f on a test equispacedm×m grid Ξm in Ω, withm = 30.
Concerning SERA, the entries of Ws are normal random numbers. Moreover,
letting q1, . . . , q` be equispaced reduction ratio values between q1 = 0.05 and
q` = 0.5, we set ` = 16 and we let s varying between s1 = b0.05n2c and
s` = b0.5n2c by considering the values si = bqin2c, i = 1, . . . , `.

4.1.1. Test 1a: Matérn C0 kernel
Similarly, we consider the following Matérn C0 kernel (see e.g. [5, Section

4.4]) ϕM,ε(r) = e−εr, and the equispaced grid n × n En of interpolation nodes
in Ω, with n = 20. We set p = 2, i.e. we consider approximated L2OCV,
and we take ε1 ∈ [0.01, 1], uniformly, as vector of 101 shape parameter values.
The results obtained by using ERA and SERA are displayed in Figure 1. More
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precisely, we report the shape parameter ε? chosen during validation (Figure
1(a)), the time employed by ERA and SERA (Figure 1(b)) and the test error
with respect to f on Ξm achieved by interpolating at En with ϕM,ε? (Figure
1(c)).
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(a) The chosen ε? ∈ ε1.
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Figure 1: Test 1a. On the x-axis, we let q1, . . . , q` vary. The results related to ERA are
depicted by means of a dashed blue line, while the performance of SERA varying si, i =
1, . . . , `, are reported by using boxplots. We consider the kernel ϕM,ε and the interpolation
set En.

4.1.2. Test 1b: Gaussian kernel
We consider the well-known Gaussian kernel (see e.g. [5, Section 2.1])

ϕG,ε(r) = e−(εr)2 . We set p = 5 and we take ε2 ∈ [0.1, 10], uniformly, as
vector of 101 shape parameter values that are considered in the validation pro-
cess. The interpolation set is the set of quasi-random n2 Halton points [10] Hn

in Ω, with n = 17. Due to the choice of Gaussian kernel, which often leads to
ill-conditioned interpolation processes (see e.g. [5, Section 2.1]), we have to em-
ploy some regularization strategy. Therefore, we use QR factorization in ERA
and SERA for regularizing the matrix inversions and the greedy algorithm pro-
vided [11] for the construction of the interpolant after the tuning of the shape
parameter. Analogously to Figure 1, in Figure 2 we display the results achieved
in this experiment setting. Here, with the considered regularization techniques,
the computational advantage with respect to ERA is even more remarkable.

4.2. Test 2: SERA varying n
The experiments provided in Section 4.1 suggest that the reduction ratio q =

0.2 might be taken into account as a reliable trade-off between computational
time and accuracy. In order to investigate on this heuristic intuition in a different
test, in the following we fix such a value for the reduction ratio, we set p = 3, we
take different Halton’s point interpolation sets Hni

in Ω, i = 1, . . . , `, with ni
equispaced between n1 = 20 and n` = 50, ` = 7, and corresponding equispaced
evaluation grids Ξni

in Ω. Moreover, we consider a different interpolation task
by taking the test function g : Ω −→ R defined as

g(x) = x21 − x42 + e−(x1+x2)
2

, x = (x1, x2),
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(a) The chosen ε? ∈ ε2.
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Figure 2: Test 1b. On the x-axis, we let q1, . . . , q` vary. The results related to ERA are
depicted by means of a dashed blue line, while the performance of SERA varying si, i =
1, . . . , `, are reported by using boxplots. We consider the kernel ϕG,ε and the interpolation
set Hn.

and theWendland C2 kernel (see e.g. [5, Section 11.2]) ϕW,ε(r) = (1−εr)4+(4εr+
1) with ε3 ∈ [0.01, 2], uniformly, as vector of 101 shape parameter values. Here,
we use Tikhonov regularization with regularizing parameter λ = 10−10. In Fig-
ure 3, the results confirm the suitability of the chosen reduction ratio according
to Section 4.1. Numerical results for other values of q ∈ [0.1, 0.3] yield sub-
plots with similar trends, which indicate that the tuning is not critical, and are
omitted from this report.
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Figure 3: Test 2. On the x-axis, we let n1, . . . , n` vary. The results related to ERA are
depicted by means of a dashed blue line, while the performance of SERA with q = 0.3 are
reported by using boxplots. We consider the kernel ϕW,ε and the interpolation sets Hni ,
i = 1, . . . , `. In Figures 3(b) and 3(c) both axes are in logarithmic scale.

5. Discussion and conclusions

In this paper, we proposed a stochastic approximation of the ERA that
is based upon a low-rank approximation of the full kernel matrix inverse K−1

ε

required by the scheme. In Section 4, we carried out some numerical experiments
to compare the performance of the ERA and the proposed SERA, which has
been detailed in Section 3. As confirmed by the tests, in which we considered
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different settings both regularized and non-regularized, the proposed SERA in
comparison to ERA

• can select nearby shape parameters of the same magnitude, but

• with a saving in computational cost, especially as the rank of the approx-
imating matrix Vs gets relatively small with respect to the one of K−1

ε ,
and

• can result in smaller interpolation error, i.e., better interpolants, with high
probabilities.

Therefore, the SERA may be considered for fast shape parameter tuning in the
context of RBF approximation. Future work consists of further investigations
concerning the optimization of the reduction ratio parameter.
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