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Abstract

In this letter we compare the behaviour of standard Virtual Ele-
ment Methods (VEM) and stabilization free Enlarged Enhancement
Virtual Element Methods (E2VEM) with the focus on some elliptic
test problems whose solution and diffusivity tensor are characterized
by anisotropies. Results show that the possibility to avoid an arbitrary
stabilizing part, offered by E2VEM methods, can reduce the magnitude
of the error on general polygonal meshes and help convergence.

1 Introduction

In recent years, polytopal methods for the solution of PDEs have received
a huge attention from the scientific community. VEM were introduced in
[3, 1, 4] as a family of methods that deal with polygonal and polyhedral
meshes without building an explicit basis of functions on each element, but
rather defining the local discrete spaces and degrees of freedom in such a
way that suitable polynomial projections of basis functions are computable.
The problem is discretized with bilinear forms that consist of a polynomial
part that mimics the operator and an arbitrary stabilizing bilinear form.
In [2], error analysis focused on anisotropic elliptic problems shows that the
stabilization term adds an isotropic component of the error, independently of
the nature of the problem. In [5], a modified version of the method, E2VEM,
was proposed, designed to allow the definition of coercive bilinear forms that
consist only of a polynomial approximation of the problem operator. In this
letter, we apply the two methods to solve some test Laplace problems with
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anisotropic solutions and diffusivity tensors. For each test, we compare the
relative energy errors done by each method.

Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary. We look
for a solution of Laplace problem with homogeneous Dirichlet boundary
conditions, that in variational form reads: find u ∈ H1

0(Ω) such that

(K∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0(Ω) , (1)

where (·, ·)Ω denotes the L2(Ω) scalar product and we assume f ∈ L2(Ω) and
K ∈ [L∞(Ω)]2×2 is a symmetric positive definite matrix.

2 Problem discretization

We consider a star-shaped polygonal tessellation Mh of Ω satisfying the
standard VEM regularity assumptions (see [4, 5]). Let k ∈ N such that
k ≥ 1 and, ∀E ∈Mh, let Π∇k,E : H1(E)→ Pk(E) be such that, ∀v ∈ H1(E),

(
∇Π∇k,Ev,∇p

)
E

= (∇v,∇p)E ∀p ∈ Pk(E) and

{∫
∂E Π∇k,Ev =

∫
∂E v if k = 1 ,∫

E Π∇k,Ev =
∫
E v if k > 1 .

2.1 Standard Virtual Element discretization

According to [4], we define the following virtual space on any E ∈Mh:

VEh,k =
{
vh ∈ H1(E) : ∆vh ∈ Pk(E) , vh|e ∈ Pk(e) ∀e ⊂ ∂E, vh|∂E ∈ C0(∂E) ,

(vh, p)E =
(
Π∇k,Ev, p

)
E
∀p ∈ Pk(E) /Pk−2(E)

}
, (2)

and the relative global space Vh,k = {vh ∈ H1
0(Ω): vh|E ∈ VEh,k ∀E ∈ Mh}.

Then (1) can be discretized by defining, ∀E ∈ Mh, the stabilizing bilinear
SE : VEh,k ×VEh,k → R such that, denoting by χE(vh) the vector of degrees of
freedom of vh on E (see [4]),

SE (uh, vh) = χE(uh) · χE(vh) ∀uh, vh ∈ VEh,k ,

and looking for uVh ∈ Vh,k that solves

∑
E∈Mh

(
KΠ0

k−1,E∇uVh ,Π0
k−1,E∇vh

)
E

+‖K‖L∞(E) S
E
(
(I −Π∇k,E)uVh , (I −Π∇k,E)vh

)
=
∑

E∈Mh

(
f,Π0

k−1,Evh
)
E
∀vh ∈ Vh,k , (3)

where Π0
k−1,E denotes the L2(E)-projection on Pk−1(E) or [Pk−1(E)]2, de-

pending on the context.
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2.2 Enlarged Enhancement Virtual Element discretization

In [5], the space defined in (2) has been modified in order to allow the discrete
problem to be well-posed without the need of defining a stabilizing bilinear
form. Let `E ∈ N be given ∀E, such that, denoting by NE the number of
vertices of E,

(k + `E)(k + `E + 1) ≥ kNE + k(k + 1)− 3 .

We define

WE
h,k,`E

=
{
vh ∈ H1(E) : ∆vh ∈ Pk+`E

(E) , vh|e ∈ Pk(e) ∀e ⊂ ∂E,

vh|∂E ∈ C0(∂E) , (vh, p)E =
(
Π∇k,Ev, p

)
E
∀p ∈ Pk+`E

(E) /Pk−2(E)
}
, (4)

that can be seen to have the same degrees of freedom of VEh,k. Let Wh,k,` =

{vh ∈ H1
0(Ω): vh|E ∈ WE

h,k,`E
∀E ∈ Mh}. Then, we can discretize (1) by

looking for uWh ∈ Wh,k,` such that, ∀vh ∈ Wh,k,` ,∑
E∈Mh

(
KΠ0

k+`E−1,E∇uWh ,Π0
k+`E−1,E∇vh

)
E

=
∑

E∈Mh

(
f,Π0

k−1,Evh
)
E
. (5)

The proof of well-posedness of (5) for k = 1 can be found in [5], while its
extension to k > 1 will be the subject of an upcoming work.

3 Numerical results

In all the test cases, we consider problem (1) on the unit square. We dis-
cretize the domain with the two families of polygonal meshes that are de-
picted in Figure 1, the first one being obtained using Polymesher [6], while
the second one is a family of standard cartesian meshes. We compare the
two methods described in the previous section by observing the behaviour
of the relative error computed in energy norm as

e? =

(∑
E∈Mh

∥∥∥√K∇(u−Π∇k,Eu
?
h

)∥∥∥2

L2(E)

) 1
2

∥∥∥√K∇u∥∥∥
L2(Ω)

? = V,W .

In the plots, we show the rate of convergence α computed using the last two
computed errors.

3.1 Test case 1

In the first test, we define the forcing term f such that the exact solution is
u(x, y) = 10−2xy(1− x)(1− y)(e20x− 1), whereas K = 8 · 10−3(e1e

ᵀ
1) + e2e

ᵀ
2,
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(a) Polymesher (b) Cartesian

Figure 1: Meshes used in tests.

(a) Order 1, Polymesher mesh (b) Order 3, Polymesher mesh

(c) Order 1, Cartesian mesh (d) Order 3, Cartesian mesh

Figure 2: Test case 1. Convergence plots.

Cartesian Polymesher

order 1 order 3 order 1 order 3

avg

∥∥AS
∥∥
∞

‖AΠ‖∞
1.00 0.23 1.05 0.27

Table 1: Test case 1. Average ratio through refinement between the infinity
norms of the polynomial part AΠ and the stabilizing part AS of the stiffness
matrix in standard VEM.

4



(a) Order 1, Polymesher mesh (b) Order 2, Polymesher mesh

Figure 3: Test case 2. Convergence plots.

Cartesian Polymesher

order 1 order 2 order 1 order 2

avg

∥∥AS
∥∥
∞

‖AΠ‖∞
1.00 0.56 1.11 0.62

Table 2: Test case 2. Average ratio through refinement between the infinity
norms of the polynomial part AΠ and the stabilizing part AS of the stiffness
matrix in standard VEM.

where e1 and e2 are the vectors of the canonical basis of R2. Figure 2 dis-
plays the behaviour of the errors obtained with the two methods and the
ratio eV/eW , for orders 1 and 3, with respect to the maximum diameter of the
discretization. The results show that the two methods behave equivalently
on cartesian meshes, whereas E2VEM performs better on the Polymesher

meshes with order 1, while the two methods tend to have the same behaviour
with higher orders. This is due to the strong anisotropy both of the solution
(that presents a strong boundary layer in the x-direction close to the bound-
ary x = 1 of the domain) and of the diffusivity tensor K. Indeed, as we can
see from Table 1, for k = 1 the stabilizing part of the VEM bilinear form is
of the same order of magnitude as the polynomial part, while for k = 3 we
can see that the polynomial part is predominant. This induces larger errors
(see Figure 2a) for the standard method on general polygonal meshes, such
as the ones in the Polymesher family, since the stabilization is an isotropic
operator. This effect is not felt by the E2VEM method since its bilinear
form consists only on a polynomial part that correctly takes into account
the anisotropy of the tensor K. The difference between the two methods is
mitigated on Cartesian meshes since they are by construction aligned with
the principal directions of the error (see the error analysis done in [2]).
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3.2 Test case 2

In the second test, the exact solution is u(x, y) = sin(2πx) sin(80πy) and
K = e1e

ᵀ
1 +6.25 ·10−4(e2e

ᵀ
2). In Figure 3 we display the error plots for orders

1 and 2 and Table 2 reports again the average ratio between the polynomial
and stabilizing parts of the standard VEM bilinear form. The results are
mostly consistent with the previous test, hence the convergence plots for
Cartesian meshes are not reported for brevity. However, we observe from
Figure 3a that with Polymesher meshes the E2VEM method reaches the
asymptotic rate of convergence before the standard VEM method. This is
due to the very strong anisotropy of the solution, due to its highly oscillating
behaviour in the y-direction.

4 Conclusions

In this letter, we compared the behaviour of standard VEM and E2VEM on
some Laplace test problems. Numerical results show that in the presence
of strong anisotropies of the solution and diffusivity tensor, when we ap-
ply the two methods on general polygonal meshes, E2VEM perform better
than VEM in lowest order. In all the other cases, the two methods behave
equivalently.
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