
ar
X

iv
:2

20
5.

11
18

2v
1 

 [
m

at
h.

N
A

] 
 2

3 
M

ay
 2

02
2

A note on a stable algorithm for computing the fractional

integrals of orthogonal polynomials

P.Amodio ∗ L.Brugnano † F. Iavernaro ‡

May 24, 2022

Abstract

In this note we provide an algorithm for computing the fractional integrals of orthogonal

polynomials, which is more stable than that using the expression of the polynomials w.r.t.

the canonical basis. This algorithm is aimed at solving corresponding fractional differential

equations. A few numerical examples are reported.
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1 Introduction

In recent years, the numerical solution of fractional differential equations has attracted the interest
of many computational scientists, due to their usefulness in applications: we refer to the monograph
[9] and to the review paper [8] for some details. In this paper, we introduce some improvements
to the implementation details related to the recent solution approach described in [1] and based on
previous work on HBVMs [6, 7, 4, 5, 2, 3], for solving fractional initial value problems in the form:

y(α)(t) = f(t, y(t)), t ∈ [0, T ], y(0) = y0. (1)

Here, for α ∈ (0, 1], y(α) ≡ Dαy(t) is the so-called Caputo fractional derivative:

Dαg(t) =
1

Γ(1− α)

∫ t

0

(t− x)−αg′(x)dx. (2)

For sake of brevity, we assume that the equation is scalar and α ∈ (0, 1]. However, the used
argument can be easily generalized to values of α > 0 and to systems of fractional differential
equations, also having different orders. The Riemann-Liouville integral associated with (2) is given
by:

Iαg(t) =
1

Γ(α)

∫ t

0

(t− x)α−1g(x)dx ≡ Ψαg(t)

Γ(α)
, (3)
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where the function Ψαg(t) has been defined for later use. It is known that [9]:

DαIαg(t) = g(t), IαDαg(t) = g(t)− g(0), Iαtj =
j!

Γ(α+ j + 1)
tj+α, j = 0, 1, 2, . . . . (4)

In order to obtain a quasi-polynomial approximation of the solution of (1), according to [2] we
expand the vector field along an orthonormal polynomial basis,

∫ 1

0

ω(c)Pi(c)Pj(c)dc = δij , i, j = 0, 1, . . . , (5)

with ω(c) a suitable weighting function,

ω(c) ≥ 0, c ∈ [0, 1],

∫ 1

0

ω(c)dc = 1. (6)

One obtains
f(cT, y(cT )) =

∑

j≥0

γj(y)Pj(c), c ∈ [0, 1], (7)

with the Fourier coefficients given by

γj(y) =

∫ 1

0

ω(c)Pj(c)f(cT, y(cT ))dc, j = 0, 1, . . . . (8)

A polynomial approximation of degree s − 1 to (7) is obtained by truncating the infinite series
at the right-hand side after s terms, which leads to the following fractional initial value problem
approximating (1):

σ(α)(cT ) =

s−1
∑

j=0

γj(σ)Pj(c), c ∈ [0, 1], σ(0) = y0, (9)

where γj(σ) is formally given by (8), upon replacing y by σ. The solution of (9) is a quasi-polynomial
of degree s− 1 + α, formally given by

σ(cT ) = y0 + hα

s−1
∑

j=0

γj(σ)I
αPj(c), c ∈ [0, 1]. (10)

In order to compute the Fourier coefficients γj(σ), one has to solve the system of equations:1

γj =

∫ 1

0

ω(c)Pj(c)f

(

cT, y0 + hα

s−1
∑

k=0

γkI
αPk(c)

)

dc, j = 0, . . . , s− 1. (11)

For this purpose, one may approximate the integrals in (11) with the corresponding Gaussian
quadrature of order 2s, whose abscissae are the zeros of Ps, Ps(ci) = 0, and with weights bi,
i = 1, . . . , s, thus solving

γj =

s
∑

i=1

biPj(ci)f

(

ciT, y0 + hα

s−1
∑

k=0

γkI
αPk(ci)

)

, j = 0, . . . , s− 1. (12)

1For sake of brevity, hereafter we shall neglect the argument σ in the Fourier coefficients.
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Consequently, one needs to compute the fractional integrals:

IαP0(ci), IαP1(ci), . . . , IαPs−1(ci), i = 1, . . . , s. (13)

The efficient and stable evaluation of the fractional integrals (13) is precisely the aim of this note.

2 Computing the fractional integrals

As is well-known, the family of orthonormal polynomials (5)-(6) satisfies a 3-term recurrence

P0(c) ≡ 1, c ∈ [0, 1],

P1(c) = (a1c− b1)P0(c), (14)

Pj(c) = (ajc− bj)Pj−1(c)− djPj−2(c), j ≥ 2,

for suitable coefficients aj , bj, dj , j ≥ 1 (with d1 = 0).
As an example, the coefficients

a1 = 2, b1 = 1, aj = 4, bj = 2, dj = 1, j ≥ 2, (15)

provide the shifted and scaled Chebyshev polynomials of the first kind, corresponding to the choice

of the weighting function ω(c) =
(

π
√

c(1 − c)
)−1

.

Another relevant example is provided by the shifted and scaled Legendre polynomials, corre-
sponding to the weighting function ω(c) ≡ 1, for which:

bj =
√

4− j−2, aj = 2bj, j ≥ 1, dj =
j − 1

j

√

2j + 1

2j − 3
, j ≥ 2. (16)

The following preliminary result holds true.

Lemma 1 For any given α > 0 and function g(c), and with reference to the function Ψαg(t) defined
in (3), one has:

Ψαcg(c) = cΨαg(c)−Ψα+1g(c).

Proof In fact, from (3) one has:

Ψαcg(c) =

∫ c

0

(c− x)α−1xg(x)dx =

∫ c

0

(c− x)α−1(x− c+ c)g(x)dx

= c

∫ c

0

(c− x)α−1g(x)dx −
∫ c

0

(c− x)αg(x)dx ≡ cΨαg(c)−Ψα+1g(c). �

Consequently, from the last property in (4), Lemma 1, and with reference to (13), the following
results follows (we omit their straightforward proofs, for sake of brevity).
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Theorem 1 The fractional integrals of the polynomials (14) are given by

IαPj(c) = ΨαPj(c)/Γ(α), j ≥ 0,

where:

ΨαP0(c) =
cα

α
,

ΨαP1(c) = (a1c− b1)Ψ
αP0(c)− a1Ψ

α+1P0(c), (17)

ΨαPj(c) = (ajc− bj)Ψ
αPj−1(c)− ajΨ

α+1Pj−1(c)− djΨ
αPj−2(c), j ≥ 2.

Corollary 1 For computing the fractional integrals

IαP0(c), IαP1(c), . . . , IαPs−2(c), IαPs−1(c), (18)

by means of the recurrence scheme (17), one needs to compute the following triangular table:

ΨαP0(c)
Ψα+1P0(c) ΨαP1(c)
Ψα+2P0(c) Ψα+1P1(c) ΨαP2(c)
...

...
...

. . .

Ψα+s−2P0(c) Ψα+s−3P1(c) Ψα+s−4P2(c) . . . ΨαPs−2(c)
Ψα+s−1P0(c) Ψα+s−2P1(c) Ψα+s−3P2(c) . . . Ψα+1Ps−2(c) ΨαPs−1(c)

(19)

whose diagonal provides, upon division by Γ(α), the integrals (18).

Remark 1 Since (17) is a 3-term recurrence, in order to evaluate the integrals (18) only 3 vectors
are actually needed, in place of the full triangular table (19). For convenience, in Appendix 5 we
list a corresponding Matlab© function.

We conclude this section by recalling that, by using the known expressions of the Chebyshev
and Legendre polynomials w.r.t. the canonical basis, and exploiting the last property in (4), one
obtains

• for the Chebyshev polynomials:

IαP0(c) =
cα

Γ(α+ 1)
, (20)

IαPj(c) = j
√
2

j
∑

i=0

(−1)j−i (j + i− 1)!i!

(j − i)!Γ(α+ i+ 1)
∏2i

k=1
k
2

ci+α, j ≥ 1;

• for the Legendre polynomials:

IαPj(c) =
√

2j + 1

j
∑

i=0

(−1)j−i (j + i)!

(j − i)!i!Γ(α+ i+ 1)
ci+α, j ≥ 0. (21)
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Clearly, both (20) and (21) can be efficiently evaluated by using a straightforward generaliza-
tion of the Horner algorithm. In more detail, if

IαPj(c) =

j
∑

i=0

pic
i+α, (22)

then we can evaluate:2

ρj = pj , ρi−1 = ρic+ pi−1, i = j, j − 1, . . . , 1, IαPj(c) ≡ ρ0c
α. (23)

3 Numerical tests

In this section we report a few numerical tests illustrating the advantage of the proposed procedure
(17) w.r.t. the standard one (23). All tests have been carried out on a 3GHz Intel Xeon W10 core
computer with 64GB of memory, running Matlab© 2020b.

At first, we show the maximum error in the computed fractional integrals (18), with α = 0.5 and
s = 25, in the case of the Chebyshev and Legendre polynomials, respectively computed by using:

• the Horner algorithm (20)-(23) and the 3-term recurrence (15)-(17);

• the Horner algorithm (21)-(23) and the 3-term recurrence (16)-(17).

Reference integrals have been computed by using the variable precision arithmetic of the Matlab©

Symbolic Toolbox. The obtained results are plotted in Figure 1: as one may see, in both cases, the
error growth is much more favorable (and similar) when using the 3-term recurrence (17), w.r.t.
the use of the canonical basis coupled with the Horner algorithm (23).

Next, we solve a fractional differential equation, using the expansions (9)–(12) of the vector
field, along the Chebyshev basis (14)-(15) and the Legendre basis (14)-(16). We compare the
methods obtained by using the Horner algorithms (20)-(23) and (21)-(23), with the corresponding
3-term recurrences (15)-(17) and (16)-(17), for computing the required fractional integrals (13). We
consider the following problem taken from [8]:

y(α)(t) = −y(t)
3

2 +
40320

Γ(9− α)
t8−α − 3

Γ(5 + α
2 )

Γ(5− α
2 )

t4−
α

2 +

(

3

2
t
α

2 − t4
)3

+
9

4
Γ(α+ 1),

(24)
t ∈ [0, T ], y(0) = 0,

whose exact solution is known to be

y(t) = t8 − 3t4+
α

2 +
9

4
tα.

As emphasized in [8], this problem is surely of interest because, unlike several other problems often
proposed in the literature, it does not present an artificial smooth solution, which is indeed not
realistic in most of the fractional-order applications. We solve the problem for α = 0.5, and T = 0.5
and T = 1. The results for the two cases are summarized in Figures 2 and 3, where we plot the
error ‖y − σ‖ w.r.t. the parameter s in (9):

2Of course, only one scalar ρ is actually needed in (23): the subscripts have been added for sake of clarity.
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Figure 1: Maximum error in the computed fractional integrals IαPj(c), α = 0.5, for the Chebyshev
and Legendre polynomials, respectively computed by using the Horner algorithms (20)-(23) and
(21)-(23), and the 3-term recurrences (15)-(17) and (16)-(17).
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Figure 2: Numerical solution of problem (24), with α = 0.5 and T = 0.5, by using the Chebyshev
polynomials (left plot), the Legendre polynomials (middle plot), and both computed by using (17)
(right plot).
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Figure 3: Numerical solution of problem (24), with α = 0.5 and T = 1, by using the Chebyshev
polynomials (left plot), the Legendre polynomials (middle plot), and both computed by using (17)
(right plot).
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• in both cases, as long as s ≤ 20, the errors produced by the 3-term recurrences (15)-(17)
and (16)-(17) is comparable (actually a bit smaller) than that obtained by the corresponding
direct formulae (20) and (21), computed via the Horner algorithm (23). A completely different
behavior emerges for larger values of s. The error stagnates (actually, grows) when using the
latter approach while, the better stability properties of the 3-term recurrence relations allows
us to improve the accuracy of the approximation for values of s up to 24.

• when using the 3-term recurrence (17), the approximation errors produced by the Chebyshev
and the Legendre polynomials are remarkably similar w.r.t. the parameter s.

Remark 2 It is worth noticing that the implementation of the fractional integrals (17) allows us
to improve the results in [1], obtained by using the Legendre polynomials computed via (23).

4 Conclusions

In this note, we have devised a 3-term recurrence for computing fractional integrals of orthogonal
polynomials. The corresponding algorithm has been used for solving fractional differential equa-
tions, and proved to be more effective than the standard approach based on the canonical basis.

Acknoledgements. The authors wish to thank the mrSIR crowdfunding [10] for the financial
support.

5 Appendix

function Ialfa = frac_int( a, b, d, alfa, c )

%

% Matlab function for computing the fractional integrals (18).

%

s = length(a);

Ialfa = zeros(s+1,1);

Psi1 = x.^(alfa+(0:s))./(alfa+(0:s));

Ialfa(1) = Psi1(1);

if s>=1

Psi2 = ( a(1)*x-b(1) )*Psi1(1:s) - a(1)*Psi1(2:s+1);

Ialfa(2) = Psi2(1);

for j = 2:s

Psi0 = Psi1;

Psi1 = Psi2;

Psi2 = ( a(j)*x-b(j) )*Psi1(1:s-j+1) - a(j)*Psi1(2:s-j+2) ...

- c(j)*Psi0(1:s-j+1);

Ialfa(j+1) = Psi2(1);

end

end

Ialfa = Ialfa/gamma(alfa);

return
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