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a b s t r a c t

Due to short test time, heat conduction was considered as transient in hypersonic
shock tunnels. The heat flux measurement and data processing were operated
basing on one-dimensional semi-infinite heat conduction theory. However, for
models with local large curvature or small radius, it resulted in significant
compression or expansion of space for heat transfer, or lateral heat conduction,
which made the hypothesis of one-dimensional unsatisfied and errors. In this paper,
approximate solutions for the unsteady heat conduction in cylindrically convex and
concave shells were established, and were used for further analysis of the errors,
with forms of heating load, location and curvature radius of heated surface taken
into consideration.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Hypersonic flights led to severe aerodynamic heating on vehicle surface and even accidents. Hypersonic
shock tunnels were usually used to obtain the heat flux at given experimental conditions, simulating flights
state [1,2]. Since the test time is as short as tens of milliseconds, the heat flux measurement can be regarded
as a transient and time dependent process [3,4]. The one-dimensional semi-infinite heat conduction theory
was used to convert the surface temperature into surface heat flux over time, with governing equation and
boundary conditions as follows:

∂T (x, t)
∂t

= k

ρc

∂2T (x, t)
∂x2 with ∂T

∂x

⏐⏐⏐⏐
x=0

= −q (t)
k

and T |x=∞ = const (1)

With Laplace transformation, the correlation between heat flux and temperature can be obtained

q (t) =
√

ρck√
π

∫ t

0

dT

dτ

⏐⏐⏐⏐
x=0

(t − τ)− 1
2 dτ (2)

∗ Corresponding author at: State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy
f Sciences, Beijing, 100190, China.

E-mail address: hanguilai@imech.ac.cn (G. Han).
ttps://doi.org/10.1016/j.aml.2022.108342
893-9659/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aml.2022.108342
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2022.108342&domain=pdf
mailto:hanguilai@imech.ac.cn
https://doi.org/10.1016/j.aml.2022.108342


G. Han, L. Qi and Z. Jiang Applied Mathematics Letters 134 (2022) 108342

H
e
r
fl
d

s
w
w
h

2

c
w

2

Fig. 1. Schematic of aerodynamic heating on cylindrically convex(a) and concave(b) shells.

with the discrete form for applications usually written as

q (tn) =
√

ρck√
π

n∑
i=1

Ti − Ti−1√
tn − ti +

√
tn − ti−1

(3)

One-dimensional theory rests on the basic assumption that curvature is small enough to be neglected.
owever, there always exist special components of aircraft with large local curvature, such as the leading

dge of wing, the junction between wing and fuselage, and airflow compression corners. Large local curvature
esults in significant two-dimensional or three-dimensional heat conduction [5,6], and obvious error in heat
ux processing by Eq. (3). In experiments, the error can always be observed even when we made sensor
iameter as small as 0.1 mm.

In this paper, different components of aircraft were simplified into two cylindrical cases, including convex
hells for leading edges of wings and rudders and concave shells for joints of wings and bodies. Criterions
ere set up to truncate the theoretical infinite series solution and form finite approximate solutions, which
ere validated by numerical simulations. With the approximate solutions, the error analysis under different
eat flux loading forms, locations and curvature radius of heat surface were completed.

. Approximate solutions

As mentioned before, convex shells with heating on r = b and concave shells with heat on r = a were
lassified and distinguished in Fig. 1. And linear governing equation in cylindrical coordinate system can be
ritten as

1
α

∂T (r, θ, t)
∂t

= ∂2T (r, θ, t)
∂r2 + 1

r

∂T (r, θ, t)
∂r

+ 1
r2

∂2T (r, θ, t)
∂θ2 (4)

.1. Exact solution of cylindrically convex shells

For convex case, the boundary and initial conditions can be described as:

Tr|r=b = qw(θ) (5)

T | = T | = 0 (6)
θ θ=0 θ θ=π/2

2
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T |r=a = const = T0 (7)

T |t=0 = const = T0 (8)

or transient process, the heat conduction was assumed not to affect the wall r = a. Hence, to simplify the
omogenization, Eq. (7) can be replaced with the zero gradient condition Tr|r=a = 0.

Basing on superposition principle, general solution can be found in textbooks and expressed as

T (r , θ, t) = V (r , θ) + W (r , θ, t) (9)

here V (r, θ) is a steady solution of Laplace equation with non-homogeneous boundary conditions of the
econd kind, and W (r, θ, t) is a solution of Helmholtz equation with a homogeneous boundary of the second
ind. With variables separation method applied, the general solution can be furtherly expressed as

T (t, r, θ) = C0 + D0 ln r +
∞∑

n=1
cos (2nθ)

(
Cnr2n + Dnr−2n

)
+

∞∑
n=1

∞∑
j=1

Cn,je−αλ2
n,jt cos (2nθ) [Cn,jJ2n (λn,jr) + Dn,jN2n (λn,jr)] (10)

nd the coefficients can be calculated by

C0 = T0 − 2b

π
ln a

∫ π
2

0
qw (θ) dθ D0 = 2b

π

∫ π
2

0
qw (θ) dθ

Cn = 2a−4n

nπ

∫ π
2

0 qw (θ) cos (2nθ) dθ

b2n−1a−4n + b−(2n+1) Dn = − 2
nπ

∫ π
2

0 qw (θ) cos (2nθ) dθ

b2n−1a−4n + b−(2n+1)

Cn,j =
∫ b

a
r

∫ π
2

0 [N ′
2n (λn,jb) J2n (λn,jr) − J ′

2n (λn,jb) N2n (λn,jr)] (T0 − V ) cos (2nθ) drdθ

N(λn,j)
∫ π

2
0 cos2 (2nθ) dθ

(11)

ith Jn and Nn denote the Bessel functions of the first and second kinds, λn,j denotes the jth positive
igenvalue of the nth order eigenvalue equation.

.2. Exact solution of cylindrical concave shells

For convex case, the boundary and initial conditions can be described as:

T |r=b = const = T0 (12)

Tθ|θ=0 = Tθ|θ=π/2 = 0 (13)

Tr|r=a = qw(θ) (14)

T |t=0 = const = T0 (15)

Similar to the replacement of Eq. (7), Eq. (15) was replaced with Tr|r=b = 0. For concave shells, the same
form of the general solution as Eq. (10) can be derived, with different coefficients listed as follows:

C0 = T0 − 2a

π
ln b

∫ π
2

0
qw (θ) dθ D0 = 2a

π

∫ π
2

0
qw (θ) dθ

Cn = −2b−4n

nπ

∫ π
2

0 qw (θ) cos (2nθ) dθ

a2n−1b−4n + a−(2n+1) Dn = 2
nπ

∫ π
2

0 qw (θ) cos (2nθ) dθ

a2n−1b−4n + a−(2n+1)

Cn,j =
∫ b

a
r

∫ π
2

0 [N2n (λn,jb) J2n (λn,jr) − J2n (λn,jb) N2n (λn,jr)] (T0 − V ) cos (2nθ) drdθ∫ π
2 2

(16)
N(λn,j) 0 cos (2nθ) dθ
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2.3. Approximate solution

Since the exact solution is too complex and inconvenient for application, we set up two criterions to
truncate the infinite series. For the steady part V (r, θ) of single series, the criterion can be concluded that
he series can be truncated when there are five consecutive terms can be neglected to the sum of previous
erms. And it can be written as

if

⏐⏐⏐⏐⏐Vn1/

n∑
i=1

Vi

⏐⏐⏐⏐⏐ ≤ ε, n1 ∈ {n, n + 1, n + 2, n + 3, n + 4} then n1 = n (17)

with ε set as 10−8.
For the unsteady part W (r, θ, t), the truncation can be obtained in the form of two series, which were

truncated over inner and outer summation. Treatment for the first summation can be written as

for each n, if

⏐⏐⏐⏐⏐⏐Wn,jn/

m∑
j=1

Wn,j

⏐⏐⏐⏐⏐⏐ ≤ ε, jn ∈ {m, m + 1, m + 2, m + 3, m + 4} then jn = m (18)

Hence, jn might varies with n increased.
And the treatment for the second summation can be expressed as

if

⏐⏐⏐⏐⏐⏐
j1∑

j=1
Wn2,j/

n2∑
n=1

⎛⎝ j1∑
j=1

Wn,j

⎞⎠⏐⏐⏐⏐⏐⏐ ≤ ε, n2 ∈ {n, n + 1, n + 2, n + 3, n + 4} then n2 = n (19)

With n1, n2 and jn determined respectively, the approximate solution of the temperature field can be
written as

T (t, r, θ) = C0 + D0 ln r +
n1∑

n=1
cos (2nθ)

(
Cnr2n + Dnr−2n

)
+

n2∑
n=1

jn∑
j=1

Cn,je−αλ2
n,jt cos (2nθ) [Cn,jJ2n (λn,jr) + Dn,jN2n (λn,jr)] (20)

Generally, n1 and n2 were less than 25, while jn was no more than 15.

3. Numerical validations

To validate the approximate solution, numerical simulation of the transient heat conduction was carried
out for the both convex and concave cases. Heat conduction equation in orthogonally curved coordinate
system was adopted as the governing equation and numerical solved by Finite Difference Method. The
unconditionally stable Du Fort-Frankel scheme was applied to discrete the governing equation, with second-
order accuracy in both time and space [7]. The computational domain was set as a = 3 mm, b = 5 mm
and θ ∈ [0, π/2], with 501 and 401 grid points uniformly distributed in r and θ direction, respectively. The

aterial was chosen as stainless steel used in general experiment, with α = 4.29 × 10−6 m2/s. The initial
temperature was set as T0 = 300 K, and boundary condition was set as qw(θ) = q0(π/2 − θ). For both
convex and concave shells, the numerical and theoretical results can match well with each other, including
the temperature distribution on heated wall and temperature evolution at given position, as shown in Fig. 2.
Therefore, the approximate solution was reliable for further analysis.
4
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Fig. 2. Comparisons between numerical and theoretical solutions by (a) T(r = b, t = 50 ms) and (b) T (r = b, θ = 0) for the convex
case, and (c) T(r = a, t = 50 ms) and (d) T (r = a, θ = 0) for the concave case.

4. Results and discussions

With the approximate solution Eq. (20), the temperature field in the models can be investigated
analytically. To analyze the error caused by traditional one-dimensional semi-infinite theory, the temperature
field at given instant and surface temperature evolution at given location were captured. The data processing
for heat flux was carried out by Eq. (3) of one-dimensional theory, and compared with actual heating load.
For different situation, the forms of heating load, position of heating and curvature radius were taken into
considerations.

4.1. Error analysis under different forms of heating load

The solution of a cylindrically convex shell made of stainless steel was chosen for the analysis, by setting a
= 3 mm and b = 5 mm. Four forms of heating load were defined as qw(θ) = q0cosnθ, with n = 0, 1, 3, 5 and
q0 = 0.1 MW/m2. The contour of temperature of can be directly calculated by the approximate solution,
as shown in Fig. 3. Within 50 ms, the depth of heat conduction was less than 2 mm, and the boundary at
r = a had not been affected. The difference in distribution of temperature can be observed significantly for
5
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Fig. 3. Approximate solution of temperature field at 50 ms with (a) qw(θ) = q0, (b) qw(θ) = q0cos θ, (c) qw(θ) = q0 cos3 θ and (d)
qw(θ) = q0 cos5 θ.

all the cases. For the case of n = 0, it is quasi one-dimensional heat conduction, the temperature distribution
along θ was uniform, and the field can be described as T (r, t). For cases of n = 1, 3 and 5, the temperature
distribution was decreased with θ increased. Hence, lateral heat conduction must play an important role
for the heat flux measurement and data processing. With n increased, the heating load was more and more
concentrated to the location of (r = b, θ = 0), so did the effected zones. For the later three cases, the heat
fluxes in lateral direction were calculated by the approximate solution, which were as high as 10% to 15%
of q0 at 50 ms.

The data processing for the heat flux at (r = b, θ = 0) was operated by Eq. (3), and compared with q0, as
shown in Fig. 4. At 50 ms, the error was estimated to be 5.6% to 3.2%, and decreased with n increased. And
the reason was due to the decrease of effected zones, which had been mentioned before. Therefore, it might
be regarded as a hint for us that larger effected zone came by larger data processing error. It was different
from the traditional knowledge for the measurement and data processing under concentrated heating load
at some components of vehicles caused by complex flows and interactions.
6
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Fig. 4. Processed heat flux by one-dimensional theory at (r = b, θ = 0) for convex shells.

4.2. Error analysis with different heating surface and curvatures

As mentioned in former sections, the scale of effected zone of heat conduction significantly influences the
data processing error. If the local curvature radius decreased, the effected zone will be relatively increased.
Therefore, the local curvature radius of aircraft components must obviously affect the error of processed heat
flux. And both convex and concave shells were investigated by different curvature radius for the effect to
error, which can also be named as local scale effect. For convex shells, five geometrical configurations were
designed for analysis, with curvature radius b decreased from 5.0 mm to 3.0 mm; and for concave shells, five
geometrical configurations were designed with curvature radius a decreased from 3.0 mm to 1.0 mm. In all
ten cases, the wall thickness (b - a) was always kept a constant as 2.0 mm. And the heating load form of
qw(θ) = q0 and q0 = 0.1 MW/m2 was applied as the boundary condition at r = b for convex cases and r
= a for concave cases, respectively.

The processed heat fluxes by Eq. (3) and their evolutions over time were indicated in Fig. 5(a). For convex
cases, the processed heat fluxes were about 5.1% to 8.2% higher than the actual value of q0. Since the heat
was transferred in the direction from r = b to r = a, the space for the heat was compressed, which made
the processed heat flux higher. In contrast, the heat fluxes were about 8.9% to 25.8% lower than the actual
q0 in concave cases. Due to the space expanded from r = a to r = b, processed heat flux was lower than
ctual value. Interestingly, with the decrease of the curvature radius for both convex and concave cases, the
elative error between processed heat flux and q0 will increased significantly. The nonlinear distribution of
error| can be consider as evidence for the scale effect caused by local curvature radius, as shown in Fig. 5(b).

. Conclusions

In this paper, approximate solutions for both cylindrically convex and concave shells were established,
runcating the infinite series of exact solutions. The validations of the approximate solutions were carried
ut by numerical simulations. The approximate solutions were applied to analyze the error for the heat flux
rocessing by traditional one-dimensional semi-infinite theory, with different forms of heating load, position
nd local curvature radius of heated surface taken into consideration. With observations and comparisons of
esults, it found that the error increased with effected zone of heat conduction relatively increased. Especially
or decrease of local curvature radius, the scale effect significantly and nonlinearly increased errors during

easurement and data processing for heat flux.
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Fig. 5. (a) Processed heat flux by one-dimensional theory and evolution over time with different local curvature radius at θ = 0; (b)
absolute value of processed heat flux error varied with curvature radius at t = 50 ms.
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