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Abstract

This paper investigates a sufficient condition of asymptotic stability in distribution of stochastic differential equa-
tions driven by G-Brownian motion (G-SDEs). We define the concept of asymptotic stability in distribution under
sublinear expectations. Sufficient criteria of the asymptotic stability in distribution based on sublinear expectations
are given. Finally, an illustrative example is provided.
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1. Introduction

Recently, the topic among the stability in distribution of SDEs has been extensively researched. Among
them, Du et al. [3] discussed a new sufficient condition for stability in distribution of stochastic differential delay
equations with Markovian switching. Li et al. [7] analyzed the stabilization in distribution of hybrid stochas-
tic differential equations by feedback control based on discrete-time state observations while the stabilisation in5

distribution by delay feedback control for hybrid SDEs is studied in You et al. [9]. In [7] and [9], we can find
other related literature on stability in distribution. On the other hand, a great number of work of SDEs driven by
G-Brownian motion is studied by many researchers, e.g., Peng [8], Fei et al. [4, 5], references therein.

So far, to the best of our knowledge, the stability in distribution of SDEs driven by G-Brownian motion (G-
SDEs) has not been discussed yet. In this paper, we try to investigate the following SDE disturbed by G-Brownian
motion

dX(t) = f (X(t))dt + g(X(t))dB(t) + h(X(t))d < B > (t) (1.1)

on a sublinear expectation space (Ω,H , Ê).
The main contribution of this paper is as follows.10

• The stability in distribution of G-SDEs is discussed under sublinear expectations.
•We provide a criterion of the stability in distribution of G-SDEs.
• New mathematical techniques are employed.

2. Preliminaries

In this section, let us give the concept of sublinear expectation space (Ω,H , Ê), where Ω is a given state set15

andH a linear space of real valued functions defined on Ω. The concepts of sublinear expectation and G-Brownian
motion come from Peng [8].

Below, we assume that G-Brownian motion is one-dimensional process with G(α) := 1
2 Ê[αB(1)2] = 1

2 (σ̄2α+−

σ2α−), where Ê[B(1)2] = σ̄2,−Ê[−B(1)2] = σ2, 0 < σ ≤ σ̄ < ∞. Let (Ht)t≥0 be a σ-field filtration generated by
G-Brownian motion (B(t))t≥0. We know that the weakly compact family of probability measures P characterizes
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the degree of Knightian uncertainty. Especially, if P is singleton, i.e. {P}, then the model has no ambiguity.
Moreover, the related calculus reduces to a classical one. In this paper, we set

P ={P(σ·) : (σt)t≥0 isHt-progressively measurable process, and σt ∈ [σ, σ̄] for each t ∈ [0,∞)}

which is a weakly compact family of probability measures on (Ω,B(Ω)). Here dB(t) = σ(t)dw(t), and w(t) is a
classical standard Brownian motion under probability measure P(σ·) (see, e.g. Fei et al. [4]). Thus, from Fei et al [4,
Proposition 2.3], we have Ê[X] = max

P∈P
EP[X], where EP is a classical linear expectation. We now define G-upper20

capacity V(·) and G-lower capacity V(·) by V(A) = supP∈P P(A), ∀A ∈ B(Ω), V(A) = infP∈P P(A), ∀A ∈ B(Ω).
By Chen [1, Lemma 2.4], we have V(A) = 1 −V(Ac), where Ac is the complement set of event A . The following
stochastic processes are based on the generalized nonlinear expectation space be (Ω,H , Ê,V, (Ht)t≥0).

Definition 2.1. (i). The distribution Fξ generated by d-dimensional random variable ξ inH is defined by

Fξ(A) = V{ω ∈ Ω : ξ(ω) ∈ A} = Ê[1{ω∈Ω:ξ(ω)∈A}], ∀A ∈ B(Rd).

(ii). For random variables ξ and η, we denote their distributions by Fξ and Fη, respectively. Define the distance of25

distributions of random variables ξ and η as follows dT(Fξ,Fη) = sup
φ∈T
|Ê[φ(ξ)] − Ê[φ(η)]|, where T = {φ : Rd →

R : |φ(x) − φ(y)| ≤ |x − y| and |φ(·)| ≤ 1}.
(iii). For the stochastic process (x(t))t≥0 on sublinear expectation space (Ω,H , Ê,V, (Ht)t≥0), we denote the dis-
tribution of x(t) by Fx(t) for each t ∈ [0,∞). If there is a distribution ν(·) of the random variable such that
dT(Fx(t), ν) = 0, as t → ∞, then, the stochastic process (x(t))t≥0 is called the (asymptotic) stability in distribution.30

We also call the process (x(t))t≥0 converges weakly to the distribution ν.

Lemma 2.2. For two random variables ξ, η inH , we have dT(Fξ,Fη) ≤ sup
φ∈T
|Ê[φ(ξ) − φ(η)]|.

Proof: For two random variables ξ, η in H , decompose T = T+ ∪ T−, where T+ = {φ ∈ T : Êφ(ξ) − Êφ(η) ≥ 0},
and T− = {φ ∈ T : Êφ(ξ) − Êφ(η) < 0}. By the property of sublinear expectation, we easily deduce our claim. 2

Denote the family of capacities on Rd by C(B(Rd)). It is easy to know that the metric dT on C(B(Rd)) is a35

distance, and (C(B(Rd)), dT) is a Polish space.
From [2, Proposition 2.1], we have the following inequality.

Lemma 2.3. Let ξ be a nonnegative random variable inH , and ϕ: R+ → R+ a nondecreasing function. Then we
have, for any ε > 0, V{ξ ≥ ε} ≤ Ê[ϕ(ξ)]

ϕ(ε) .

Now we consider the stochastic differential equation (1.1) with initial value X(0) = x, where (B(t))t≥0 is the
G-Brownian motion in R on the generalized nonlinear expectation space (Ω,H , Ê,V, (Ht)t≥0), and

f : Rd → Rd, g : Rd → Rd, h : Rd → Rd.

For Eq. (1.1), we provide the following locally Lipschitzian and linear growth conditions.40

Assumption 2.4. The functions f , g, h are locally Lipschitzian, i.e., for each k, there exists bk > 0 such that

| f (x) − f (y)| ∨ |g(x) − g(y)| ∨ |h(x) − h(y)| ≤ bk |x − y|

for those x, y ∈ Rd with |x|∨ |y| ≤ k, and the linear growth condition | f (x)|+ |g(x)|+ |h(x)| ≤ b(1+ |x|) for all x ∈ Rd,
and b > 0.

Under Assumption 2.4, we deduce Eq. (1.1) has a unique continuous solution X(t) on t ≥ 0 from Peng [8] or
Fei et al. [5].

Let C2(Rd;R+) denote the all nonnegative functions V(x) on Rd being continuously twice differential in x.45

For V ∈ C2(Rd;R+), we define G-operator L : Rd → R by LV(x) = Vx(x) f (x) + G(2Vx(x)h(x) + g>(x)Vxx(x)g(x)).
For the convenience of the reader, we provide the following lemma.

Lemma 2.5. Let V ∈ C2(Rd;R+) and τ1, τ2 be bounded stopping times such that 0 ≤ τ1 ≤ τ2 q.s. If both V(X(t))
and L(V(X(t))) are bounded on t ∈ [τ1, τ2] quasi surely, then we have

Ê[V(X(τ2))] ≤ Ê[V(X(τ1))] + Ê
[∫ τ2

τ1

LV(X(s))ds
]
.

Proof: From G-Itô formula from Peng [8, Proposition 3.6.3], we easily derive the claim. 2
2
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3. Asymptotic stability in distribution

In this section, we will set up some sufficient criteria on the asymptotic stability in distribution the solution50

process Xx(t) of SDE (1.1) with initial value X(0) = x ∈ Rd. We now give the following definition.

Definition 3.1. SDE (1.1) is called to have property (P1) if for any x ∈ Rd and any ε > 0, there exists a positive
constant H such that V{|Xx(t)| ≥ H} < ε, ∀t ≥ 0. SDE (1.1) is called to have property (P2) if for any ε > 0 and
any compact subset K of Rd, there exists a T = T (ε,K) > 0 such that V{|Xx(t) − Xy(t)| < ε} ≥ 1 − ε, ∀t ≥ T for
x, y ∈ K.55

It is well to know that property (P1) guarantees that for each ε > 0 there exists a compact subset K = K(ε, x)
of Rd such thatV(Xx(t) ∈ K) ≥ 1 − ε. We now state our main result.

Theorem 3.2. Let Assumption 2.4 hold. If SDE (1.1) have properties (P1) and (P2), then SDE (1.1) is asymptoti-
cally stable in distribution.

In order to complete the proof of this theorem, we need to prove three lemmas.60

Lemma 3.3. Let Assumption 2.4 be satisfied and SDE (1.1) have property (P2). Then, for each compact subset K
of Rd, we have lim

t→∞
dT(FXx(t),FXy(t)) = 0 uniformly in x, y ∈ K.

Proof. Set At = {|Xx(t) − Xy(t)| < ε/4}. Thus, there is T > 0 such that for t ≥ T , we get V(Ac
t ) = 1 −V(At) ≤ ε/4

by property (P2). Moreover, we have, for each P ∈ P and ∀t ≥ T ,

|EP[φ(Xx(t))] − EP[φ(Xy(t))]| ≤ EP[2 ∧ |Xx(t) − Xy(t)|]

≤ Ê[1At 2 ∧ |X
x(t) − Xy(t)|] + Ê[1Ac

t
2 ∧ |Xx(t) − Xy(t)|] <

ε

2
+ 2V(Ac

t ) ≤ ε.

Since φ, P are arbitrary, we obtain that sup
φ∈T
|Ê[φ(Xx(t)) − φ(Xy(t))]| < ε, ∀t ≥ T, which shows, by Lemma 2.2,

dT(FXx(t),FXy(t)) < ε,∀t ≥ T for all x, y ∈ Rd. Thus, we complete the proof. 2

Lemma 3.4. Let Assumption 2.4 be satisfied and SDE (1.1) have properties (P1) and (P2). Then, for any x ∈ Rd,65

{FXx(t)(·) : t ≥ 0} is Cauchy in the capacity space C(B(Rd)) with metric dT.

Proof. Fix x ∈ Rd arbitrarily. We need to prove that for any ε > 0, there is a T > 0 such that

dT(FXx(t+s),FXx(t)) < ε,∀t ≥ T, s > 0.

By Lemma 2.2, we only need to show

sup
φ∈T
|Ê[φ(Xx(t + s)) − φ(Xx(t))]| < ε, ∀t ≥ T, s > 0. (3.1)

In fact, for any φ ∈ T and t, s > 0, and each P ∈ P, we get

|EP[φ(Xx(t + s))] − EP[φ(Xx(t))]| ≤ |EP[EP[φ(Xx(t + s))]|Hs]] − EP[φ(Xx(t))]|

≤

∣∣∣∣ ∫
Rd

EP[φ(Xz(t))]p(s, x, dz) − EP[φ(Xx(t))]
∣∣∣∣ ≤ ∫

Rd
|EP[φ(Xz(t))] − EP[φ(Xx(t))]|p(s, x, dz)

≤ 2V(Xx(s) ∈ Bc
H) +

∫
BH

|EP[φ(Xz(t))] − EP[φ(Xx(t))]|p(s, x, dz), (3.2)

where BH = {x ∈ Rd : |x| ≤ H} and Bc
H = Rd \ BH , and p(s, x, dz) denotes the transition probability of solution

process Xx(s) with Xx(0) = x under probability measure P. From property (P1), there exists a positive number H
sufficiently large such that

V(Xx(s) ∈ Bc
H) <

ε

4
, ∀s > 0. (3.3)

Moreover, by Lemma 3.3, there exists a T (P) > 0 such that

sup
φ∈T
|EP[φ(Xz(t))] − EP[φ(Xx(t))]| ≤

ε

2
, ∀t ≥ T (P) (3.4)
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for any z ∈ BH . Thus, substituting (3.4) and (3.3) into (3.2), due to weak compactness of P, we can take T̄ =

maxP∈P T (P) < ∞ such that |Ê[φ(Xx(t + s)) − φ(Xx(t))]| ≤ ε, ∀t ≥ T̄ , s > 0. Since φ is arbitrary, the inequality
(3.1) holds. Thus, the proof is complete. 2
Proof of Theorem 3.2. From Lemma 3.4, {FXx(t) : t ≥ 0} is Cauchy in the space C(B(Rd)) with metric dT. Thus,70

there exists a unique ν ∈ C(B(Rd)) such that lim
t→∞

(FX0(t), ν) = 0. Moreover, by Lemma 3.3, for each x ∈ K, where K

is a compact subset of Rd, we obtain lim
t→∞

dT(FXx(t), ν) ≤ lim
t→∞

[dT(FX0(t), ν) + dT(FXx(t),FX0(t))] = 0. Thus, we prove
the claim. 2

The following proposition characterizes an equivalent definition of stability in distribution under sublinear
expectation. Here, weak convergence of capacities is defined by FP

ξn

w
−→ FP

ξ for each P ∈ P as n→ ∞, where, FP
ξn

75

and FP
ξ denote the distribution functions of random variables ξn and ξ under probability P, respectively. Here,

w
−→

stands for weak convergence of probability distribution.

Proposition 3.5. Weak convergence of capacities implies dT(Fξn ,Fξ) = 0 as n→ ∞.

Proof. By Ikeda and Watanabe [6, Proposition 2.5 in Chapter I], together with Lemma 2.2, we get easily our
claims. 280

Above proposition helps us to intuitively understand the stability in distribution under sublinear expectation.

4. Sufficient criteria for properties (P1) and (P2)

Theorem 3.2 above depends on properties (P1) and (P2). For applications of Theorem 3.2, we will estab-
lish sufficient criteria. Property (P1) is associated with boundedness while property (P2) is concerned uniformly
asymptotic stability. Thus, the importance of this section is clear.85

Let K denote the family of increasing functions κ : R+ → R+ such that κ(0) = 0, and K∞ the family of
functions κ ∈ K such that κ(s)→ ∞ as s→ ∞.

Assumption 4.1. Suppose that there are functions V ∈ C2(Rd;R+), κ ∈ K∞ positive numbers µ and α1 such that

κ(|x|) ≤ V(x), (4.1)
LV(x) ≤ −α1V(x) + µ (4.2)

for all x ∈ Rd.

We now give a criterion for property (P1).

Proposition 4.2. Let Assumption 4.1 hold. Then SDE (1.1) has property (P1).90

Proof. Fix any x ∈ Rd, and denote Xx(t) = X(t). Let k be a positive integer. Define the stopping time τk = inf{t >
0 : |X(t)| ≥ k}. Clearly, τk → ∞ q.s. as k → ∞. Let tk = τk ∧ t for each t. The G-Itô formula shows that

Ê[eα1tk V(X(tk))] ≤ V(x) + Ê
[ ∫ tk

0
eα1 sLV(X(s))ds

]
+ α1Ê

[ ∫ tk

0
eα1 sV(X(s))ds

]
.

In terms of (4.1) and (4.2), we have Ê[eα1tk V(X(tk))] ≤ V(x) + µ
∫ tk

0 eα1 sds = V(x) +
µ
α1

[eα1tk − 1]. Letting k → ∞,
we have

Ê[V(X(t))] ≤ V(x) +
µ

α1
, (4.3)

which, together with (4.1), shows Ê[κ(|X(t)|)] ≤ C, ∀t ≥ 0, where C denotes the right-hand term of (4.3). Thus, by
Lemma 2.3, we have

V{|X(t)| ≥ H} ≤
Ê[κ(|X(t)|)]

κ(H)
≤

C
κ(H)

, ∀t ≥ 0.

Therefore, for any ε > 0, taking sufficiently large H such that C/κ(H) < ε, we prove the result. 2
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Next, to establish a criterion for property (P2), we consider the difference between two solutions of (1.1)
starting from different initial values x, y

Xx(t) − Xy(t) =x − y +

∫ t

0
[ f (Xx(s)) − f (Xy(s))]ds +

∫ t

0
[g(Xx(s)) − g(Xy(s))]dB(s)

+

∫ t

0
[h(Xx(s)) − h(Xy(s))]d < B > (s). (4.4)

For a given function W ∈ C2(Rd;R+), define G-Itô operator LW : Rd × Rd → R associated with SDE (4.4) by

LW(x, y) = Wx(x − y)[ f (x) − f (y)]
+ G(2Wx(x − y)[h(x) − h(y)] + trace([g(x) − g(y)]>Wxx(x − y)[g(x) − g(y)])). (4.5)

We now give the following assumption for establishing property (P2).

Assumption 4.3. Suppose that there exist functions W ∈ C2(Rd;R+), ν1 ∈ K∞, ν2 ∈ K such that

W(0) = 0, (4.6)

ν1(|x|) ≤ W(x), ∀x ∈ Rd, (4.7)

LW(x, y) ≤ −ν2(|x − y|), ∀(x, y) ∈ Rd × Rd. (4.8)

Proposition 4.4. Let Assumption 4.3 hold. Then SDE (1.1) has property (P2).

Proof. For each ε ∈ (0, 1), in terms of continuity of W and (4.6), we can select β ∈ (0, ε) sufficiently small for

sup|u|≤β W(u)

ν1(ε)
<
ε

2
. (4.9)

Let K be a compact subset of Rd and fix any x, y ∈ K. Define now the stopping times τβ = inf{t ≥ 0 : |Xx(t) −
Xy(t)| ≤ β} and τ̃γ = inf{t ≥ 0 : |Xx(t) − Xy(t)| ≥ γ}, where γ > β. Set tγ = τ̃γ ∧ t. By the G-Itô formula, (4.7) and
(4.8), we derive that for each t > 0,

ν1(γ)V{τ̃γ ≤ t} ≤ Ê[1{tγ≤t}W(Xx(tγ) − Xy(tγ))] ≤ Ê[W(Xx(tγ) − Xy(tγ))]

≤ W(x − y) + Ê
[∫ tγ

0
LW(Xx(s), Xy(s))ds

]
≤ W(x − y).

Moreover, we have V{τ̃γ ≤ t} ≤ W(x−y)
ν1(γ) . For (x, y) ∈ K × K, the function W(x − y) is bounded, which implies that

there is a γ = γ(K, ε) > 0 such that

V{τ̃γ < ∞} ≤
ε

4
. (4.10)

Fix the γ. Let tβ = τβ ∧ τ̃γ ∧ t. Through the G-Itô formula and (4.8), we can deduce that for each t > 0, each P ∈ P,

0 ≤ EP[W(Xx(tβ) − Xy(tβ))] = W(x − y) + EP

[∫ tβ

0
LW(Xx(s), Xy(s))ds

]
≤ W(x − y) − ν2(β)EP(τβ ∧ τ̃γ ∧ t).

This shows EP(τβ ∧ τ̃γ ∧ t) ≤ W(x−y)
ν2(β) , which derive Ê(τβ ∧ τ̃γ ∧ t) ≤ W(x−y)

ν2(β) . Thus, from above inequality we get

tV{τβ ∧ τ̃γ ≥ t} = Ê[(τβ ∧ τ̃γ ∧ t)1{τβ∧τ̃γ≥t}] ≤ Ê(τβ ∧ τ̃γ ∧ t) ≤
W(x − y)
ν2(β)

.

Moreover, there exists a positive constant T = T (K, ε) such thatV{τβ ∧ τ̃γ ≤ T } > 1 − ε
4 . From (4.10), we get

1 −
ε

4
< V{τβ ∧ τ̃γ ≤ T } ≤ V{τβ ≤ T } +V{τ̃γ < ∞} ≤ V{τβ ≤ T } +

ε

4
,

which deduceV{τβ ≤ T } ≥ 1 − ε
2 . Thus, by Chen [1, Lemma 2.4] we have

V{τβ > T } ≤
ε

2
. (4.11)

5
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We now define the stopping times ρ = inf{t ≥ τβ ∧ T : |Xx(t) − Xy(t)| ≥ ε}. From (4.8), we know

LW(Xx(τβ ∧ t), Xy(τβ ∧ t)) ≤ −ν2(|Xx(τβ ∧ t) − Xy(τβ ∧ t)|) ≤ 0.

Thus, from the G-Itô formula, we get

Ê[1{τβ≤T }W(Xx(ρ ∧ t) − Xy(ρ ∧ t))] ≤ Ê[1{τβ≤T }W(Xx(τβ ∧ t) − Xy(τβ ∧ t))]

+ Ê
∫ ρ∧t

τβ∧t
1{τβ≤T }LW(Xx(s), Xy(s))ds

 ≤ Ê[1{τβ≤T }W(Xx(τβ ∧ t) − Xy(τβ ∧ t))]. (4.12)

For t > T , from (4.12), we have

V({τβ ≤ T } ∩ {ρ ≤ t})ν1(ε) ≤ Ê[1{τβ≤T,ρ≤t}W(Xx(ρ ∧ t) − Xy(ρ ∧ t))]

≤ Ê[1{τβ≤T }W(Xx(ρ ∧ t) − Xy(ρ ∧ t))] ≤ Ê[1{τβ≤T }W(Xx(τβ ∧ t) − Xy(τβ ∧ t))]

= Ê[1{τβ≤T }W(Xx(τβ) − Xy(τβ))] ≤ V{τβ ≤ T } sup
|u|≤β

W(u) ≤ sup
|u|≤β

W(u),

which, together with (4.9), get

V({τβ ≤ T } ∩ {ρ ≤ t}) <
ε

2
. (4.13)

By (4.11) and (4.13), we get V{ρ ≤ t} ≤ V({τβ ≤ T } ∩ {ρ ≤ t}) + V{τβ > T } < ε. Letting t → ∞ we obtain
V{ρ < ∞} < ε, which shows that for any (x, y) ∈ K × K, we haveV{|Xx(t) − Xy(t)| < ε} > 1 − ε, ∀t ≥ T. Thus, we95

complete the proof. 2

5. Examples

In this section, we provide two examples for illustrating our conclusions.

Example 5.1. Let B(t) be a scalar G-Brownian motion, and α andσ be constants. Consider the Ornstein-Uhlenbeck
process

dX(t) = αX(t)dt + σdB(t), t ≥ 0 (5.1)

with initial value X(0) = x0 ∈ Rd. SDE (5.1) has a unique solution

X(t) = eαt x0 + σ

∫ t

0
eα(t−s)dB(s). (5.2)

We observe that when α < 0, the distribution of the solution X(t) converges to the G-normal distribution ν ∼
N(0, [σ2/(2|α|), σ̄2/(2|α|)]) as t → ∞ for any x0, but when α ≥ 0, the distribution will not converge. Thus, SDE100

(5.2) is asymptotically stable in distribution if α < 0 but it is not if α ≥ 0.
In fact, in order to apply Propositions 4.2 and 4.4, we set V(x) = x2. Thus, we get LV(x) = 2αV(x) + σ2σ̄2.

Moreover, Assumption 4.1 holds as α < 0. On the other hand, we obtain

LV(x, y) = 2α(x − y)2 + σ2σ̄2 = 2αV(x − y) + σ2σ̄2,

which implies Assumption 4.3 holds as α < 0. Then by Propositions 4.2 and 4.4, we can also get stability in
distribution of SDE (5.1) as α < 0.
(Algorithm and simulation) In order to illustrate stability in distribution of solution of SDE (5.1), we provide an
algorithm as follows. We select σ = σ0 < σ1 < · · · < σm = σ̄ such that σi+1 − σi = σi − σi−1, i = 1, · · · ,m. Let
h be a small positive number. For any t > 0, there a positive integer k such that t ∈ [(k − 1)h, kh). The discrete
approximation solution of SDE (5.2) with probability measure P(σi) can be expressed as

X j(kh, σi) = eα(k−1)hx0 + eα(k−1)h
k−1∑
`=0

e−α`hσi∆w j
`
,

where for each ` (` = 0, · · · , k − 1), ∆w j
`

( j = 1, · · · , n) are random numbers from the normal distribution ∆w ∼
N(0, h). Let ν j

i ( j = 1, · · · , n) are random numbers from normal distribution νi ∼ N(0, σ2
i /(2|α|)). Define the error

of two distributions of random variables X(t) and ν as follows

e(kh) =
1

(m + 1)n

m∑
i=0

n∑
j=1

(
(X j(kh, σi))2 − (ν j

i )
2
)
.
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Fig. 1. The computer simulation of the errors |e(kh)|with α = −1, σ = 0.8, σ̄ = 1, x0 = 1, h = 0.001, n = 1000,m =

20.

Obviously, for each σi(i = 0, 1, · · · ,m), EP(σi ) [X(t)] → EP(σi ) [ν] as t → ∞. If the error |e(kh)| → 0 as k → ∞, then
we claim stability in distribution of solution of SDE (5.1). Indeed, a simulation figure (see Figure 1) shows this105

assertion.
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