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The energy method for high-order invariants in shallow water wave equations
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Abstract

Third order dispersive evolution equations are widely adopted to model one-dimensional long waves and have

extensive applications in fluid mechanics, plasma physics and nonlinear optics. Among them are the KdV equation,

the Camassa–Holm equation and the Degasperis–Procesi equation. They share many common features such as

complete integrability, Lax pairs and bi-Hamiltonian structure. In this paper we revisit high-order invariants

for these three types of shallow water wave equations by the energy method in combination of a skew-adjoint

operator (1 − ∂xx)
−1. Several applications to seek high-order invariants of the Benjamin-Bona-Mahony equation,

the regularized long wave equation and the Rosenau equation are also presented.
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1. Introduction

A family of third order dispersive evolution equations of the form

ut − α
2uxxt + γuxxx + c0ux = (c1u2

+ c2u2
x + c3uuxx)x, x ∈ R, t > 0 (1.1)

frequently appeared in the simulation of the shallow water waves, see e.g., [1], where α, γ and ci (i = 0, 1, 2, 3) are

real constants; u denotes a horizontal velocity field with the independent spatial variable x and temporal variable t.

A typical such equation (1.1) with α2
= c0 = c2 = c3 = 0, c1 = 2, γ = −2 is the KdV equation

ut − 4uux − 2uxxx = 0, x ∈ R, t > 0, (1.2)

which describes the unidirectional propagation of waves at the free surface of shallow water under the influence

of gravity. The first four invariants of (1.2) are respectively as (see e.g., [2], although there is a minor typo in the

coefficient of the fourth invariant, it does not affect the reading of this classic review)

M1 =

∫

R

udx, M2 =

∫

R

u2dx, M3 =

∫

R

(

u2
x −

2

3
u3
)

dx, M4 =

∫

R

(

u2
xx −

10

3
uu2

x +
5

9
u4
)

dx.

Taking α2
= c3 = 1, γ = c0 = 0, c1 = −

3
2
, c2 =

1
2
, we have another example called the Camassa–Holm

equation [3]

ut − uxxt + 3uux = 2uxuxx + uuxxx, x ∈ R, t > 0, (1.3)

which models the unidirectional propagation of shallow water waves over a flat bottom. The first three invariants

are listed as follows

E1 =

∫

R

(u − uxx)dx, E2 =
1

2

∫

R

(u2
+ u2

x)dx, E3 =
1

2

∫

R

u(u2
+ u2

x)dx.

The third example by assigning α2
= c2 = c3 = 1, γ = c0 = 0, c1 = −2 is called the Degasperis–Procesi

equation

ut − uxxt + 4uux = 3uxuxx + uuxxx, x ∈ R, t > 0, (1.4)
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which can be regarded as a model for nonlinear shallow water dynamics [4]. The frequently discussed invariants

are

H1 =

∫

R

(u − uxx)dx, H2 =

∫

R

(u − uxx)vdx, H3 =

∫

R

u3dx,

where 4v − vxx = u.

Up to now, there have been thousands of papers focusing on the theoretical and numerical studies on these three

equations. It is worth mentioning that the invariant-preserving property is a key index of the success for numerical

methods. However, high-order invariants are usually difficult to preserve numerically. Liu et al. also pointed out “it

appears a rather difficult task to preserve all three conservation laws” in [5]. In this work, higher-order invariants of

these equations will be re-derived in view of the energy method, which may be possible to provide some thoughts

for invariant-preserving numerical methods. Actually, the energy method originated from conservation laws in

physics was first proposed in 1928 by Courant, Friedrichs and Lewy [6]. From then on, it has been widely applied

to the mathematical and numerical analysis of nonlinear evolution equations. We trust the readers with [7] instead

of a long list of references to relevant works.

The rest of the paper is arranged as follows. In Section 2, combining the energy method and a skew-

adjoint operator, we show the high-order invariants for the KdV equation, the Camassa–Holm equation and the

Degasperis–Procesi equation, respectively. Then we list several applications for seeking some high-order invariants

of other types of the shallow water wave equations in Section 3.

2. Main results

In what follows, we directly show that Mi (i = 1, 2, 3, 4), Ei (i = 1, 2, 3) and Hi (i = 1, 2, 3) are invariants of

(1.2), (1.3) and (1.4) subjected to the periodic boundary conditions based on the energy method, respectively.

2.1. Invariants of the KdV equation

Proof: (I) Multiplying by 1, u and (u2
+ uxx), respectively, with (1.2), we have Mi (i = 1, 2, 3). In what follows, we

show the fourth invariant M4 of the KdV equation by the energy method.

Multiplying both sides of (1.2) by 2uxxxx +
10
3

u2
x +

20
3

uuxx +
20
9

u3 and integrating the result, we have

0 =

∫

R

(

2uxxxx +
10

3
u2

x +
20

3
uuxx +

20

9
u3
)

· utdx

−

∫

R

(

2uxxxx +
10

3
u2

x +
20

3
uuxx +

20

9
u3
)

· (4uux + 2uxxx)dx

=

∫

R

[

2uxxuxxt −
10

3
(utu

2
x + 2uuxuxt) +

20

9
u3ut

]

dx

−

∫

R

(

2uxxxx +
10

3
u2

x +
20

3
uuxx +

20

9
u3
)

· (4uux + 2uxxx)dx

=
d

dt
M4 − 8

∫

R

uuxuxxxxdx −
40

3

∫

R

uu3
xdx −

80

3

∫

R

u2uxuxxdx −
80

9

∫

R

u4uxdx

− 4

∫

R

uxxxuxxxxdx −
20

3

∫

R

uxxxu
2
xdx −

40

3

∫

R

uuxxuxxxdx −
40

9

∫

R

u3uxxxdx. (2.1)

It remains to check that the sum of all the integral terms in the above equation is zero. Calculating each term in

(2.1) using the integration by parts, we have

− 8

∫

R

uuxuxxxxdx = −20

∫

R

uxu
2
xxdx, (2.2)

−

80

3

∫

R

u2uxuxxdx =
80

3

∫

R

uu3
xdx, (2.3)

−

80

9

∫

R

u4uxdx = 0, (2.4)

− 4

∫

R

uxxxuxxxxdx = 0, (2.5)

2



−

20

3

∫

R

uxxxu
2
xdx =

40

3

∫

R

uxu
2
xxdx, (2.6)

−

40

3

∫

R

uuxxuxxxdx =
20

3

∫

R

uxu2
xxdx, (2.7)

−

40

9

∫

R

u3uxxxdx = −
40

3

∫

R

uu3
xdx. (2.8)

Substituting (2.2)–(2.8) into (2.1), we have d
dt

M4 = 0, which completes the proof.

Remark 1. Suppose the general form of the KdV equation is

ut − auux − buxxx = 0,

and the corresponding high-order invariant

M(t) =

∫

R

(u2
xx − Auu2

x + Bu4)dx.

Using the same method above, we could derive

{

5a = 3Ab,

12Bb = Aa,

which can be rewritten as

a

b
=

3A

5
=

12B

A
.

Therefore, it follows

A2
= 20B.

For instance, when a = −6, b = −1, we have A = 10, B = 5, which deduces to the KdV equation as

ut + 6uux + uxxx = 0,

with a fourth-order invariant

M(t) =

∫

R

(u2
xx − 10uu2

x + 5u4)dx.

2.2. Invariants of the Camassa–Holm equation

Proof: Multiplying by 1 and u on both sides of (1.3), respectively, and then integrating the results, which implies

E1 and E2 through the integration by parts. Below, we prove E3 by the energy method. Firstly, noticing that (1.3)

can be written with a skew-adjoint operator (1 − ∂xx)−1 as

ut + uux + ∂x(1 − ∂xx)
−1
(

u2
+

1

2
u2

x

)

= 0.

Let g = (1 − ∂xx)
−1
(

u2
+

1
2
u2

x

)

. Then we see from the above equation that (1.3) is equivalent to



















ut + uux + gx = 0, (2.9)

g − gxx = u2
+

1

2
u2

x. (2.10)

Multiplying (2.9) by 3u2
+ u2

x − 2(uux)x and integrating the result on both sides, we have

0 =

∫

R

(ut + uux + gx) · (3u2
+ u2

x − 2(uux)x)dx

=

∫

R

ut · (3u2
+ u2

x − 2(uux)x)dx +

∫

R

(uux + gx) · (3u2
+ u2

x − 2(uux)x)dx

, A + B. (2.11)

3



Calculating each term derives that

A =

∫

R

ut · (3u2
+ u2

x − 2(uux)x)dx

=

∫

R

ut · (3u2
+ u2

x)dx +

∫

R

2uux · uxtdx

=

∫

R

ut · 3u2dx +

∫

R

ut · u
2
xdx +

∫

R

u · (u2
x)tdx

=

∫

R

(u3)tdx +

∫

R

(u · u2
x)tdx

=
d

dt

∫

R

(u3
+ uu2

x)dx (2.12)

and

B =

∫

R

(uux + gx) · (3u2
+ u2

x − 2(uux)x)dx

=

∫

R

u · u3
xdx +

∫

R

gx · (3u2
+ u2

x)dx −

∫

R

gx · 2(uux)xdx

=

∫

R

u · u3
xdx +

∫

R

gx · (3u2
+ u2

x)dx + 2

∫

R

gxx · uuxdx

=

∫

R

u · u3
xdx +

∫

R

gx · (3u2
+ u2

x)dx + 2

∫

R

(g − u2
−

1

2
u2

x) · uuxdx

=

∫

R

gx · (3u2
+ u2

x)dx + 2

∫

R

g · uuxdx

=

∫

R

gx · (3u2
+ u2

x)dx −

∫

R

gx · u
2dx

=

∫

R

gx · (2u2
+ u2

x)dx

= 2

∫

R

gx · (g − gxx)dx = 0. (2.13)

Substituting (2.12) and (2.13) into (2.11), we have

d

dt

∫

R

(u3
+ uu2

x)dx = 0,

which implies E3.

2.3. Invariants of the Degasperis–Procesi equation

Proof: Integrating on both sides of (1.4), it easily obtains H1. Then we show invariants H2 and H3 of (1.4),

respectively. Firstly let g = (1 − ∂xx)
−1
(

3
2
u2
)

, then (1.4) is equivalent to



















ut + uux + gx = 0, (2.14)

g − gxx =
3

2
u2. (2.15)

Multiplying by 2u − 6v on both sides of (2.14) and then integrating the result, we have

0 =

∫

R

(ut + uux + gx) · (2u − 6v)dx

=

∫

R

ut · (2u − 6v)dx +

∫

R

uux · (2u − 6v)dx +

∫

R

gx · (2u − 6v)dx

, C + D. (2.16)

4



The each term in the above identity is estimated as

C =

∫

R

ut · (2u − 6v)dx = 2

∫

R

ut · udx − 6

∫

R

ut · vdx = 2

∫

R

ut · udx − 6

∫

R

(4vt − vxxt) · vdx

= 2

∫

R

ut · udx − 24

∫

R

vt · vdx − 6

∫

R

vxt · vxdx =
d

dt

∫

R

(u2
− 12v2

− 3v2
x)dx

=
d

dt

∫

R

(

u2
− 3(4v − vxx) · v

)

dx =
d

dt

∫

R

(u2
− 3uv)dx =

d

dt

∫

R

u · (u − 3v)dx

=
d

dt

∫

R

u · (v − vxx)dx =
d

dt

∫

R

(u − uxx) · vdx (2.17)

and

D =

∫

R

uux · (2u − 6v)dx +

∫

R

gx · (2u − 6v)dx

= −6

∫

R

uux · vdx +

∫

R

gx · (2u − 6v)dx

= 3

∫

R

u2
· vxdx +

∫

R

gx · (2u − 6v)dx

= 2

∫

R

(g − gxx) · vxdx +

∫

R

gx · (2u − 6v)dx

= 2

∫

R

g · vxdx − 2

∫

R

gxx · vxdx +

∫

R

gx · (2v − 2vxx)dx

= 2

∫

R

g · vxdx + 2

∫

R

gx · vdx − 2

∫

R

gxx · vxdx − 2

∫

R

gx · vxxdx

= 2

∫

R

(gv)xdx − 2

∫

R

(gx · vx)xdx = 0. (2.18)

Substituting (2.17) and (2.18) into (2.16), we have

d

dt

∫

R

(u − uxx) · vdx = 0,

which implies H2.

Finally, we show H3. Multiplying (2.14) on both sides by u2 and integrating the result, it yields by noting (2.15)

0 =

∫

R

(ut + uux + gx) · u
2dx

=

∫

R

ut · u
2dx +

∫

R

u3
· uxdx +

∫

R

gx · u
2dx

=

∫

R

(1

3
u3
)

t
dx +

2

3

∫

gx · (g − gxx)dx

=
1

3

d

dt

∫

R

u3dx,

which implies the invariant H3.

3. Applications to other periodic nonlinear dispersive waves

3.1. Benjamin-Bona-Mahony equation

Consider the Benjamin-Bona-Mahony equation [8] of the form

ut − uxxt + ux + εuux = 0, x ∈ R. (3.1)

5



It can be written as

ut + ∂x(1 − ∂xx)−1
(

u +
ε

2
u2
)

= 0, x ∈ R.

Let g = (1 − ∂xx)
−1
(

u + ε
2
u2
)

, then the equation (3.1) turns out to be















ut + gx = 0, (3.2)

g − gxx = u +
ε

2
u2. (3.3)

Multiplying both sides of (3.2) by u2 and integrating the result, and then using (3.3), we have

0 =

∫

R

(ut + gx) · u2dx =

∫

R

ut · u
2dx +

∫

R

gx · u
2dx

=

∫

R

ut · u
2dx +

2

ε

∫

R

gx · (g − gxx − u)dx =

∫

R

ut · u
2dx −

2

ε

∫

R

gx · udx

=

∫

R

ut · u
2dx +

2

ε

∫

R

ut · udx =
d

dt

∫

R

(1

3
u3
+

1

ε
u2
)

dx,

which indicates
∫

R

1

3

(

u3
+

1

ε
u2
)

dx

is a three-order invariant for (3.1).

3.2. Regularized long wave equation

Consider the regularized long wave equation [9] of the form

ut − µuxxt + ux + upux = 0, (3.4)

where µ > 0 is a positive constant. When p = 2, it is called modified regularized long wave equation; when p > 3,

it is called generalized regularized long wave equation. Similar to the foregoing argument, (3.4) can be written as

an equivalent form of



















ut + gx = 0, (3.5)

g − µgxx = u +
1

p + 1
up+1. (3.6)

Multiplying both sides of (3.5) by up+1, integrating the result, and then using (3.6), we have

0 =

∫

R

(ut + gx) · u
p+1dx =

∫

R

ut · u
p+1dx +

∫

R

gx · u
p+1dx

=

∫

R

ut · u
p+1dx + (p + 1)

∫

R

gx · (g − µgxx − u)dx

=

∫

R

ut · u
p+1dx − (p + 1)

∫

R

gx · udx

=

∫

R

ut · u
p+1dx + (p + 1)

∫

R

ut · udx

=
d

dt

∫

R

( 1

p + 2
up+2
+

p + 1

2
u2
)

dx,

which indicates
∫

R

( 1

p + 2
up+2
+

p + 1

2
u2
)

dx

is a high-order invariant for (3.4). This corrects an invariant I3 in Example 4 appeared in [10] (pp. 492).

6



3.3. Rosenau equation

Consider the Rosenau equation [11]

ut + uxxxxt + ux + uux = 0, (3.7)

which is equivalent to



















ut + gx = 0, (3.8)

g + gxxxx = u +
1

2
u2. (3.9)

Multiplying both sides of (3.8) by u2 and noticing (3.9), similar to the argument in the above, we have a third-order

invariant for (3.7) of the form

∫

R

(1

3
u3
+ u2
)

dx.
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