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Abstract

For the time-space fractional degenerate Keller-Segel equation

{

∂βt u = −(−∆)
α
2 (ρ(v)u), t > 0

(−∆)
α
2 v + v = u, t > 0

x ∈ Ω,Ω ⊂ R
n, β ∈ (0, 1), α ∈ (1, 2), we consider for n ≥ 3 the problem of

finding a time-independent upper bound of the classical solution such that
as θ > 0, C > 0

‖u(·, t)− u0‖L∞(Ω) + ‖v(·, t)− u0‖W 1,∞(Ω) ≤ Ce(−θ)1/β t,

where u0 = 1
|Ω|

∫

Ω
u0dx. We find such solution in the special cases of time-

independent upper bound of the concentration with Alikakos-Moser iteration
and fractional differential inequality. In those cases the problem is reduced
to a time-space fractional parabolic-elliptic equation which is treated with
Lyapunov functional methods. A key element in our construction is a proof
of the exponential stabilization toward the constant steady states by using
fractional Duhamel type integral equation.
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1. Introduction

We consider the class of classcial solutions of the parabolic- elliptic time-
space fractional Keller-Segel model



















∂βt u = −(−∆)
α
2 (ρ(v)u), x ∈ Ω, t > 0

(−∆)
α
2 v + v = u, x ∈ Ω, t > 0

∂vu = ∂vv = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω

(1.1)

where β ∈ (0, 1), α ∈ (1, 2). The precise definition of the fractional Laplacian
is given in Appendix A.3. For β = 1, α = 2 we recover the parabolic-
elliptic simplification of the original Keller-Segel model with signal-dependent
motility for local sensing chemotaxis, whose theory is well known in [1]. We
also assume that we are given initial data

u0 ∈ C0(Ω), u0 ≥ 0, u0 6≡ 0. (1.2)

However, the signal-dependent decreasing function ρ(·) has recently attracted
some attention in theoretical analysis. For facilitate the need for proof the-
orem 1.1, we have listed in Appendix B the most relevant sources to the
applications that we know of. Compared with reference [1], the paper ob-
tains more meaningful results of the solution of time-space fractional Keller-
Segel in the sense of fractional derivative, and uses fractional order related
inequalities in the proof process to simplify the problem.

We refer to [2] for the basic theory of existence and uniqueness of clas-
sical solutions for equation (1.1). There were many literature discussing the
existence and uniqueness of solutions to the time-space fractional Keller-
Segel equation [3, 4, 5]. Li et al [3] prove the unique existence, blow-up
behavior and nonegativity preservation of mild solution was obtained in Lpc

space, where pc is the critical index. Jiang and Wang [4] discussed the ex-
istence,mass conservation and decay properties of weak solutions to time-
space fractional parabolic-elliptic Keller-Segel model. Nguyen et al [5] study
Cauchy problem of the time-space fractionalKeller-Segel model in a criti-
cal homogeneous Besov space with the assumption that the initial datum is
sufficiently small by Banach fixed point theorem, some special functions.

Let us first recall some previous results on fractional Keller-Segel equa-
tion. Since there is a large amount of papers for these equations, we mention
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the ones related to our results. The results take different forms according to
the value of the exponent α, β. For higher dimensions n ≥ 3 and α = 2, β = 1,
the boundedness was studied in several works provided that ρ satisfies some
algebraically decreasing assumptions [6, 7, 8]. When α = 2 and β ∈ (0, 1),
the fractional operator −(−∆)

α
2 become the standard Laplacian ∆, which is

a time fractional Keller-Segel model. Such equation were obtained for the
fractional PDEs by Azevedo et al [9] and Cuevas, Claudio et al [10]. When
β = 1 and α ∈ (1, 2), the problem (1.1) reduces to the fractional Keller-
Segel equation. Recently, there are some results involved in the study of the
fractional Keller–Segel equation (see [11, 12, 13, 14, 15] for example).

However, in the sense of fractional derivative α ∈ (1, 2), β ∈ (0, 1), there is
little research on the proof of the boundedness and exponential stabilization
for solutions of such equations (1.1). Therefore, the paper will start from
the following aspects. First, the use of suitable inequalities about fractional
derivative were allowed to prove time-independent upper bounds of v that
enter substantially into the derivation of the main results. Next, we prove
the uniform-in-time boundedness results for (1.1) under an assumption (H1)
in Appendix B.1 by Lyapunov functional and Alikakos–Moser type itera-
tion. Finally, with the aid of the Lyapunov functional again and fractional
Duhamel type integral equation, exponential stabilization of the global solu-
tion toward the spatially homogeneous steady states (u0, u0) is obtained for
the first time.

We remind that fractional differential inequalities are a standard tool used
to develop further theory, see in that respect the work of Alsaedi Ahmed for
inequality in fractional calculus [16, 17]. Let us quote three examples of
application of the line of results of this paper that are already available: the
existence and uniqueness of classical solution, which we do in Appendix A.2;
understanding the hypothesis of the function ρ(·) in Appendix B.1; dealing
with Alikakos Moser iteration problems [18].

Outline of the paper and main results. The main purpose of the
present paper is obtaining boundedness and exponential stabilization for the
solutions of the problem (1.1) in the meaning of time-space fractional deriva-
tives.

In Section 3, we aim to establish the uniform-in-time upper bound for
v in meaning of fractional derivatives. The proof consists of several steps.
First, we would like to recall the following identity, which unveils the key
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mechanism of our system:

C
0 D

β
t v + ρ(v)u = (I + (−∆)

α
2 )−1[ρ(v)u]. (1.3)

Here (−∆)
α
2 denotes the fractional Laplacian. Thanks to the comparison

principle of fractional elliptic equations and the decreasing property of ρ,
one has that

(I + (−∆)
α
2 )−1[ρ(v)u] ≤ (I + (−∆)

α
2 )−1[ρ(v∗)u] = ρ(v∗)v

with v∗ being the strictly positive lower bound for v given by Lemma B.1
below. And by using fractional differential inequalities, we obtains a point
wise upper bound of v with generic functions satisfying (H0) in Appendix B.1.
Then, on the one hand, with the help of fractional inequalities in Appendix
A.4-A.5, the system (1.1) possesses a Lyapunov functional such that

1

2
∂̃βT

(

∥

∥Dα/2v
∥

∥

2
+ ‖v‖2

)

+

∫

Ω

ρ(v) |Dαv|2 dx

≤ −

∫

Ω

(ρ(v) + vρ′(v))
∣

∣Dα/2v
∣

∣

2
dx. (1.4)

which implies a time-independent estimate of sup
t≥0

‖v‖H1(Ω) under the assump-

tion (H1) in Appendix B.1. On the other hand, under the assumption (H2)
in Appendix B.1, we proceed to derive the uniform-in-time upper bounds of
v which based on a delicate Alikako-Moser iteration [18].

In Section 4.1,in order to prove the boundedness of solutions, we use the
time-independent upper bound of v of Section 3 and fractional differential
inequalities in Appendix A.4-A.5. Next, With the aid of the second equation
of 1.1 and equation (1.3), we construct an estimation involving a weighted
energy

∫

Ω
upρq(v)dx for some 1 + p > n

2
and q > 0 by using the decreasing

property of ρ(·) that is bounded. Thus, we can to proceed to deduce the
uniform-in-time boundedness of the solution.

Section 4.2 studies the exponential stabilization of the global solution
relying on Lyapunov functional (3.3) and fractional Duhamel type integral
equation. First, since v(t) = u0, we have

C
0 D

β
t

∫

Ω
v(t)dx = 0 for all t > 0, and

Thus, we can infer from (1.4) that

1

2
C
0 D

β
T

(

∥

∥Dα/2v
∥

∥

2
+ ‖v − u0‖

2
)

+

∫

Ω

ρ(v) |Dαv|2 dx

≤ −

∫

Ω

(ρ(v) + vρ′(v))
∣

∣Dα/2v
∣

∣

2
dx.
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Next, we notices that the first equation of (1.1) gives a variant form of this
key identity:

∂βt (u− u0) = −(−∆)
α
2 (ρ(v)u).

Furthermore, let A = (−∆)α/2 and w(t) = u − u0, we can deduce the fol-
lowing formula from the above equation by fractional Duhamel type integral
equation

w(t) = Eβ(−t
βA)w(τ0)

−

∫ t

τ0

(t− s)β−1Eβ,β(−(t− s)βA)(−∆)α/2 ((ρ(v(s))− ρ0)u(s)) ds.

Then, by Hardy-Little-wood-Sobolev inequality and Lemma A.13, the expo-
nential stabilization of (u, v) can be further acquired in L∞ ×W 1,∞.

As already mentioned above, in Appendix A, we collect the definition
of the fractional derivative, definition of classical solution, definition of frac-
tional Laplacian and some useful Lemma about fractional derivative and frac-
tional Laplacian. The Appendix B gives assumptions and properties about
function ρ(s) and optimization proposition and lemma to proof of Theorem
1.1.

NOTATIONS: Throughout the paper, we fix Caputo derivative ∂βt , β ∈
(0, 1) models memory effects in time. And we also replace fractional Lapla-
cian −(−∆)

α
2 , α ∈ (1, 2) with Neumann Laplacian operator ∆.

Theorem 1.1. Suppose that n ≥ 3 and ρ satisfies (H0),(H1) and (H3) in
Appendix B.1. Then, for initial datum (1.2),problem (1.1) possesses a unique
global classical solution that is uniformly-in-time bounded. In addition, let
A = (−∆)α/2 and w(t) = u − u0, based on using fractional Duhamel type
integral equation to equation (4.16), we can get

w(t) = Eβ(−t
βA)w(τ0)

−

∫ t

τ0

(t− s)β−1Eβ,β(−(t− s)βA)(−∆)α/2 ((ρ(v(s))− ρ0)u(s))ds

Then, there exist θ > 0 and C > 0 depending on u0, ρ, n and Ω such that,
for all t ≥ 1, 0 < β < 1 makes

‖u(·, t)− u0‖L∞(Ω) + ‖v(·, t)− u0‖W 1,∞(Ω) ≤ Ce(−θ)1/β t, (1.5)

where u0 =
1
|Ω|

∫

Ω
u0dx.
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2. Preliminaries

Definition 2.1. [19]

(i) Assume that X is a Banach space and let u : [0, T ] → X . The Caputo
fractional derivative operators of u is defined by

C
0 D

β
t u(t) =

1

Γ(1− β)

∫ t

0

(t− s)−β d

ds
u(s)ds, (2.1)

C
t D

β
Tu(t) =

−1

Γ(1− β)

∫ T

t

(s− t)−β d

ds
u(s)ds,

where Γ(1− β) is the Gamma function. The above integrals are called
the left-sided and the right-sided the Caputo fractional derivatives.

(ii) For u : [0,+∞) × Rn → R, the left Caputo fractional derivative with
respect to time t of u is defined by

∂βt v(x, t) =
1

Γ(1− β)

∫ t

0

∂v

∂s
(x, s)(t− s)−βds, (2.2)

Definition 2.2. [20] Let B be a Banach space and u ∈ L1
loc((0, T );B). Let

u0 ∈ B. We define the weak Caputo derivative of u associated with initial
data u0 to be ∂βt u ∈ D ′ such that for any text function ϕ ∈ C∞

c ((−∞, T );R),

〈

∂βt u, ϕ
〉

:=

∫ T

−∞

(u− u0)θ(t)(∂̃
β
Tϕ)dt =

∫ T

0

(u− u0)∂̃
β
Tϕdt (2.3)

where D ′ = {v | v : C∞
c ((−∞, T );R) → B is a bounded linear operator} .

Definition 2.3. [19] The Mittag-Leffler function Eβ(z), Eβ,γ(z) is defined as

Eβ,1(z) = Eβ(z) =

∞
∑

k=0

zk

Γ(βk + 1)
, Eβ,γ(z) =

∞
∑

k=0

zk

Γ(βk + γ)
,

where γ, z ∈ C,R(β) > 0,C denote the complex plane.
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3. Time-Independent Upper Bounds of v

In the section, we introduce a Lyapunov functional (3.3) to establish the
time-independent upper bound for v in higher dimensions. In the proof we
will use Lemma B.2,Proposition B.1 and Lemma B.3, which are some simple
optimization lemma that we state in Appendix B.2.

Lemma 3.1. Assume that n ≥ 1, α ∈ (1, 2), β ∈ (0, 1) and ρ satisfies (H0),
then for any x ∈ Ω, 0 < t < Tmax, it holds that

C
0 D

β
t v + ρ(v)u = (I + (−∆)

α
2 )−1[ρ(v)u]. (3.1)

Then, we can get the following inequality

v(x, t) ≤ Cv0(x)e
ρ1/β (v∗)t, (3.2)

with v0 , (I + (−∆)
α
2 )−1[u0].

Proof. First, since ρ is non-increasing in v and v∗ is expressed in Lemma
B.1,there holds

ρ(v) ≥ ρ(v∗)

for all (x, t) ∈ [0, Tmax). Next, applying the second equation (−∆)
α
2 v+v = u,

we have

0 ≤ (I + (−∆)
α
2 )−1[ρ(v)u] ≤ (I + (−∆)

α
2 )−1[ρ(v∗)u] = ρ(v∗)v.

Thus, we obtain the following fractional differential inequality from (3.1)

C
0 D

β
t v − ρ(v∗)v ≤ −ρ(v)u ≤ 0,

then, by LemmaA.3 and Lemma A.4, we get the inequality

v(x, t) ≤ Cv0(x)e
ρ1/β (v∗)t,

which C is constant. This completes the proof.

Remark 3.1. Thanks to the strictly positive time-independent lower bound
v∗ of v given in [[21],Lemma 3.2]. But the difference is that this paper
uses fractional differential inequalities to solve the equation (3.1) instead of
Gronwall’s inequality.
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Lemma 3.2. For any α ∈ (1, 2), β ∈ (0, 1) and 0 ≤ t < Tmax, it holds that

1

2
∂̃βT

(

∥

∥Dα/2v
∥

∥

2
+ ‖v‖2

)

+

∫

Ω

ρ(v) |Dαv|2 dx+

∫

Ω

(ρ(v)+vρ′(v))
∣

∣Dα/2v
∣

∣

2
dx ≤ 0.

(3.3)
Especially, under the assumption (H1) in Appendix B.1, there is C > 0 that
only depends on u0 to get

sup
0≤t<Tmax

(

∥

∥Dα/2v
∥

∥

2
+ ‖v‖2

)

≤ C. (3.4)

Proof. First, we multiply the first equation of (1.1) by v ∈ C∞
c (Ω),integrating

over Ω and replacing the second equation of (1.1) to get
〈

∂βt u, v
〉

=

∫

Ω

(u− u0)∂̃
β
Tvdx =

∫

Ω

u∂̃βTvdx =

∫

Ω

(Dαv + v) ∂̃βT vdx

=

∫

Ω

Dαv∂̃βTvdx+

∫

Ω

v∂̃βT vdx =

∫

Ω

Dα/2vDα/2(∂̃βT v)dx+

∫

Ω

v∂̃βTvdx

≥
1

2

∫

Ω

∂̃βTv
2dx+

1

2

∫

Ω

∂̃βT
∣

∣Dα/2v
∣

∣

2
dx =

1

2
∂̃βT

(

∥

∥Dα/2v
∥

∥

2
+ ‖v‖2

)

.

Thanks to v is non-decreases, then we obtain that
∫

Ω

−v (−∆)
α
2 (ρ(v)u)dx = −

∫

Ω

ρ(v)uDαvdx

= −

∫

Ω

ρ(v)(v +Dαv)Dαvdx = −

∫

Ω

ρ(v) |Dαv|2 dx−

∫

Ω

ρ(v)vDαvdx

= −

∫

Ω

ρ(v) |Dαv|2 dx−

∫

Ω

Dα/2(ρ(v)v)Dα/2vdx

= −

∫

Ω

ρ(v) |Dαv|2 dx−

∫

Ω

(

vDα/2ρ(v) + ρ(v)Dα/2v
)

Dα/2vdx

+

∫

Ω

Aα/2D
α/2v

∫

Ω

(ρ(v(x))− ρ(v(y)))(v(x)− v(y))

|x− y|n+α dydx

≤ −

∫

Ω

ρ(v) |Dαv|2 dx−

∫

Ω

(ρ(v) + vρ′(v))
∣

∣Dα/2v
∣

∣

2
dx.

Therefore, combining the above two inequalities, we have

1

2
∂̃βT

(

∥

∥Dα/2v
∥

∥

2
+ ‖v‖2

)

≤
〈

∂βt u, v
〉

=

∫

Ω

−v (−∆)
α
2 (ρ(v)u)dx ≤ −

∫

Ω

ρ(v) |Dαv|2 dx−

∫

Ω

(ρ(v) + vρ′(v))
∣

∣Dα/2v
∣

∣

2
dx.

(3.5)
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Finally, since Dαv0 + v0 = u0 in Ω and ∂vv0 = 0 on ∂Ω, by using Young’s
inequality, we infer that

∥

∥Dα/2v0
∥

∥

2
+ ‖v0‖

2 =

∫

Ω

(v0 +Dαv0)v0dx =

∫

Ω

u0v0dx ≤
1

2
‖u0‖

2 +
1

2
‖v0‖

2 .

(3.6)
Hence,

∥

∥Dα/2v0
∥

∥

2
+ ‖v0‖

2 ≤ 2
∥

∥Dα/2v0
∥

∥

2
+ ‖v0‖

2 ≤ ‖u0‖
2 .

It can be seen that

sup
0≤t<Tmax

(

∥

∥Dα/2v
∥

∥

2
+ ‖v‖2

)

≤ C.

This completes the proof.

Remark 3.2. The proof of this lemma is mainly based on the properties of
space-time fractional derivative. By Definition 2.2 and Lemma A.1, system
(1.1) possesses a Lyapunov function (3.3), which implies a time-independent
estimate of sup

t≥0
‖v‖H1(Ω) under the assumption of (A.4) and (H1).

Lemma 3.3. Suppose that n ≥ 3, α ∈ (1, 2), β ∈ (0, 1) and ρ satisfies (H0)
and (H2) in Appendix B.1. Then, for any p > 1+k, k > 0, there exist λ1 > 0
and λ2 > 0 independent of time such that

C
0 D

β
t

∫

Ω

vpdx+ λ2p

∫

Ω

vpdx+
λ1p(p− k − 1)

(p− k)2

∫

Ω

∣

∣

∣
D

α
2 v

p−k
2

∣

∣

∣

2

dx+ λ1p

∫

Ω

vp−kdx

≤ 2λ2p

∫

Ω

vpdx. (3.7)

Proof. First, mainly refer to (B.6)-(B.8) in Appendix B.1, ρ(·) is non-
increasing and for s ≥ sb, sb > v∗, we can get that

11/ρ(s) ≤ bsk, 21/ρ(s) ≤ 1/ρ(sb),

thus, for all s ≥ 0, it obtain that

31/ρ(s) ≤ bsk + 1/ρ(sb). (3.8)

1Mainly refer to (B.6) in Appendix B.1
2Mainly refer to (B.7) in Appendix B.1
3Mainly refer to (B.8) in Appendix B.1
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Next, multiplying both sides of (3.1) by vp−1 with p > k + 1, and using
Lemma A.6, we get

1

p
C
0 D

β
t

∫

Ω

vpdx+

∫

Ω

vp−1ρ(v)udx

≤

∫

Ω

vp−1 C
0 D

β
t vdx+

∫

Ω

vp−1ρ(v)udx =

∫

Ω

vp−1(I + (−∆)
α
2 )−1[ρ(v)u]dx

(3.9)

By the comparison principle of fractional elliptic equation and ρ(v) ≤ ρ(v∗),
we deduce that

(I + (−∆)
α
2 )−1[ρ(v)u] ≤ ρ(v∗)v,

and thus
∫

Ω

vp−1(I + (−∆)
α
2 )−1[ρ(v)u]dx ≤ ρ(v∗)

∫

Ω

vpdx.

Based on equation (B.9)-(B.12) in Appendix B.1, one has

4

∫

Ω

vp−1ρ(v)udx ≥

∫

Ω

vp−1(bvk + 1/ρ(sb))
−1udx ≥ C1

∫

Ω

(vk + 1)−1vp−1udx.

where 1/C1 =
max{bρ(sb),1}

ρ(sb)
> 0 in Appendix B.1,taking into account the fact

that

5bvk + 1/ρ(sb) =
1

ρ(sb)
(bvkρ(sb) + 1) ≤

max {bρ(sb), 1}

ρ(sb)
(vk + 1).

Thanks to vk ≥ vk∗ by Lemma B.1, it holds that

6(vk + 1)−1vp−1 ≥ (vk + v−k
∗ vk)−1vp−1 =

vp−k−1

1 + v−k
∗

.

Thus, we have

7

∫

Ω

vp−1ρ(v)udx ≥ C2

∫

Ω

vp−k−1udx,

4Mainly refer to (B.9) in Appendix B.1
5Mainly refer to (B.10) in Appendix B.1
6Mainly refer to (B.11) in Appendix B.1
7Mainly refer to (B.12) in Appendix B.1
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which C2 > 0 may depend on initial data n,Ω, ρ, but is independent of p
and time. Replacing with v+ (−∆)α/2v = u and using Lemma A.12, we can
obtain

∫

Ω

vp−k−1udx =

∫

Ω

vp−k−1(v + (−∆)
α
2 v)dx

=

∫

Ω

vp−kdx+

∫

Ω

vp−k−1Dαvdx

≥

∫

Ω

vp−kdx+
4(p− k − 1)

(p− k)2

∫

Ω

∣

∣

∣
D

α
2 v

p−k
2

∣

∣

∣

2

dx.

Finally, we can get

C
0 D

β
t

∫

Ω

vpdx+
λ1p(p− k − 1)

(p− k)2

∫

Ω

∣

∣

∣
D

α
2 v

p−k
2

∣

∣

∣

2

dx+λ1p

∫

Ω

vp−kdx ≤ λ2p

∫

Ω

vpdx

where λ1 > 0, λ2 > 0 independent of p and time.To get inequality (3.7), we
need to add λ2p

∫

Ω
vpdx on both sides of the above inequality.

Remark 3.3. From (B.4) and (B.5), we proceed to derive the uniform-in-
time upper bounds of v which based on a delicate Alikako-Moser iteration
[18]. However, in the process of proof, compared with the literature [1], we
use Stroock-Varopoulos’ inequality to shrink.

4. Proof of Theorem 1.1

4.1. Uniform-in-time boundedness

In order to proof of Theorem 1.1, the first result of the section will es-
tablish an estimate involving the weighted energy

∫

Ω
up+1ρq(v)dx for some

1 + p > n
2
, q > 0 with the help of time-independent upper bound of v in

hand. Then, we will use Appendix A.4-Appendix A.5, which are some useful
lemma about time-space fractional derivative.

Lemma 4.1. For any α ∈ (1, 2), β ∈ (0, 1), 0 ≤ t < Tmax and p, q > 0, it
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holds that

C
0 D

β
t

∫

Ω

up+1ρq(v)dx+ p(p+ 1)

∫

Ω

up−1ρq+1(v)
∣

∣Dα/2u
∣

∣

2
dx

+ q

∫

Ω

(

(q + p+ 1) |ρ′(v)|
2
+ ρρ′′

)

up+1ρq−1(v)Dα/2vdx

− q

∫

Ω

up+1ρq−1ρ′(v)(I + (−∆)
α
2 )−1[uρ(v)]dx

≤ −q

∫

Ω

up+1ρq(v)ρ′(v)vdx

− (2q + p)(p+ 1)

∫

Ω

upρq(v)ρ′(v)Dα/2uDα/2vdx. (4.1)

Proof. For any p, q > 0, by Lemma A.6-Lemma A.7, we can infer the fol-
lowing inequality

C
0 D

β
t

∫

Ω

up+1ρq(v)dx

≤

∫

Ω

up+1 C
0 D

β
t ρ

q(v)dx+

∫

Ω

ρq(v)C0 D
β
t u

p+1dx

+
t−β

Γ(1− β)

(

up+1ρq(0) + ρqup+1(0)− up+1(0)ρq(0)
)

≤ (p+ 1)

∫

Ω

ρq(v)up C
0 D

β
t udx+ q

∫

Ω

up+1ρq−1ρ′(v)C0 D
β
t vdx

≤ (p+ 1)

∫

Ω

ρq(v)up C
0 D

β
t udx+ q

∫

Ω

up+1ρq−1ρ′(v)((I + (−∆)
α
2 )−1

[uρ(v)]− uρ(v))dx

≤ (p+ 1)

∫

Ω

ρq(v)up C
0 D

β
t udx+ q

∫

Ω

up+1ρq−1ρ′(v)(I + (−∆)
α
2 )−1[uρ(v)]dx

− q

∫

Ω

up+1ρq(v)ρ′(v)udx. (4.2)

12



Replacing the right item of formula (4.2) with v+(−∆)
α
2 v = u, then we have

C
0 D

β
t

∫

Ω

up+1ρq(v)dx− (p + 1)

∫

Ω

ρq(v)up C
0 D

β
t udx+ q

∫

Ω

up+1ρq(v)ρ′(v)(−∆)
α
2 vdx

− q

∫

Ω

up+1ρq−1ρ′(v)(I + (−∆)
α
2 )−1[uρ(v)]dx

≤ −q

∫

Ω

up+1ρq(v)ρ′(v)vdx. (4.3)

By (A.15), (A.16),(A.4) and the first equation of (1.1), we infer that

− (p+ 1)

∫

Ω

ρq(v)up C
0 D

β
t udx

= (p+ 1)

∫

Ω

ρq(v)up(−∆)
α
2 (ρ(v)u)dx

= (p+ 1)

∫

Ω

Dα/2(ρq(v)up)Dα/2(ρ(v)u)dx

= (p+ 1)

∫

Ω

(

ρ(v)Dα/2u+ uDα/2ρ(v)−N (ρ(v), u)
)

(

ρq(v)Dα/2up + upDα/2ρq(v)−N (ρq(v), up)
)

dx

≤ (p+ 1)

∫

Ω

(

ρ(v)Dα/2u+ uρ′(v)Dα/2v
)

(

pρqup−1Dα/2u+ qupρq−1(v)ρ′(v)Dα/2v
)

dx

≤ p(p+ 1)

∫

Ω

up−1ρq+1(v)
∣

∣Dα/2u
∣

∣

2
dx+ q(p+ 1)

∫

Ω

up+1ρq−1(v) |ρ′(v)|
2 ∣
∣Dα/2v

∣

∣

2
dx

+ (p+ 1)(p+ q)

∫

Ω

upρq(v)ρ′(v)Dα/2uDα/2vdx. (4.4)

where

N (u, v) = Aα/2

∫

Ω

((u(x)− u(y))(v(x)− v(y)))

|x− y|n+α dy, Aα/2 > 0.

13



And we also obtain

q

∫

Ω

up+1ρq(v)ρ′(v)(−∆)
α
2 vdx

= q

∫

Ω

Dα/2
(

up+1ρq(v)ρ′(v)
)

Dα/2vdx

≤ q(p+ 1)

∫

Ω

upρq(v)ρ′(v)Dα/2uDα/2vdx+ q2
∫

Ω

up+1ρq−1(v) |ρ′(v)|
2 ∣
∣Dα/2v

∣

∣

2
dx

+ q

∫

Ω

ρ′′(v)up+1ρq(v)
∣

∣Dα/2v
∣

∣

2
dx− q

∫

Ω

Dα/2vN (up+1, ρq(v), ρ′(v))dx

≤ q(p+ 1)

∫

Ω

upρq(v)ρ′(v)Dα/2uDα/2vdx+ q2
∫

Ω

up+1ρq−1(v) |ρ′(v)|2
∣

∣Dα/2v
∣

∣

2
dx

+ q

∫

Ω

ρ′′(v)up+1ρq(v)
∣

∣Dα/2v
∣

∣

2
dx. (4.5)

Instead (4.4) and (4.5) to (4.3), then we can get (4.1).

Lemma 4.2. Suppose that n ≥ 3, α ∈ (1, 2), β ∈ (0, 1) and ρ (·) satisfies
(H0),(H1) and (H3) in Appendix B.1. For any 1 + p ∈ (1, l20), and q =

pl0
2
,it

holds that

C
0 D

β
t

∫

Ω

up+1ρq(v)dx+ C6

∫

Ω

up+1ρq(v)dx ≤ C7

(
∫

Ω

u
1+p
2 dx

)2

,

with C6 > 0, C7 > 0. Then there exist p > n
2
− 1 and C > 0 independent of

time such that

sup
0≤t<Tmax

∫

Ω

u1+pdx ≤ C.

Proof. By Young’s inequality, let p = q = 2, ε = 2p(δ0−1)
p+2q

,a = u
p−1
2 ρ

q+1
2 Dα/2u, b =

u
p+1
2 ρ

q−1
2 Dα/2v, we have

− (2q + p)(p+ 1)

∫

Ω

upρq(v)ρ′(v)Dα/2uDα/2vdx

≤ (p+ 1)p(1− δ0)

∫

Ω

up−1ρq+1
∣

∣Dα/2u
∣

∣

2
dx

+
(p+ 1)(p+ 2q)2

4p(1− δ0)

∫

Ω

up+1ρq−1 |ρ′|
2 ∣
∣Dα/2v

∣

∣

2
dx, (4.6)
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with q, δ0 chosen in inequality (B.19). Then it follows from (4.1) and (B.19)
that

C
0 D

β
t

∫

Ω

up+1ρq(v)dx+ δ0p(p+ 1)

∫

Ω

up−1ρq+1
∣

∣Dα/2u
∣

∣

2
dx

− q

∫

Ω

up+1ρq−1ρ′(v)(I + (−∆)
α
2 )−1[uρ(v)]dx

≤ −q

∫

Ω

up+1ρq(v)ρ′(v)vdx (4.7)

with any 1 + p ∈ (1, l20), and q =
pl0
2
.

Due to v∗ ≤ v ≤ v∗, for any 1 + p ∈ (1, l20), and q =
pl0
2
, then it makes

C
0 D

β
t

∫

Ω

up+1ρq(v)dx+ C3

∫

Ω

up−1ρq+1
∣

∣Dα/2u
∣

∣

2
dx ≤ C ′

3

∫

Ω

up+1dx. (4.8)

where C3, C
′
3 depending on p, δ0, ρ. Using the Nash-Gagliardo-Nirenberg-

Type Inequality(Lemma A.10) and Young’s inequality, due to the uniform-
in-time boundedness of ρq(v), we infer that
∫

Ω

up+1ρq(v)dx ≤ C4

∫

Ω

u1+pdx = C
′

4 ‖ξ‖
2
L2(Ω) ≤ ε

∥

∥Dα/2ξ
∥

∥

2
+ C5(ε) ‖ξ‖

2
L1(Ω)

with ε > 0, ξ = u
1+p
2 and C4, C

′

4, C5 > 0 independent of time. Thus, by
choosing proper small ε > 0 and 1 + p ∈ (1, l20), and q =

pl0
2
, we can obtain

C
0 D

β
t

∫

Ω

up+1ρq(v)dx+ C6

∫

Ω

up+1ρq(v)dx ≤ C7

(
∫

Ω

u
1+p
2 dx

)2

, (4.9)

with C6 > 0, C7 > 0 independent of time. Then we first solve the above
fractional differential inequality, and then from ‖u(·, t)‖L1(Ω) = ‖u0‖L1(Ω) and
the uniform-in-time lower and upper boundedness of ρq(v), we can repeatedly
deduce (4.9), such that

sup
t≥0

∫

Ω

u1+pdx ≤ C8. (4.10)

Finally, for any n ≥ 3, we can obtain

n

2
<

(

n+ 2

4

)2

< l20.

Therefore, we can find p > 0 satisfying 1+p > n
2
such that (4.9)-(4.10) holds.
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Remark 4.1. According to the proof method of [[1],Lemma 4.3], the for-
mula in the Lemma 4.1 is used by using Young’s inequality. But unlike, we
combine Nash-Gagliato-Nirenberg-Type inequality and fractional differential
inequality to get the uniform-in-time boundedness of solutions.

4.2. Exponential stabilization toward constant steady states

In the section, we would like to prove that the exponential stabilization
of the global solutions by using Lyapunov functional (3.3) and fractional
Duhamel type integral equation to (4.16).

Lemma 4.3. Suppose that α ∈ (1, 2), β ∈ (0, 1), for any p > 0, C13 > 0, it
holds that

C
0 D

β
t

∫

Ω

|u− u0|
p dx+ α2

∫

Ω

|u− u0|
p dx

≤ C13

(
∫

Ω

∣

∣Dα/2v
∣

∣

2
dx+

∫

Ω

|u− u0|
2 dx

)

. (4.11)

Then, there exist constants w > 0 and 0 < β < 1 such that

‖v − u0‖W 1,∞(Ω) ≤ Ce(−w)1/βt, ∀t > 0. (4.12)

where C > 0 depending on u0, ρ, n and Ω.

Proof. It is already known that there is u(t) = v(t) = u0. Meanwhile,it
follows that C

0 D
β
t

∫

Ω
v(t)dx = 0 and we obtain that

C
0 D

β
t ‖v(·, t)− u0‖

2 = C
0 D

β
t

∫

Ω

(

v2 − 2u0v + u0
2
)

dx

= C
0 D

β
t

∫

Ω

v2dx− 2u0
C
0 D

β
t

∫

Ω

vdx

= C
0 D

β
t ‖v(·, t)‖

2 .

Thus, we can infer from (3.3) that

1

2
C
0 D

β
T

(

∥

∥Dα/2v
∥

∥

2
+ ‖v − u0‖

2
)

+

∫

Ω

ρ(v) |Dαv|2 dx

≤ −

∫

Ω

(ρ(v) + vρ′(v))
∣

∣Dα/2v
∣

∣

2
dx. (4.13)
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Because of v ≤ v∗ and ρ is non-increasing, we obtain that
∫

Ω

ρ(v) |Dαv|2 dx ≥ ρ(v∗)

∫

Ω

|Dαv|2 dx,

further, we use Hardy-Little-wood-Sobolev Inequality µ1 ‖v − u0‖
2 ≤

∥

∥Dα/4v
∥

∥

2
,

yields that
∫

Ω

ρ(v)
∣

∣Dα/2v
∣

∣

2
dx ≥ ρ(v∗)

∫

Ω

|Dαv|2 dx

≥
µ1ρ(v

∗)

1 + µ1

(

∥

∥Dα/2v
∥

∥

2
+ ‖v − u0‖

2
)

, (4.14)

where µ1 > 0. If ∂vv = 0 on ∂Ω, by using µ1

∥

∥Dα/2v
∥

∥

2
≤ ‖Dαv‖2 and

(4.13),we will infer that

1

2
C
0 D

β
T

(

∥

∥Dα/2v
∥

∥

2
+ ‖v − u0‖

2
)

+
µ1ρ(v

∗)

1 + µ1

(

∥

∥Dα/2v
∥

∥

2
+ ‖v − u0‖

2
)

≤ 0,

which by standard Lemma A.3 and Lemma A.4 analysis yields that, for all
t ≥ 0,

∥

∥Dα/2v
∥

∥

2
+ ‖v − u0‖

2 ≤
(

∥

∥Dα/2v0
∥

∥

2
+ ‖v0 − u0‖

2
)

e

(

−
2µ1ρ(v

∗)
1+µ1

)1/β
t

(4.15)

where v0 =
(

I + (−∆)1/α
)−1

[u0] .
Next, from the first equation of (1.1), we have that

∂βt (u− u0) = −(−∆)
α
2 (ρ(v)u). (4.16)

Multiplying (4.16) by u− u0, by Lemma A.6 and (A.12), we obtain that

1

2
C
0 D

β
t

∫

Ω

|u− u0|
2 dx ≤ −

∫

Ω

(u− u0)D
α(uρ(v))dx

= −

∫

Ω

Dα/2 (u− u0)D
α/2(uρ(v))dx

= −

∫

Ω

Dα/2uDα/2(uρ(v))dx

= −

∫

Ω

Dα/2u
(

uρ′(v)Dα/2v + ρ(v)Dα/2v
)

+

∫

Ω

Aα/2D
α/2u

∫

Ω

(ρ(v(x))− ρ(v(y)))(u(x)− u(y))

|x− y|n+α dydx

≤ −

∫

Ω

Dα/2u
(

uρ′(v)Dα/2v + ρ(v)Dα/2v
)

,
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where u is non-decreasing. Thus, we can get

1

2
C
0 D

β
t

∫

Ω

|u− u0|
2 dx+

∫

Ω

ρ(v)
∣

∣Dα/2u
∣

∣

2
dx

≤ −

∫

Ω

uρ′(v)Dα/2vDα/2udx

≤
1

2

∫

Ω

ρ(v)
∣

∣Dα/2v
∣

∣

2
dx+

1

2

∫

Ω

u2 |ρ′(v)|2

ρ(v)

∣

∣Dα/2u
∣

∣

2
dx.

Due to u and v that are both uniformly-in-time bounded, we have

C
0 D

β
t

∫

Ω

|u− u0|
2 dx+ ρ(v∗)

∫

Ω

∣

∣Dα/2u
∣

∣

2
dx ≤ C9

∫

Ω

∣

∣Dα/2v
∣

∣

2
dx, (4.17)

which time -independent C9 > 0 is constant. Next, by using Hardy-Little-
wood-Sobolev Inequality, one can find a constant 0 < w1 < −2µ1ρ(v∗)

1+µ1
such

that

C
0 D

β
t

∫

Ω

|u− u0|
2 dx+ w1

∫

Ω

|u− u0|
2 dx ≤ C10

∫

Ω

∣

∣Dα/2v
∣

∣

2
dx. (4.18)

where C10 > 0 depending only on initial datum, ρ, n,Ω. Solving the above
fractional differential inequality by Lemma A.5 yields that

‖u− u0‖
2 ≤ ‖u0 − u0‖

2 +
C10

Γ(β)

∫ t

0

(t− s)β−1
∥

∥Dα/2v(s)
∥

∥

2
ds. (4.19)

Applying Grownwall type of lemma in (4.19), we obtain that

|u− u0| ≤ ‖u0 − u0‖
2 exp

(

C10

Γ(β)

∫ t

0

(t− s)β−1
∥

∥Dα/2v(s)
∥

∥

2
ds

)

.

Next, for any p > 2, multiplying (4.16) by |u− u0|
p−2 (u − u0) to obtain

that

1

p
C
0 D

β
t

∫

Ω

|u− u0|
p dx+ (p− 1)

∫

Ω

ρ(v) |u− u0|
p−2

∣

∣Dα/2u
∣

∣

2
dx

≤ −(p− 1)

∫

Ω

u |u− u0|
p−2 ρ′(v)Dα/2vDα/2udx

≤
p− 1

2

∫

Ω

ρ(v) |u− u0|
p−2

∣

∣Dα/2v
∣

∣

2
dx

+
p− 1

2

∫

Ω

u2 |ρ′(v)|2

ρ(v)
|u− u0|

p−2
∣

∣Dα/2u
∣

∣

2
dx.
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Similarly, there are constants C11 = C11(p) > 0 independent of time and
w2 < w1 such that

C
0 D

β
t

∫

Ω

|u− u0|
p dx+ α2

∫

Ω

|u− u0|
p dx

≤ C11

∫

Ω

∣

∣Dα/2v
∣

∣

2
dx+ α2

∫

Ω

|u− u0|
p dx.

8Observing that

∫

Ω

|u− u0|
p dx ≤ ‖u− u0‖

p−2
L∞(Ω)

∫

Ω

|u− u0|
2 dx ≤ C12

∫

Ω

|u− u0|
2 dx,

we can get

C
0 D

β
t

∫

Ω

|u− u0|
p dx+ α2

∫

Ω

|u− u0|
p dx

≤ C13

(
∫

Ω

∣

∣Dα/2v
∣

∣

2
dx+

∫

Ω

|u− u0|
2 dx

)

, (4.20)

In the view of (4.19), we have

‖u− u0‖
p ≤ ‖u0 − u0‖

p

+
C13

Γ(β)

∫ t

0

(t− s)β−1
(

∥

∥Dα/2v(s)
∥

∥

2
+ ‖u− u0‖

2
)

ds =:M (4.21)

and

|u− u0|
p

≤ ‖u0 − u0‖
p exp

(

C13

Γ(β)

∫ t

0

(t− s)β−1
(

∥

∥Dα/2v(s)
∥

∥

2
+ ‖u− u0‖

2
)

ds

)

.

Finally, we note that from the second equation of (1.1)

(v − u0) + (−∆)
α
2 (v − u0) = u− u0.

8The inequality here is mainly referred to [[1],Lemma 4.5], which depends on the bound-

ary of ‖u− u0‖
p−2
L∞(Ω).
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9Choosing some p0 > n in (4.21), one may deduce, by elliptic regularity and
Sobolev embeddings, that

‖v − u0‖W 1,∞(Ω) ≤ C15 ‖v − u0‖W 2,p0(Ω) ≤ C
′

15 ‖u− u0‖Lp0 (Ω) ≤ C
′′

15e
(−w)1/β t,

with w = M
p0
. This completes the proof.

Remark 4.2. With the aid of fractional differential inequality, it is proved
that the exponential stabilization toward the constant steady states by using
the Lyapunov functional again. The most important thing is that we use
Hardy-Little-wood-Sobolev inequality instead of Poincaré’s inequality, and
we get the above conclusion.

Lemma 4.4. Assume α ∈ (1, 2), β ∈ (0, 1) and based on using fractional
Duhamel type integral equation to equation (4.16), we can get

w(t) = Eβ(−t
βA)w(τ0)

−

∫ t

τ0

(t− s)β−1Eβ,β(−(t− s)βA)(−∆)α/2 ((ρ(v(s))− ρ0)u(s))ds

where A = (−∆)α/2 and w(t) = u − u0. Then there exist constants C =
C(n,Ω, ρ, u0) > 0 and θ ∈ (0, 1) such that

‖u‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
≤ C, ∀t ≥ 1.

Proof. Due ‖u‖L∞(Ω) and ‖v‖W 1,∞(Ω) are uniform-in-time bounded, it can
be inferred from (3.1) that

sup
t>0

∥

∥

∥

C
0 D

β
t v
∥

∥

∥

L∞(Ω)
≤ sup

t>0

(

∥

∥(I + (−∆)α/2)−1 [uρ(v)]
∥

∥

L∞(Ω)
+ ‖uρ(v)‖L∞(Ω)

)

≤ C16 sup
t>0

‖uρ(v)‖L∞(Ω) <∞

and from the second equation of (1.1)

sup
t>0

‖v‖W 2,p(Ω) ≤ C17 sup
t>0

‖u‖L∞(Ω) <∞,

9It mainly depends on the elliptic regularity and Sobolev embeddings mentioned in the
literature [1] to verify.
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with any 1 < p < ∞ and C16, C17 > 0 depending on n, p and Ω. Then, we
get v ∈ W 2,1

p (Ω× [t, t+ 1]) with any p > n+2
2

for any t > 0 and on the same
time, by Sobolev embedding theorem in [6], there exist θ1 ∈ (0, 2− n+2

p
] such

that

‖v‖
Cθ1,

θ1
2 (Ω̄×[t,t+1])

≤ C17 ‖v‖W 2,1
p (Ω×[t,t+1]) ≤ C

′

17, ∀t > 0. (4.22)

which constant C17, C
′

17 > 0 independent of time. Similarly, referring to the
method in [[6],Lemma 5.1], we obtain that

‖u‖
Cθ2,

θ2
2 (Ω̄×[t,t+1])

≤ C18, ∀t ≥ 1,

where time-independent constant C18 > 0.
Next, We combine the first equation and the second equation of (1.1) to

obtain the following key identity:

C
0 D

β
t v + ρ(v)(−∆)α/2v =

(

I + (−∆)α/2
)−1

[ρ(v)u]− ρ(v)v.

Since ρ(v(x, t)) is uniformly bounded from above and below. 10Thus we
can further deduce, by a standard version of Schauder’s theory for parabolic
equations, that with some θ3 ∈ (0, 1),

‖v‖
C2+θ3,1+

θ3
2 (Ω̄×[t,t+1])

≤ C
′

18, ∀t ≥ 1. (4.23)

Conversely, we can also finally deduce the following inequalities from the
equation of u according to Schauder’s theory

‖u‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
≤ C

′′

18, ∀t ≥ 1. (4.24)

Through the above preparations and fractional Duhamel type integral equa-
tion, we can now prove the exponential decay of ‖u− u0‖L∞ . Denotinng
w = u− u0 and ρ0 = ρ(u0), by the [[3],(2.21)] and let A = (−∆)α/2, we infer

10Referring to uniform elliptic operator ρ(v(x, t))∆ method in [[1],Lemma 4.6], then we

obtain vρ(v) and
(

I + (−∆)α/2
)

−1
[ρ(v)u] are now bounded in Cθ1,

θ1

2 (Ω̄ × [t, t + 1]). in
view of our assumption (H0). Further, through Schauder’s theory, we get the inequality
(4.23) and (4.24).
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from (4.16) that, for any t > τ0 ≥ 1,

w(t) = Eβ(−t
βA)w(τ0)

−

∫ t

τ0

(t− s)β−1Eβ,β(−(t− s)βA)(−∆)α/2 ((ρ(v(s))− ρ0)u(s))ds

(4.25)

As a result, through Lemma A.13, we infer that

‖w(t)‖L∞(Ω) ≤
∥

∥Eβ(−t
βA)w(τ0)

∥

∥

L∞(Ω)

+

∫ t

τ0

(t− s)β−1
∥

∥Eβ,β(−(t− s)βA)(−∆)α/2 ((ρ(v(s))− ρ0)u(s))
∥

∥

L∞(Ω)
ds

≤ ‖w(τ0)‖L∞(Ω) +
1

Γ(β)

∫ t

τ0

(t− s)β−1
∥

∥(−∆)α/2 ((ρ(v(s))− ρ0)u(s))
∥

∥

L∞(Ω)
ds.

Since ‖Dαu‖L∞(Ω) ≤ C19 with some C19 > 0 for all t ≥ 1. due to Lemma A.9
and (A.15), we obtain that

‖Dα ((ρ(v(t))− ρ0)u(t))‖L∞(Ω) ≤ ‖ρ′(v(t))u(t)Dαv(t)‖L∞(Ω)

+ ‖(ρ(v(t))− ρ(u0))D
αu(t))‖L∞(Ω)

≤ C20 ‖D
αv(t)‖L∞(Ω) + C21 ‖ρ(v(t))− ρ(u0)‖L∞(Ω)

≤ C
′

21

(

‖Dαv(t)‖L∞(Ω) + ‖v(t)− u0‖L∞(Ω)

)

,

with all t ≥ 1. And in order to prove above inequality, we also use the
following formula that

|ρ(v)− ρ(u0)| = |(v(t)− u0)|

∫ 1

0

ρ′(sv + (1− s)u0)ds ≤ C22 |v(t)− u0| ,

since sv+(1−s)u0 is uniformly bounded from above and below on [0,+∞)×Ω̄
for all s ∈ [0, 1].

Finally, recalling Lemma 4.3 and [[1],(4.25)], we may infer that

‖w(t)‖L∞(Ω) ≤ ‖w(τ0)‖L∞(Ω) +
1

Γ(β)

∫ t

τ0

(t− s)β−1e(−w)1/βsds

≤ C23e
(−w

′

)1/βt. (4.26)

with any w
′

< w and C23 > 0.
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Proof of Theorem 1.1: Boundedness: Through the Lemma 4.2, with
the proof method in [[6],Lemma 4.3] we can deduce the uniform-in-time
boundedness of solutions. Further assuming that ρ(v) = v−k and n ≥ 4,
then referring to [1], we can prove that equation (1.1) has a unique global
bounded classical solution, assuming k ≤ 1 when n = 4, 5,or k < 4

n−2
when

n ≥ 6.
Next, in order to obtain inequality (1.5), by Lemma 4.3-4.4, we have

‖v − u0‖W 1,∞(Ω) ≤ Ce(−w)1/βt, ∀t > 0, 0 < β < 1. (4.27)

with w = M
p0
. Then from (4.26), we get

‖u(·, t)− u0‖L∞(Ω) ≤ C23e
(−w

′

)1/β t. (4.28)

with any w
′

< w and C23 > 0. Finally, combined (4.27) and (4.28), we
conclude that

‖u(·, t)− u0‖L∞(Ω) + ‖v(·, t)− u0‖W 1,∞(Ω) ≤ C24e
(−w

′

)1/βt, ∀t ≥ 1,

with some w
′

> 0, C24 > 0 depending u0, γ, n and Ω.

Remark 4.3. By using fractional Duhamel type integral equation, we can
get the expression of the solution of the equation (4.16):

w(t) = Eβ(−t
βA)w(τ0)

−

∫ t

τ0

(t− s)β−1Eβ,β(−(t− s)βA)(−∆)α/2 ((γ(v(s))− γ0)u(s))ds

where A = (−∆)α/2 and w(t) = u − u0. Then, recalling Lemma A.13 and
Lemma A.9, we can derive the exponential stabilization of the global solutions
by combining Lemma 4.3 and (4.26).

Appendix A Definitions, complements and computations

A.1 Definition of the fractional derivative

Definition A.1. [19] Assume that X is a Banach space and let u : [0, T ] →
X . The Riemann-Lioville fractional derivative operators of u is defined by

0D
β
t u(t) =

1

Γ(1− β)

d

dt

∫ t

0

(t− s)−βu(s)ds,

tD
β
Tu(t) =

−1

Γ(1− β)

d

dt

∫ T

t

(s− t)−βu(s)ds,
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where Γ(1 − β) is the Gamma function. The above integrals are called the
left-sided and the right-sided the Riemann-Lioville fractional derivatives.

Definition A.2. [20] Let 0 < β < 1. Consider u ∈ L1
loc((0, T );R) such that

u has a right limit u(0+) at t = 0 in the sense of Definition A.3. The β−th
order Caputo derivative of u is a distribution in D ′(R) with support in (0, T ],
is defined by

∂βc u := J−βu− u0g1−β = g−β ∗ (θ(t)(u− u0)),

where Jβ denotes the fractional integral operator

Jβu(t) =
1

Γ(β)

∫ t

0

(t− s)β−1u(s)ds. (A.1)

Similarly, the β−th order right Caputo derivative of u is a distribution in
D ′(R) with support in (−∞, T ], given by

∂̃βTu := g̃−β ∗ (θ(T − t)(u(t)− u(T−))).

Definition A.3. [20] LetB be a Banach space. For a function u ∈ L1
loc((0, T );B),

if there exists u0 ∈ B such that

lim
t→0+

1

t

∫ t

0

‖u(s)− u0‖B ds = 0.

We call u0 the right limit of u at t = 0, denoted by u(0+) = u0. Similarly,
we define u(T−) to be the constant uT ∈ B such that

lim
t→T−

1

T − t

∫ T

t

‖u(s)− uT‖B ds = 0.

Remark A.1. As in [20], we use the following distributions
{

gβ
}

as the
convolution kernels for β > −1 :

gβ(t) :=











θ(t)
ρ(β)

tβ−1, β > 0

δ(t), β = 0
1

ρ(1+β)
D(θ(t)tβ), β ∈ (−1, 0),
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Here θ(t) is the standard Heaviside step function and D represents the dis-
tributional. gβ can also be defined for β ≤ −1(see [20]) so that these dis-

tributions form a convolution group Φ =
{

gβ : β ∈ R
}

and consequently we
have

gβ1
∗ gβ2

= gβ1+β2
, ∀β1, β2 ∈ R.

Correspondingly, the time-reflected group:

Φ̃ := {g̃α : g̃α(t) = gα(−t), α ∈ R} .

Clearly, supp g̃ ⊂ (−∞, 0] and for ρ ∈ (0, 1), the following equality is true

g̃−ρ(t) = −
1

Γ(1 − ρ)
D(θ(−t)(−t)−ρ) = −Dg̃1−ρ(t),

where D represents the distributional derivative on t.

A.2 Definition of classical solution

Definition A.4. [2] (Classical Solution) Let 0 < β ≤ 1 and 0 < α ≤ 2.
Suppose u0 ∈ C(Rn), Then a function u ∈ C ((0, T )× Rn) is a classical
solution of the Cauchy problem

{

∂βt u+ (−∆)
α
2 (ρ(v)u) = 0, inRn × (0,∞)

u(x, 0) = u0(x), inRn
(A.2)

(i) F−1(|ξ|α ˆρ(v)u(ξ))(x) defines a continuous function of x for each t > 0,
(ii) for every x ∈ Rn, the fractional integral J1−βu, as defined in (A.1), is
continuously differentiable with respect to t > 0,
(iii) the function u(x, t) satisfies the integro-partial equation of (A.2) for
every (x, t) ∈ Rn× (0,∞) and the initial condition of (A.2) for every x ∈ Rn.

Theorem A.1. [1] Let Ω be a smooth bounded domain of R
n. Suppose

that ρ(·) satisfies (H0) and u0 satisfies (B.1),u0 ∈ C(Ω), u0 ≥ 0. Then there
exists Tmax ∈ (0,∞] suth that problem (1.1) possesses a unique non-negative
classical solution (u, v) ∈ (C (Ω× (0, Tmax)) ∩ C2,1(Ω× (0, Tmax)))

2
in the

form of Definition A.4. Moreover,If Tmax <∞, then

lim
t→Tmax

sup ‖u(·, t)‖L∞(Ω) = ∞.

Remark A.2. The global existence and uniqueness of classical solutions to
equation (1.1) is obtained by referring to [[2],Definition 2.4] and [[1],Theorem
2.1]. But the difference is that because of the existence of time-space frac-
tional derivatives, the conditions are more than [[1],Theorem 2.1].
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A.3 Definition of fractional Laplacian

In this section, we know some properties about fractional Laplacian. By
[22], the nonlocal operator (−∆)

α
2 , known as the Laplacian of order α, is de-

fined for any function g in the Schwartz class through the Fourier transform:
if (−∆)

α
2 g = h, then

ĥ(ξ) = |ξ|α ĝ(ξ). (A.3)

In addition, it also needs the following property. Thought [22], if ψ and
ϕ belong to the Schwartz class, definition (A.3) of the fractional Laplacian
together with Plancherel’s theorem yields

∫

Rn

(−∆)α/2ψϕdx =

∫

Rn

|ξ|α ψ̂ϕ̂dx

=

∫

Rn

|ξ|α/2 ψ̂ |ξ|α/2 ϕ̂dx

=

∫

Rn

(−∆)α/4ψ(−∆)α/4ϕdx (A.4)

According to Chapter V in [23], the nonlocal operator (−∆)
α
2 , known as the

Laplacian of order α
2
, is given by the Fourier multiplier

Dαu(x) := (−∆)α/2u(x) := F−1(|ξ|α û(ξ))(x),

where û(ξ) = F(u(x)) is the Fourier transformation of function u(x). Also,
we will use the following formula as the one give in Caffarelli and Silvestre
[24]:

(−∆)α/2u = Cn,αP.V.

∫

Rn

u(x)− u(y)

|x− y|n+α dy, (A.5)

where Cn,α = 2α−1αΓ((n+α)/2)

Γ(1−α/2)πα/n is normalization constant and P.V. denotes the

Cauchy principal value.

A.4 Some useful Lemma about fractional derivative

Lemma A.1. [25] Let 0 < β < 1 and v ∈ C([0, T ],RN), v′ ∈ L1(0, T ;RN)
and v be monotone. Then

v(t)∂βt v(t) ≥
1

2
∂βt v

2(t), t ∈ (0, T ]. (A.6)
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Lemma A.2. [19] Assume 0 < β < 2, for any γ ∈ R, there is a constant µ
such that πβ

2
< µ < min {π, πβ}, then there is a constant c = c(β, γ, µ) > 0

, such that

|Eβ,γ(z)| ≤
c

1 + |z|
, µ ≤ |arg(z)| ≤ π.

Lemma A.3. [26] Let us consider the fractional differential equation

{

C
0 D

β
t u(t) = wu(t), 0 < β < 1, w > 0,

u(0) = u0.
(A.7)

Then, the solution of (A.7) can be obtained by applying the Laplace trans-
form technique which implies:

u(t) = u0Eβ(wt
β), t > 0. (A.8)

Lemma A.4. [26] If 0 < β < 1, t > 0, w > 0, for Mittag-Leffler function
Eβ,1(wt

β) , then there is a constant C such that

Eβ(wt
β) = Eβ,1(wt

β) ≤ Cew
1
β t. (A.9)

Lemma A.5. [27] Suppose that a nonnegative function u(t) ≥ 0 satisfies

C
0 D

β
t u(t) + c1u(t) ≤ f(t) (A.10)

for almost all t ∈ [0, T ], where c1 > 0, and the function f(t) is nonnegative
and integrable for t ∈ [0, T ]. Then

u(t) ≤ u(0) +
1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds. (A.11)

Lemma A.6. [16] Let 0 < β < 1 and u ∈ C([0, T ],RN), u′ ∈ L1(0, T ;RN), p ≥
2 and u be nonnegative and monotone. Then there is

up−1(C0 D
β
t u) ≥

1

p
(C0 D

β
t u

p).

Lemma A.7. [16] Let one of the following conditions be satisfied:
(a) u ∈ C([0, T ]), v ∈ Cγ([0, T ]), β < γ ≤ 1;
(b) v ∈ C([0, T ]), u ∈ Cγ([0, T ]), β < γ ≤ 1;
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(c) u ∈ Cγ([0, T ]), v ∈ Cδ([0, T ]), β < γ + δ, 0 < γ < 1, 0 < δ < 1.
Then we have:

0D
β
t (uv)(t) = u(t)0D

β
t v(t) + v(t)0D

β
t u(t)

−
1

Γ(1− β)

∫ t

0

(u(s)− u(t))(v(s)− v(t))

(t− s)β+1
ds−

u(t)v(t)

Γ(1− β)tβ

Remark A.3. Through the above conclusions and reference [16] , we get
the following two immediate consequence are:
(1) If u and v have the same sign and are both increasing or both decreasing,
then

0D
β
t (uv)(t) ≤ u(t)0D

β
t v(t) + v(t)0D

β
t u(t). (A.12)

(2) For the Caputo derivative, inequality (A.12) reads

C
0 D

β
t (uv)(t) ≤ u(t)C0 D

β
t v(t) + v(t)C0 D

β
t u(t)

+
t−β

Γ(1− β)
(u(t)v(0) + v(t)u(0)− u(0)v(0)). (A.13)

A.5 Some functional inequalities related to fractional Laplacian

Lemma A.8. [16] If u, v ∈ C∞
0 (Rn) and 0 ≤ α ≤ 2, then

u(−∆)
α
2 v + v(−∆)

α
2 u− (−∆)

α
2 (uv)

= Aα/2

∫

Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+α dy (A.14)

where Aα/2 > 0 and
Aα/2

α/2(1−α/2)
has finite,positive limits as α→ 0 and α→ 2.

Remark A.4. If u and v have the same sign and are both increasing or both
decreasing, then the equation (A.14) has the following inequality

(−∆)
α
2 (uv) ≤ u(−∆)

α
2 v + v(−∆)

α
2 u. (A.15)

Lemma A.9. [16] Let θ ∈ C2
0(R

n) and Φ be a convex function of one variable.
Then

Φ′(θ)(−∆)
α
2 θ(x) ≥ (−∆)

α
2Φ(θ)(x). (A.16)
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Lemma A.10. [22] (Nash-Gagliardo-Nirenberg-Type Inequality). Let p ≤
1, r > 1, and 0 < α < 2. There is a constant C = C(p, r, α, n) > 0 such that
for any ξ ∈ Lp(Rn) with (−∆)α/4ξ ∈ Lr(Rn) we have

‖ξ‖θ+1
r2

≤ C
∥

∥(−∆)α/4ξ
∥

∥

r
‖ξ‖θp , r2 =

n(rp+ r − p)

r(n− α/2)
, θ =

p(r − 1)

r
. (A.17)

Lemma A.11. [28] (Hardy-Little-wood-Sobolev Inequality) For every v such
that (−∆)α/4v ∈ L2(Rn), 0 < α < 2, it hold that

‖v‖r1 ≤ c(n, α)
∥

∥(−∆)α/4v
∥

∥

2
, r1 =

2n

n− α
.

Lemma A.12. [29] (Stroock-Varopoulos’ inequality) Let 0 < α
2
< 1, p > 1,

then

−

∫

Ω

|f |p−2 fDαfdx ≤ −
4(p− 1)

p2

∥

∥

∥
D

α
2 f

p
2

∥

∥

∥

2

2
(A.18)

for all f ∈ Lp(Ω) such that Dαf ∈ Lp(Ω).

Lemma A.13. [30]

(i) Suppose that e−tA is a contraction semi-group in a Banach space, where
A is the generator of the semigroup. Then,

∥

∥Eβ(−t
βA)f

∥

∥

B
≤ ‖f‖B ,

∥

∥Eβ,β(−t
βA)f

∥

∥

B
≤

1

Γ(β)
‖f‖B .

(ii) Let 0 < α ≤ 2 and A = (−∆)α/2. If 1 < p < ∞ and σ ∈ (0, 1], then for
T0 > 0, there exists C > 0 such that
∥

∥Eβ(−t
βA)f

∥

∥

Hσα,p ≤ Ct−σβ ‖f‖p ,
∥

∥Eβ,β(−t
βA)f

∥

∥

Hσα,p ≤ Ct−σβ ‖f‖p .

uniformly for t ∈ (0, T0].

Appendix B Relevant complements to proof of Theorem 1.1

B.1 Assumptions and properties about function ρ(s)
Through reference [1], the function ρ(·) is a given function satisfying the

following conditions:

(H0) : ρ(·) ∈ C3[0,+∞), ρ(·) > 0, ρ′(·) ≤ 0 on (0,+∞), lim
s→+∞

ρ(s) = 0.

(H1) : ρ(s) + sρ′(s) ≥ 0, ∀s > 0, (B.1)

(H2) : there is k > 0 such that lim
s→+∞

skρ(s) = +∞. (B.2)

(H3) : l0 |ρ
′(s)|

2
≤ ρ(s)ρ′′(s), with some l0 >

n+ 2

4
for all s > 0. (B.3)
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Lemma B.1. [6] Suppose that (u, v) is the classical solution of (1.1) up to
the maximal time of existence Tmax ∈ (0,∞]. Then, there exists a strictly
positive constant v∗ = v∗(n,Ω, ‖u0‖L1(Ω)) such that, for all t ∈ (0, Tmax), it
holds that

inf
x∈Ω

v(x, t) ≥ v∗.

Remark B.1. By reference [1], in view of the time-independent lower bound
0 < v∗ ≤ v(x, t), one can slightly weaken assumption (H1) as follows:

ρ(s) + sρ′(s) ≥ 0, ∀s ≥ v∗. (B.4)

On the other hand, a direct calculation indicates that the above assumption
yields that

sρ(s) ≥ v∗ρ(v∗), ∀s ≥ v∗, (B.5)

and hence ρ fulfills (H2) with any k > 1.

Remark B.2. By references [1], under above assumption H0-H3, it may
infer that there exist b > 0 and sb > v∗ such that, for all s ≥ sb,

111/ρ(s) ≤ bsk, (B.6)

and on the one hand, since ρ(·) is non-increasing,

121/ρ(s) ≤ 1/ρ(sb) (B.7)

for all 0 ≤ s < sb. Therefore,for all s ≥ 0, it holds that

131/ρ(s) ≤ bsk + 1/ρ(sb). (B.8)

On the other hand, thanks to (B.8), one has
∫

Ω

vp−1ρ(v)udx ≥

∫

Ω

vp−1(bvk + 1/ρ(sb))
−1udx

≥ C1

∫

Ω

(vk + 1)−1vp−1udx. (B.9)

11It is mainly obtained from the property of ρ in reference [1].
12It is mainly obtained from the non-increasing of ρ in reference [1].
13The following formula can be obtained by combining (B.6) and (B.7).
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with 1/C1 = max{bρ(sb),1}
ρ(sb)

> 0 independent of p and time, in the view of the
fact that

14bvk + 1/ρ(sb) =
1

ρ(sb)
(bvkρ(sb) + 1) ≤

max {bρ(sb), 1}

ρ(sb)
(vk + 1). (B.10)

Since vk ≥ vk∗ by Lemma B.1,it holds that

15(vk + 1)−1vp−1 ≥ (vk + v−k
∗ vk)−1vp−1 =

vp−k−1

1 + v−k
∗

(B.11)

from which we deduce that

16

∫

Ω

vp−1ρ(v)udx ≥ C2

∫

Ω

vp−k−1udx, (B.12)

where C2 > 0 may depend on the initial datum, n,Ω and ρ, but is indepen-
dent of p and time.

B.2 Optimization proposition and lemma

We state and prove here some simple technical proposition and lemma
that has been used in the proof of Theorem 1.1.

Lemma B.2. Assume that n ≥ 3. Suppose that ρ satisfies (H0) and (H2)
with some 0 < k < 4

n−2
. Let L > 1 be a generic constant. There exists

C0 > 0 depending only on the initial datum, Ω, K, λ1, λ2 and n such that,
for any p > q ≥ q∗ =

2n
n−2

satisfying

q < p = 2q −
nk

2
,

it holds that

C
0 D

β
t

∫

Ω

vpdx+ λ2p

∫

Ω

vpdx ≤ C0L
n
2 p

n+2
2

(
∫

Ω

vpdx

)2

. (B.13)

14The main reference [1] is available.
15The main reference [1] is available.
16The main reference [1] is available.
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Proof. The important proof of this Lemma mainly refers to [[1],Lemma3.4].
In the reference [1], author uses Hölder’s inequality , Sobolev embedding
inequality and Young’s inequality to shrink 2λ2p

∫

Ω
vpdx. Then we have that

2λ2p

∫

Ω

vpdx ≤
λ1p(p− k − 1)

L(p− k)2

∥

∥

∥
v

p−k
2

∥

∥

∥

2

H1(Ω)
+ C0L

n
2 p

n+2
2

(
∫

Ω

vpdx

)2

.

Combining Lemma 3.3 and recalling that L > 1, we finally arrive at the
following inequality:

C
0 D

β
t

∫

Ω

vpdx+ λ2p

∫

Ω

vpdx ≤ C0L
n
2 p

n+2
2

(
∫

Ω

vpdx

)2

.

This completes the proof.

Remark B.3. The Lemma mainly delates 2λ2p
∫

Ω
vpdx through relevant in-

equalitys and [[1],Lemma 3.4]. Further, combined with Lemma 3.3, we will
obtain the inequality (B.13).

Proposition B.1. Assume that n ≥ 3 and ρ satisfies (H0),(H1) and (H2)
in Appendix B.1 with some k ∈ (0, 4

n−2
). First, for (p, q) = (pr, pr−1), we can

get
C
0 D

β
t

∫

Ω

vprdx+ λ2pr

∫

Ω

vprdx ≤ λ2prBr(Qr−1)
2.

Both Br and Qr here are defined below.
Then there is v∗ > 0 depending only on the initial datum, ρ, n and Ω

such that
sup

0≤t<Tmax

‖v(·, t)‖L∞(Ω) ≤ v∗. (B.14)

Proof. 17 For all r ∈ N we define

pr , 2r(q∗ −
nk

2
) +

nk

2
, p0 = q∗.

17The definition of pr,Br,Qr is mainly referred to [[1],Proposition 3.5], but the difference
is that the inequality we get is fractional differential inequality rather than differential
inequality.
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Then pr > q∗ >
nk
2

and pr = 2pr−1 −
nk
2
. We apply Lemma B.2 with (p, q) =

(pr, pr−1) to get

C
0 D

β
t

∫

Ω

vprdx+ λ2pr

∫

Ω

vprdx ≤ λ2prBr(Qr−1)
2,

where

Qr , sup
0≤t<Tmax

∫

Ω

vprdx and Br ,
C0L

n
2 p

n
2

λ2
.

Note that Qr is finite for all r in view of (3.2). Now, letting y(t) =
∫

Ω
vprdx,

we get
C
0 D

β
t y(t) + λ2pry(t) ≤ λ2prBr(Qr−1)

2.

By Lemma A.5, we infer from the above that

y(t) ≤ y(0) +
1

Γ(β)

∫ t

0

(t− s)β−1(λ2prBr(Qr−1)
2)ds (B.15)

≤ ‖v0‖
pr
L∞(Ω) + λ2prBr(Qr−1)

2

∫ t

0

(t− s)β−1ds (B.16)

≤ ‖v0‖
pr
L∞(Ω) +

λ2prBr(Qr−1)
2T β

βΓ(β)
. (B.17)

As a result, we obtain that, for all r ∈ N,

Qr = sup
0≤t<Tmax

∫

Ω

vprdx ≤ max

{

‖v0‖
pr
L∞(Ω) ,

λ2prBr(Qr−1)
2T β

βΓ(β)

}

.

Since pr ≥ q∗ for all r ≤ 1, one can choose L > 1 sufficiently large depending
only on the initial datum, Ω, n and k such that Br > 1 for all r ≥ 1. Moreover,
adjusting C0 by a proper larger nimber, we have that

Br ≤ C0a
r,

with some a > 0. Furthermore, since Lemma 3.2, Sobolev embedding H1 →֒
Lq∗ and ρ satisfies (H0) and (H1), we may find some large constant K0 > 1
has always dominated ‖v0‖L∞(Ω) and

∫

Ω
vq∗dx for all time.
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Iteratively, 18we deduce that
∫

Ω

vprdx ≤ max
{

BrB
2
r−1Q

4
r−2,BrK

2pr−1

0 , Kpr
0

}

= max
{

BrB
2
r−1Q

4
r−2,BrK

2pr−1

0

}

≤ · · ·

≤ max
{

BrB
2
r−1B

4
r−2 · · · B

2r−1

1 Q2r

0 ,BrB
2
r−1 · · · B

2r−2

2 K2r−1p1
0

}

≤ max
{

BrB
2
r−1B

4
r−2 · · · B

2r−1

1 K2r

0 ,BrB
2
r−1 · · · B

2r−2

2 K2r−1p1
0

}

≤ C20+21+···+2r−1

0 × a1·r+2(r−1)+22(r−2)+···+2r−1(r−(r−1)) × K̃2r

0

= C2r−1
0 a2

1+r−r−2K̃2r

0 ,

where K̃ = max
{

K0, K
p−1
0

}

. Finally, recalling that pr = 2r(q∗ −
nk
2
) + nk

2
,

we deduce that

‖v‖L∞(Ω) ≤ lim
rր∞

(

C2r−1
0 a2

1+r−r−2K̃2r

0

)1/pr
=

(

C0a
2K̃0

)
2

2q∗−nk
, (B.18)

The completes the proof.

Remark B.4. The method of proof the Lemma is mainly referenced [[1],Proposition
3.5], but in the process of proven, we used fractional differential inequality
to narrow y(t) =

∫

Ω
vprdx instead of differential equation.

Remark B.5. Due to the establishment of Proposition B.1, then v has a
uniform-in-time upper bound in Ω̄×[0, Tmax) in the sense of fractional deriva-
tive for ρ(·) satisfies (H0),(H1) and (H3) in Appendix B.1.

Lemma B.3. [1] Assume that ρ(·) satisfies (H0),(H1) and (H3). For any
1 + p ∈ (0, l20), there exist time-independent constants q = pl0

2
> 0 and

δ0 = δ0(p, q) ∈ (0, 1) such that

(p+ 1)(p+ 2q)2

4p(1− δ0)

∫

Ω

u1+pρq−1 |ρ′|2 |∇v|2 dx

≤ q

∫

Ω

(

(p+ q + 1) |ρ′(v)|2 + ρρ′′
)

u1+pρq−1 |∇v|2 dx

18By reference [[18], We do Alikakos-Moser iterate on
∫

Ω
vprdx and combine fractional

differential inequality to proof (B.18).
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Remark B.6. Through the above conclusions and references [[1],Lemma
4.2], we further get the following inequality

(p+ 1)(p+ 2q)2

4p(1− δ0)

∫

Ω

u1+pρq−1 |ρ′|
2 ∣
∣Dα/2v

∣

∣

2
dx

≤ q

∫

Ω

(

(p+ q + 1) |ρ′(v)|
2
+ ρρ′′

)

u1+pρq−1
∣

∣Dα/2v
∣

∣

2
dx (B.19)
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