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Abstract. In this work, the continuity with respect to the Hurst parameter of solutions to stochastic

evolution equations is studied. Compared with recent studies on such continuity property, the model

here is considered in a different point of view in which the equations are of SPDEs type, the solution and
the fractional Brownian motion take value on a Hilbert space. The main contribution is to investigate the

existence and stability of the solution with respect to the Hurst index in the space C([0, T ];L2(Ω, H)).
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1. Introduction

Fractional Brownian motion, a generalization of standard Brownian motion, is commonly used to
model various complex phenomena in practical applications, particularly in situations where the systems
are subjected to rough external forces. This motion exhibits a medium-or long-memory persistence
attribute and is characterized by a positive index h (called Hurst parameter). In the case h = 1

2 ,

fractional Brownian motion becomes standard Brownian motion. When h ̸= 1
2 , the behavior of the

general motion differs greatly from the standard one and it is not categorized as either a semi-martingale
or a Markov process in this case.

Recent decades have witnessed the remarkable increase in the the theory of stochastic calculus and
differential equations involving fractional Brownian motion (refer [4,5,7,19–21,26] and references therein).
However, as far as we know, the number of articles on the dependence on the Hurst parameter h is still
limited. There remain a plethora of diverse facets on this topic that require exploration. Jolis and Viles
in [13–16] have given a series of results on the stability in law with respect to the Hurst index. Some
other works in this aspect can be found in [9,11,12,25]. Another impressive work in a recent year is the
study of Koch and Neuenkirch in [18], where the infinite differentiability of fractional Brownian motion
has been investigated.

As regards the study on the continuous dependence on the Hurst parameter for stochastic ordinary
differential equations (SODEs), we can list here some related papers. In [22,23], Richard and Talay have
shown the Lipchitz continuity of the smooth functionals of the SODEs

XH
t = x0 +

∫ t

0

b(XH
s )ds+

∫ t

0

σ(XH
s ) ◦ dBH

s ,

where b, σ : R → R and BH
t is the one-dimensional fractional Brownian motion taking value in R,

H ∈ [ 12 , 1) is the Hurst parameter. In [10], Dung and Son have studied on the Lipschitz continuity in
the Hurst index of the solutions to stochastic Volterra integro-differential equations

xHt = x0 +

∫ t

0

(
f(s, xHs ) +

∫ s

0

G(s− u)g(u, xHu )du
)
ds+

∫ t

0

σ(xHs ) ◦ dBH
s ,

where f, g, σ,G are some R-valued functions.
Although the continuity with respect to the Hurst index for SODEs has been investigated in different

works recently, as we know, such continuity result has not been studied for stochastic partial differential
equations (SPDEs) driven by fractional Brown motion (taking value on an Hilbert space). Motivated by
this reason, in this paper, we aim at investigating the the stability with respect to the Hurst parameter
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of the solution to the following SPDEs
(
∂t +A

)
X (t) = f(t,X (t))Ẇ (t) + g(t)Ẇh(t), in D × (0, T ],

X (t) = 0, in ∂D × [0, T ],

X (0) = X0, in D,

(1)

which is known as evolution equations. Here, D ⊂ Rd is a bounded domain with sufficiently smooth
boundary, the Hurst parameter h ∈ ( 12 , 1), the operator A : D(A) ⊂ H → H is linear, positive-

definite and self-adjoint with compact inverse on H, the two functions f, g take value on L2(Ω, L2
0),

X0 ∈ L2(Ω, H), (Ω,F ,P) is a complete probability space.
It is worth noting that, compared with [9, 22, 23], the mathematical model here is considered in a

different point of view in which the equations are of SPDEs type, the process X (t) takes value on a
Hilbert space, namely H := L2(D), f(t), g(t) are two operators taking value on L2(Ω, L2

0), W (t) and
Wh(t) are H-valued standard Brownian motion (sBm [3, 6]) and H-valued fractional Brownian motion
(fBm [5,8]) with the representations

W (t) =

∞∑
n=1

wn(t)Q
1
2 en, Wh(t) =

∞∑
n=1

wh
n(t)Q

1
2 en,

where wn(t), w
h
n(t) are one-dimensional sBm and fBm respectively, (en) is an orthonormal basis of H, Q

is a positive and self-adjoint operator (called covariance) such that Qen = λnen and Tr(Q) < ∞. Due
to the difference of the model, the result in this paper shall be established in a different way. To the
best our knowledge, this work is the first result on the continuity with respect to the Hurst parameter
of H-valued solutions to SPDEs.

The present problem arises naturally since the Hurst index h can only be determined experimentally.
Additionally, in practical phenomena, the actual value of this parameter may be unknown and we only
have approximate values of this number. If the stability of the Hurst index is guaranteed, the solution of
equations with Hurst parameter h could be approximated well by corresponding solutions of equations
with approximate parameters h̃. The exact solution can be obtained by the limit of some sequence of
solutions of approximate models with perturbed parameters (hn).

The main contribution of the present paper is the stability result on the space C([0, T ];L2(Ω, H)).
At first glance, it seems to be simple to establish this result. However, when constructing such conti-
nuity property, we have to undergo some difficulties raising from the complicated representation of the
function Kh appearing in the Wiener integral and the fact that divergent integrals would appear easily
if overestimates are used. Another worth mentioning point is that the idea here can be extended to
more complicated models with more complex technique in the future, see Remark 3.1 and Remark 3.3
for detail discussions.

The organization of the paper are as follows. Section 2 is devoted to some useful properties the Beta
and diagamma functions, the notations of the space L2

0 and mild solutions. In Section 3, main results are
stated, including the existence of the mild solution and its continuity with respect the Hurst parameter.
In Section 4, detail proofs of the couple theorems in the main results are given.

2. Preliminaries

In this section, we collect some useful tools to estimate the Beta and diagamma functions, and recall
the definition of the space L2

0 for the sake of convenience.

Lemma 2.1 (see [1, 17]). Let B(·, ·) be the Beta function

B(z1, z2) =
∫ 1

0

µz1−1µz2−1dµ, z1, z2 ∈ C and R(z1),R(z2) > 0. (2)

Then, the following inequality holds true for all x, y ∈ (0, 1)

B(x, y) ≥ x+ y

xy
− 1.

Lemma 2.2. Let ψ(·) be the diagamma function ψ(z) = d
dz ln Γ(z) =

Γ′(z)
Γ(z) . Then, the following inequality

holds true for all x > 0

lnx− 1

x
≤ ψ(x) ≤ lnx− 1

2x
.

2



Proof. The property in Lemma 2.2 can be verified by the fact that when x > 0, the two functions
x 7→ lnx− 1

2x − ψ(x) and x 7→ lnx− 1
x + ψ(x) are completely monotonic, see [2]. □

Definition 2.1 (see [7]). Define by L2
0 be the space of all operators Φ from Q

1
2 (H) to H with the norm

∥Φ∥L2
0
:=

( ∞∑
n=1

∥ΦQ 1
2 en∥2H

) 1
2

<∞.

Before going to state the main results of this paper, we describe here the definition of Problem (1).
Inspired from [7], mild solutions to Problem (1) can be defined as in Definition 2.2. Due to the appearance

of Ẇ (t) in (1), the solution here contains an additional stochastic term, which is known as the Itô integral.

Definition 2.2 (Mild solution). A process Xh : [0, T ] → L2(Ω, H) is said to be a mild solution of
Problem (1) if it satisfies

Xh(t) = exp(−At)X0 +

∫ t

0

exp(−A(t− s))f(s,Xh(s))dW (s)

+

∫ t

0

exp(−A(t− s))g(s)dWh(s), P− a.s. (3)

3. Existence and continuity with respect the Hurst parameter results

In this section, main results are stated, including the existence of the mild solution and its continuity
with respect h. To guarantee the existence result, we need the following assumptions

(H) X0 ∈ L2(Ω, H), g ∈ L1(0, T ;L2(Ω, L2
0)) and there exists a positive constant L such that for any

X ,Y : [0, T ] → L2(Ω, H) and 0 ≤ t ≤ T

∥f(t,X (t))− f(t,Y(t))∥L2(Ω,L2
0)

≤ L∥X (t)− Y(t)∥L2(Ω,H).

Remark 3.1. In (H), we consider X0, f , g as functions taking value on the usual space L2(Ω, H) and
L2(Ω, L2

0) to guarantee the existence result on C([0, T ];L2(Ω, H)), which makes our problem become
simple and easy to be handled mathematically. The spaces can be extended to more complicated cases,
for instance, Lp(Ω,W k,l) and Lq(Ω, L2

0(H1, H2)) respectively (where W k,l is some Sobolev space, H1, H2

are two Hilbert scale spaces) to ensure the existence of the solution on some Hölder continuity space

C([0, T ];Lp′
(Ω,W k′,l′)) (see to [24] for an existence result for a SPED in this space). The strategy used

to extend may be to apply some calculus inequalities, some Sobolev embeddings, and stochastic tools
such as the Burkholder-Davis-Gundy-type inequality, the Kahane–Khintchine inequality, etc. In the
study here, we work under the simple assumption for the purpose of serving as a guide for more difficult
situations in the future, which require more complicated techniques to handle.

Next, the two main theorems of this paper are stated. The detail proof of each result can be found in
Section 4. It should be noted that the assumption on the operator g in the two theorems is different. If
the condition (H’) is satisfied then (H) is also satisfied.

Theorem 3.1. Let X0, f, g satisfy the condition (H). Then, Problem (1) has a unique mild solution
Xh ∈ C([0, T ];L2(Ω, H)).

Theorem 3.2. Let 1
2 < k < h < 1 and X0, f, g satisfy the following condition

(H’) X0 ∈ L2(Ω, H), f ∈ L1(0, T ;L2(Ω, L2
0)) and g ∈ L∞(0, T ;L2(Ω, L2

0)).

Then, the mild solution Xh of Problem (1) is continuous with respect to the Hurst parameter∥∥Xh −Xk

∥∥
C([0,T ];L2(Ω,H))

≲ |h− k|
∥∥g∥∥

L∞(0,T ;L2(Ω,L2
0))
. (4)

Remark 3.2. At first glance, it seems to be easy to prove that the solution is continuous with respect to
h. However, due to the complex representation of the kernel Kh (containing several terms including the
Beta function) and the fact that divergent integrals would appear if we use overestimates, it is not easy
to show the continuity holds true. Furthermore, needless to say, the tool used to estimate the Wiener
integral term (see Lemma 2 of [7]) can not be applied to estimate the right hand side of (5).

Remark 3.3. In this work, we establish the continuity of the solution with respect to h in the case
h ∈ ( 12 , 1) and g is linear. More complicated situations could be considered in the future due to complex
techniques and calculations, for instance, the Hölder continuity result with some order ν > 0, the case
when g = g(t,X ) is non-linear, and the case h ∈ (0, 12 ).
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4. Proof of main results

Proof of Theorem 3.1. Now, we briefly show that Problem (1) has a unique solution in C([0, T ];L2(Ω, H)).
By applying the Itô isometry and an useful tool in [7] to estimate the Wiener integral (see Lemma 2),
one arrives at

∥Xh(t)∥2L2(Ω,H) ≲ ∥X0∥2L2(Ω,H) + L2

∫ t

0

E∥Xh(s)∥2L2(Ω,H) + h2(2h− 1)2T 2(2h−1)∥g∥2L1(0,T ;L2(Ω,L2
0))
.

The Gronwall inequality conduces us to X (t) ∈ L2(Ω, H) for all t ∈ [0, T ]. Furthermore, the con-
tinuity with respect to t and the uniqueness of the solution can be verified easily by a quite similar
technique (refer to [7], we omit the detail here). Therefore, Problem (1) has a unique mild solution
Xh ∈ C([0, T ];L2(Ω, H)). □

Proof of Theorem 3.2. From the mild expression as in (3), it is clear that for 1
2 < k < h < 1 there holds

E
∥∥Xh(t)−Xk(t)

∥∥2
H

≲ E
∥∥∥ ∫ t

0

exp(−A(t− s))
(
f(s,Xh(s))− f(s,Xk(s))

)
dW (s)

∥∥∥2
H

+ E
∥∥∥ ∫ t

0

exp(−A(t− s))g(s)dWh(s)−
∫ t

0

exp(−A(t− s))g(s)dW k(s)
∥∥∥2
H

=: J1 + J2. (5)

The first term in the right hand side can be estimated by applying the Itô isometry and the Lipschitz
condition of f as

J1 =

∫ t

0

E∥ exp(−A(t− s))
(
f(s,Xh(s))− f(s,Xk(s))

)
∥2L2

0
ds

≲
∫ t

0

E∥f(s,Xh(s))− f(s,Xk(s))∥2L2
0
ds ≲

∫ t

0

E∥Xh(s)−Xk(s)∥2Hds.

We continue to estimate J2. Recalling that the Wiener integral with respect the fBm has the following
explicit representation∫ t

0

exp(−A(t− s))g(s)dWh(s) =

∞∑
n=1

∫ t

0

∫ t

s

exp(−A(t− r))g(r)Q
1
2 en∂rKh(r, s)drdwn(s),

where ∂rKh(r, s) = ch

(
s
r

) 1
2−h

(r − s)h−
3
2 (see [21]). By applying the Itô isometry, one obtains

J2 = E
∥∥∥ ∞∑

n=1

∫ t

0

∫ t

s

exp(−A(t− r))g(r)Q
1
2 en

(
∂rKh(r, s)− ∂rKk(r, s)

)
drdwn(s)

∥∥∥2
H

= E
∞∑

n=1

∫ t

0

∥∥∥ ∫ t

s

exp(−A(t− r))g(r)Q
1
2 en

(
∂rKh(r, s)− ∂rKk(r, s)

)
dr
∥∥∥2
H
ds

≲ E
∞∑

n=1

∫ t

0

[ ∫ t

s

∣∣∂rKh(r, s)− ∂rKk(r, s)
∣∣∥∥ exp(−A(t− r))g(r)Q

1
2 en

∥∥
H
dr
]2
ds. (6)

To estimate this term, we first deal with the bias ∂rKh(r, s)− ∂rKk(r, s). It is obvious to see that this
term can be split into two terms as follows

∂rKh(r, s)− ∂rKk(r, s) = ch

(s
r

) 1
2−h

(r − s)h−
3
2 − ck

(s
r

) 1
2−k

(r − s)k−
3
2

=
1

βh

[
αh

(s
r

) 1
2−h

(r − s)h−
3
2 − αk

(s
r

) 1
2−k

(r − s)k−
3
2

]
+
( 1

βh
− 1

βk

)
αk

(s
r

) 1
2−k

(r − s)k−
3
2 , (7)

where we recall that ch possesses the explicit representation ch =
√

h(2h−1)

B(2−2h,h− 1
2 )

=: αh

βh
(see [21]), with

αh :=
√
h(2h− 1) and βh :=

√
B(2− 2h, h− 1

2 ), B(·, ·) is the Beta function. It should be noted that

1

βh
− 1

βk
=

∫ h

k

∂x

( 1

βx

)
dx =

∫ h

k

Ψ(x)

2βx
dx,
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where we define Ψ(x) := 2ψ(2− 2x)− ψ
(
3
2 − x

)
− ψ

(
x− 1

2

)
, for x ∈ ( 12 , 1). Since B(x, y) ≥ x+y

xy − 1 for

all x, y ∈ (0, 1), see Lemma 2.1, one has an upper bound for 1
βx

as

1

βx
=

1√
B(2− 2x, x− 1

2 )
≤

√
2(1− x)(2x− 1)

4x2 − 8x+ 5
<

1

2
. (8)

which helps us to obtain∣∣∣ 1
βh

− 1

βk

∣∣∣ ≲ ∣∣∣ ∫ h

k

ψ(2− 2x)dx
∣∣∣+ ∣∣∣ ∫ h

k

ψ
(3
2
− x

)
dx

∣∣∣+ ∣∣∣ ∫ h

k

ψ
(
x− 1

2

)
dx

∣∣∣ =: I1 + I2 + I3.

Applying the property lnx− 1
x ≤ ψ(x) ≤ lnx− 1

2x for all x > 0 (Lemma 2.2), one arrives at

I1 ≤
∫ h

k

∣∣ψ(2− 2x)
∣∣dx ≲

∫ h

k

(
− ln(2− 2x)− 1

2− 2x

)
dx ≤

∫ h

k

1

2x− 2
dx

≤ ln(2h− 2)− ln(2k − 2) ≲ h− k,

where we note that 0 < 2− 2x < 1 due to x ∈ ( 12 , 1). By exactly the same technique, one can verify that

I2 + I3 ≲ h− k. As a result, one obtains the continuity of the function 1
βh

as∣∣∣ 1
βh

− 1

βk

∣∣∣ ≲ h− k. (9)

On the other hand, we know that there exists a constant ℏ ∈ ( 12 , 1) such that∣∣∣αh

(s
r

) 1
2−h

(r − s)h−
3
2 − αk

(s
r

) 1
2−k

(r − s)k−
3
2

∣∣∣ = (h− k)
∣∣∣∂h(αℏ

(s
r

) 1
2−ℏ

(r − s)ℏ−
3
2

)∣∣∣
= (h− k)

(s
r

) 1
2−ℏ

(r − s)ℏ−
3
2

∣∣∣2ℏ(2ℏ− 1)
(
ln(r − s) + ln r − ln s

)
+ 4ℏ− 1

2
√

ℏ(2ℏ− 1)

∣∣∣
≲ (h− k)

(s
r

) 1
2−ℏ

(r − s)ℏ−
3
2

(
T
√

ℏ(2ℏ− 1) +

√
ℏ

2ℏ− 1
+

√
2ℏ− 1

ℏ

)
≲ (h− k)

(s
r

) 1
2−ℏ

(r − s)ℏ−
3
2 , for 0 ≤ s < r ≤ T, (10)

where the hidden constant does not depend on h, k, r, s. Now, combining (7)-(10) and noting that
ℏ ∈ ( 12 , 1), one deduces that∣∣∂rKh(r, s)− ∂rKk(r, s)

∣∣ ≲ (h− k)
∣∣∣(s
r

) 1
2−ℏ

(r − s)ℏ−
3
2 +

(s
r

) 1
2−k

(r − s)k−
3
2

∣∣∣ (11)

Applying the above estimate and the Hölder inequality, one arrives at

J2 ≲ (h− k)2E
∞∑

n=1

∫ t

0

[ ∫ t

s

((s
r

) 1
2−ℏ

(r − s)ℏ−
3
2 +

(s
r

) 1
2−k

(r − s)k−
3
2

)
×

×
∥∥ exp(−A(t− r))g(r)Q

1
2 en

∥∥
H
dr
]2
ds

≲ (h− k)2E
∞∑

n=1

∫ t

0

s1−2ℏ
[ ∫ t

s

(
(r − s)ℏ−

3
2 + (r − s)k−

3
2

)
dr×

×
∫ t

s

(
(r − s)ℏ−

3
2 + (r − s)k−

3
2

)∥∥g(r)Q 1
2 en

∥∥2
H
dr
]
ds

≲ (h− k)2
∥∥g∥∥2

L∞(0,T ;L2(Ω,L2
0))

∫ t

0

s1−2ℏ
(
(t− s)ℏ−

1
2 + (t− s)k−

1
2

)2

ds.

Since t ≤ T and ℏ, k ∈ ( 12 , 1), one can verify that
∫ t

0
s1−2ℏ

(
(t − s)ℏ−

1
2 + (t − s)k−

1
2

)2

ds ≲ t ≤ T .

Therefore, we conclude that there exists a positive constant C independent of h, k, t such that

E∥Xh(t)−Xk(t)∥2H ≤ C
[
(h− k)2

∥∥g∥∥2
L∞(0,T ;L2(Ω,L2

0))
+

∫ t

0

E∥Xh(s)−Xk(s)∥2Hds
]
.

The Grönwall inequality allows us to obtain∥∥Xh(t)−Xk(t)
∥∥2
L2(Ω,H))

≤ CeCt(h− k)2
∥∥g∥∥2

L∞(0,T ;L2(Ω,L2
0))
.
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Since eCt ≤ eCT , the above assertion implies that (4) holds true. The proof is complete. □
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