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Abstract: The aim of this paper is to answer the question left in [17] (Math. Z. (2015) 281).

We prove that the zero-filter limit of the Camassa-Holm equation is the Burgers equation in the

same topology of Sobolev spaces as the initial data.
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1 Introduction

The Camassa-Holm equations with fractional dissipation reads as follows



∂tm + 2m∂xu + u∂xm + νΛ
γm = 0,

m = (1 − α2∂2
x)u,

u(0, x) = u0(x),

(1.1)

where the constant α > 0 is a filter parameter, the constants ν ≥ 0 and γ ∈ [0, 2]. The frac-

tional power operator Λγ is defined by Fourier multiplier with the symbol |ξ|γ, namely, Λγu(x) =

F −1
(
|ξ|γF u(ξ)

)
.When ν = 0, (1.1) becomes the classical Camassa-Holm (CH) equation



∂tm + 2m∂xu + u∂xm = 0,

m = (1 − α2∂2
x)u,

u(0, x) = u0(x).

(1.2)

The CH equation was firstly proposed in the context of hereditary symmetries studied in [16] and

then was derived explicitly as a water wave equation by Camassa-Holm [4]. Many aspects of the

mathematical beauty of the CH equation have been exposed over the last two decades. Particularly,

*E-mail: lijinlu@gnnu.edu.cn; yuyanghai214@sina.com(Corresponding author); mathzwp2010@163.com
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(1.2) is completely integrable [4, 7] with a bi-Hamiltonian structure [6, 16] and infinitely many

conservation laws [4, 16]. Also, it admits exact peaked soliton solutions (peakons) of the form

u(x, t) = ce−|x−ct| with c > 0, which are orbitally stable [14]. Another remarkable feature of the CH

equation is the wave breaking phenomena: the solution remains bounded while its slope becomes

unbounded in finite time [5, 10, 11]. It is worth mentioning that the peaked solitons present the

characteristic for the travelling water waves of greatest height and largest amplitude and arise as

solutions to the free-boundary problem for incompressible Euler equations over a flat bed, see

Refs. [8, 12, 13] for the details. Because of the interesting and remarkable features as mentioned

above, the Camassa-Holm equation has attracted much attention as a class of integrable shallow

water wave equations in recent twenty years. Its systematic mathematical study was initiated in a

series of papers by Constantin and Escher, see [9–13]. When ν > 0 and γ = 2, Xin-Zhang [25]

proved that the classical viscous Camassa-Holm equation is globally well-posed.

Note that

(
1 − α2∂2

x

)−1
f = g ∗ f , ∀ f ∈ L2(R), (1.3)

where g(x) := 1
2α

e−
|x|
α , x ∈ R and ∗ denotes convolution, then u = g ∗ m. Using this identity and

applying the pseudodifferential operator
(
1 − α2∂2

x

)−1
to Eq. (1.1), one can rewrite Eq. (1.1) as a

quasi-linear nonlocal evolution equation of hyperbolic type, namely


ut + u∂xu + νΛ

γu = −∂x

(
1 − α2∂2

x

)−1 (
u2 + α

2

2
(∂xu)2

)
, (t, x) ∈ R+ × R,

u(0, x) = u0(x).
(1.4)

When the filter parameter α = 0, Eq. (1.4) becomes the Burgers equation


ut + 3u∂xu + νΛ

γu = 0, (t, x) ∈ R+ × R,

u(0, x) = u0(x).
(1.5)

The Burgers equation (1.6) with γ = 0 and γ = 2 has received an extensive amount of attention

since the studies by Burgers in the 1940s. If γ = 0, the equation is perhaps the most basic

example of a PDE evolution leading to shocks. If γ = 2, it provides an accessible model for

studying the interaction between nonlinear and dissipative phenomena. Kiselev et al. [20] gave a

complete study for general γ ∈ [0, 2] for the periodic case. In particular, for the case γ = 1, they

proved the global well-posedness of the equation in the critical Hilbert space H
1
2 (T) by using the

method of modulus of continuity. Subsequently, Miao-Wu [23] proved the global well-posedness

of the critical Burgers equation in critical Besov spaces B
1/p

p,1
(R) with p ∈ [1,∞) with the help

of Fourier localization technique and the method of modulus of continuity. For more results on

the fractional Burgers equation and dispersive perturbations of Burgers equations, we refer the

readers to see [1, 15, 21, 22, 24] and the references therein.

Formally, as α → 0, the solution of the Camassa-Holm equation (1.4) converges to the solu-

tion of the Burgers equation (1.5). More precisely, Gui-Liu [17] proved that the solutions of the

dissipative Camassa-Holm equation (ν > 0, γ ∈ (0, 1]) does converge, at least locally, to the one

of the dissipative Burgers equation as the filter parameter α tends to zero in the lower regularity

Sobolev spaces. However, the question about whether the zero-filter limit of solutions of the clas-

sical Camassa-Holm equation is a solution to the inviscid Burgers equation, as mentioned in [17]

(see p.997), is still an open problem.
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In this paper, we consider the problem of the zero-filter limit (α → 0) of the following

Camassa-Holm equation


ut + u∂xu = −∂x

(
1 − α2∂2

x

)−1 (
u2 + α

2

2
(∂xu)2

)
,

u(0, x) = u0(x) ∈ Hs(R).
(1.6)

Equivalently,


ut + 3u∂xu = −α

2∂3
x

(
1 − α2∂2

x

)−1
(u2) − α

2

2
∂x

(
1 − α2∂2

x

)−1
(∂xu)2,

u(0, x) = u0(x) ∈ Hs(R).
(1.7)

In this paper, we shall address the above open question. Precisely speaking, we shall prove that

the solution of (1.6) converges to the solution of the following inviscid Burgers equation in the

topology of Sobolev spaces


ut + 3u∂xu = 0, (t, x) ∈ R+ × R,

u(0, x) = u0(x) ∈ Hs(R).
(1.8)

Our main result is the following:

Theorem 1.1. Let s > 3
2

and α ∈ (0, 1). Assume that the initial data u0 ∈ Hs(R). Let Sαt (u0) and

S0
t (u0) be the smooth solutions of (1.6) and (1.8) with the initial data u0 respectively. Then there

exists a time T = T (‖u0‖Hs) > 0 such that Sαt (u0), S0
t (u0) ∈ C([0, T ]; Hs) and

lim
α→0

∥∥∥Sαt (u0) − S0
t (u0)

∥∥∥
L∞

T
Hs = 0.

Remark 1.1. Compared with the result (ν > 0) in the weak topology Sobolev spaces given by

Gui-Liu in [17], our Theorem 1.1 holds for ν = 0 (zero dissipative) and seems to be optimal in

the sense of that the convergence space is the solution spaces of both the Camassa-Holm equation

and inviscid Burgers equation. We also would like to emphasize that, Theorem 1.1 holds for any

ν ≥ 0.

Remark 1.2. Motivated by the Bona–Smith method [3] (see also [18]), we decompose the differ-

ence of Sαt (u0) and S0
t (u0) as follows:

Sαt (u0) − S0
t (u0) = Sαt (u0) − Sαt (S nu0) + Sαt (S nu0) − S0

t (S nu0) + S0
t (S nu0) − S0

t (u0), (1.9)

where S n denotes the frequency localization operator defined in Lemma 2.3. The key idea is to

show that

‖Sαt (u0) − Sαt (S nu0)‖Hs ≤ C‖(Id − S n)u0‖Hs , ∀α ∈ [0, 1)

and

‖Sαt (S nu0) − S0
t (S nu0)‖Hs ≤ Cα2

3
2

n.

For more details see Step 2 and Step 3 in Section 3.

Remark 1.3. We should mention that, by the idea in Remark 1.2, our Theorem 1.1 holds for the

Besov spaces Bs
p,r(R) with s > max{ 3

2
, 1+ 1

p
} and (p, r) ∈ (1,∞)× [1,∞). In order to elucidate the

main idea, we do not pursue the general case in the current paper and leave it to the interested

readers.
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2 Preliminaries

Notation Throughout this paper, we will denote by C any positive constant independent of the

parameter α, which may change from line to line. Given a Banach space X, we denote its norm

by ‖ · ‖X. For I ⊂ R, we denote by C(I; X) the set of continuous functions on I with values in X.

Sometimes we will denote Lp(0, T ; X) by L
p

T
X. For all f ∈ S′, the Fourier transform f̂ is defined

by

f̂ (ξ) =

∫

R

e−ixξ f (x)dx for any ξ ∈ R.

For s ∈ R, we denote the operator J s := (1 − ∂2
x)

s
2 which is defined by

Ĵ s f (ξ) = (1 + |ξ|2)
s
2 f̂ (ξ).

For s ∈ R, the nonhomogeneous Sobolev space is defined by

‖ f ‖2Hs = ‖J
s f ‖2

L2 =

∫

R

(1 + |ξ|2)s| f̂ (ξ)|2dξ.

Next, we introduce some known results for later proof.

Lemma 2.1 ( [2]). For s > 0, Hs(R) ∩ L∞(R) is an algebra. Moreover, we have for any u, v ∈

Hs(R) ∩ L∞(R)

‖uv‖Hs(R) ≤ C
(
‖u‖Hs(R)‖v‖L∞(R) + ‖v‖Hs(R)‖u‖L∞(R)

)
.

In particular, for s > 1
2
, due to the fact Hs(R) ֒→ L∞(R), then we have

‖uv‖Hs(R) ≤ C‖u‖Hs(R)‖v‖Hs(R).

Lemma 2.2 ( [19]). Let s > 0 and f , g ∈ Lip ∩ Hs(R) and g ∈ L∞ ∩ Hs−1(R). Then we have

‖[J s, f ]g‖L2 ≤ C
(
‖∂x f ‖L∞‖g‖Hs−1 + ‖ f ‖Hs‖g‖L∞

)
.

Lemma 2.3 ( [2]). Let the inhomogeneous low-frequency cut-off operator S n is defined by S nu :=∑
−1≤q≤n−1

∆qu. For any u ∈ Hs(R) with s > 3
2
, we have

lim
n→+∞

‖S nu − u‖Hs(R) = 0.

3 Proof of Theorem 1.1

We divide the proof of Theorem 1.1 into three steps.

Step 1: Uniform bound w.r.s α ∈ (0, 1) of Sαt (u0) in Hs.

For fixed α > 0, by the classical local well-posedness result, we known that there exists a

Tα = T (‖u0‖Hs , α) > 0 such that the Camassa-Holm has a unique solution Sαt (u0) ∈ C([0, Tα]; Hs).

We shall prove that ∃ T = T (‖u0‖Hs) > 0 such that T ≤ Tα and there exists C > 0 independent

of α such that

‖Sαt (u0)‖L∞
T

Hs ≤ C, ∀α ∈ [0, 1). (3.10)

4



Moreover, if u0 ∈ Hγ for some γ > s, then there exists C2 > 0 independent of α such that

‖Sαt (u0)‖L∞
T

Hγ ≤ C2 ‖u0‖Hγ . (3.11)

We just prove (3.10) since (3.11) is similar. To simplify notation, we set u = Sαt (u0). Applying the

operator J suJ s to (1.4) and integrating the resulting over R, we obtain

1

2

d

dt
‖u‖2Hs =

∫

R

∂xu|J
su|2dx −

∫

R

[J s, u]∂xu · J
sudx (3.12)

− 2

∫

R

(1 − α2∂2
x)
−1J s(uux) · J

sudx (3.13)

−
α2

2

∫

R

∂x(1 − α
2∂2

x)
−1J s(∂xu)2 · J sudx. (3.14)

To bound (3.12), by the classical commutator estimation (see Lemma 2.2), it is easy to obtain

|(3.12)| ≤ C
(
‖∂xu‖L∞‖u‖

2
Hs + ‖[J s, u]∂xu‖L2‖u‖Hs

)
≤ C‖∂xu‖L∞‖u‖

2
Hs ,

To bound (3.13), notice that
∫

R

(1 − α2∂2
x)
−1J s(uux)J sudx =

∫

R

(1 − α2∂2
x)
−1(u∂xJ su) · J sudx (3.15)

+

∫

R

(1 − α2∂2
x)
−1[J s, u]∂xu · J

sudx, (3.16)

and letting v = (1 − α2∂2
x)
−1J su, then

(3.15) =

∫

R

u(1 − α2∂2
x)∂xv · vdx

= −
1

2

∫

R

∂xu · v
2dx +

∫

R

∂xu(α2∂2
xv) · vdx −

1

2

∫

R

∂xu · (α∂xv)2dx

≤ C‖∂xu‖L∞
(
‖v‖2

L2 + ‖α
2∂2

xv‖
2
L2 + ‖α∂xv‖

2
L2

)

≤ C‖∂xu‖L∞‖u‖
2
Hs ,

where we have used (1.3) and the convolution inequality. Also,

(3.16) =

∫

R

[J s, u]∂xu · vdx ≤ ‖[J s, u]∂xu‖L2‖v‖L2 ≤ C‖∂xu‖L∞‖u‖
2
Hs ,

which implies that

|(3.13)| ≤ C‖∂xu‖L∞‖u‖
2
Hs .

To bound (3.14), notice that

(3.14) =
α2

2

∫

R

J s−1(∂xu)2 · ∂xJvdx

≤ α2‖(∂xu)2‖Hs−1‖∂xJv‖L2

≤ C‖∂xu‖L∞‖u‖
2
Hs .

5



Combining the above yields that

d

dt
‖Sαt (u0)‖2Hs ≤ C‖∂xS

α
t (u0)‖L∞‖S

α
t (u0)‖2Hs ≤ C‖Sαt (u0)‖3Hs .

Thus, by continuity arguments there exists a time T = T (‖u0‖Hs) > 0 such that (3.10) holds

uniformly w.r.s α ∈ (0, 1).

Step 2: Estimations of ‖Sαt (u0) − Sαt (S nu0)‖Hs and ‖S0
t (u0) − S0

t (S nu0)‖Hs .

Denoting

v(t) = Sαt (u0) − Sαt (S nu0) and v|t=0 = (Id − S n)u0,

we infer that v satisfies

∂tv + Sαt (u0)∂xv = −v∂xS
α
t (S nu0) + B(v, Sαt (u0) + Sαt (S nu0)),

where

B : ( f , g) 7→ ∂x

(
1 − α2∂2

x

)−1
(

f g +
α2

2
∂x f ∂xg

)
.

Notice that
∫

R

J s (B(v, Sαt (u0) + Sαt (S nu0))
)
· J svdx

=
1

2

∫

R

J s
(
α2∂x(1 − α

2∂2
x)
−1(vx∂x[S

α
t (u0) + Sαt (S nu0)])

)
· J svdx (3.17)

+ 2

∫

R

(1 − α2∂2
x)
−1J s(∂xS

α
t (S nu0)v) · J svdx (3.18)

+ 2

∫

R

(1 − α2∂2
x)
−1J s [(v + Sαt (S nu0)

)
vx)

]
· J svdx. (3.19)

To bound (3.17) and (3.18), we easily obtain

|(3.17)| + |(3.18)| ≤ C
(
‖Sαt (u0)‖Hs + ‖Sαt (S nu0)‖Hs

)
‖v‖2Hs +C‖∂xS

α
t (S nu0)‖Hs‖v‖Hs−1‖v‖Hs . (3.20)

Similar argument as (3.13), we have

|(3.19)| ≤ C
(
‖v‖Hs + ‖Sαt (S nu0)‖Hs

)
‖v‖2Hs ≤ C

(
‖Sαt (u0)‖Hs + ‖Sαt (S nu0)‖Hs

)
‖v‖2Hs . (3.21)

Following the same procedure as that in Step 1, we deduce from (3.20)-(3.21) that

1

2

d

dt
‖v‖2Hs =

∫

R

∂xS
α
t (u0)|J sv|2dx −

∫

R

[J s, Sαt (u0)]∂xv · J
svdx

−

∫

R

J s(v∂xS
α
t (S nu0)) · J svdx

+

∫

R

J s (B(v, Sαt (u0) + Sαt (S nu0))
)
· J svdx

≤ C
(
‖∂xS

α
t (u0)‖L∞ + ‖S

α
t (u0)‖Hs + ‖Sαt (S nu0)‖Hs

)
‖v‖2Hs

+ C‖∂xS
α
t (S nu0)‖Hs‖v‖Hs−1‖v‖Hs . (3.22)
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Using (3.10) and (3.11), the above (3.22) reduces to

d

dt
‖v‖Hs ≤ C‖v‖Hs + C2n‖v‖Hs−1 . (3.23)

To close (3.23), we have to estimate ‖v‖Hs−1 .

1

2

d

dt
‖v‖2

Hs−1 =

∫

R

∂xS
α
t (u0)|J s−1v|2dx −

∫

R

[J s−1, Sαt (u0)]∂xv · J
s−1vdx

−

∫

R

J s−1(v∂xS
α
t (S nu0)) · J s−1vdx

+

∫

R

J s−1 (
B(v, Sαt (u0) + Sαt (S nu0))

)
· J s−1vdx

≤ C
(
‖∂xS

α
t (u0)‖L∞ + ‖S

α
t (u0)‖Hs + ‖Sαt (S nu0)‖Hs

)
‖v‖2

Hs−1 .

Applying Gronwall’s inequality yields that for t ∈ [0, T ]

‖v(t)‖Hs−1 ≤ C‖(Id − S n)u0‖Hs−1 ≤ C2−n‖(Id − S n)u0‖Hs . (3.24)

Inserting (3.24) into (3.23) and applying Gronwall’s inequality, we obtain that for t ∈ [0, T ]

‖Sαt (u0) − Sαt (S nu0)‖Hs ≤ C‖(Id − S n)u0‖Hs , ∀α ∈ [0, 1).

Step 3: Estimation of ‖Sαt (S nu0) − S0
t (S nu0)‖Hs .

We can find that Sαt (S nu0) satisfies the following equation

∂tS
α
t (S nu0) + 3Sαt (S nu0)∂xS

α
t (S nu0) = −

1

2
α2∂x(1 − α

2∂2
x)
−1[∂xS

α
t (S nu0)]2

− α2∂3
x(1 − α

2∂2
x)
−1[Sαt (S nu0)]2.

Denoting

w(t) = Sαt (S nu0) − S0
t (S nu0) and w|t=0 = 0,

we infer that w satisfies
{
∂tw + 3S0

t (S nu0)∂xw = −3w∂xS
α
t (S nu0) − I,

w|t=0 = 0,

where we denote

I := α2∂x

(
1 − α2∂2

x

)−1
[
∂2

x

(
[Sαt (S nu0)]2

)
+

1

2

[
∂xS

α
t (S nu0)

]2

]
.

Taking the similar argument with (3.22), we have

1

2

d

dt
‖w‖2

Hs−1 =

∫

R

∂xS
0
t (S nu0)|J s−1w|2dx −

∫

R

[J s−1, S0
t (S nu0)]∂xw · J

s−1wdx (3.25)

− 3

∫

R

J s−1 (
w∂xS

α
t (S nu0)

)
· J s−1wdx (3.26)

−

∫

R

J s−1I · J s−1wdx. (3.27)
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Obviously,

|(3.25)| + |(3.26)| ≤ C(‖S0
t (S nu0)‖Hs + ‖Sαt (S nu0)‖Hs)‖w‖2

Hs−1 ,

|(3.27)| ≤ C‖I‖Hs−1‖w‖Hs−1

≤ Cα2‖Sαt (S nu0)‖W1,∞‖Sαt (S nu0)‖Hs+2‖w‖Hs−1

≤ Cα222n‖w‖Hs−1 .

Gathering the above estimates, we deduce that

‖w(t)‖Hs−1 ≤ C

∫ t

0

‖w‖Hs−1dτ +Cα222n,

which along with Gronwall’s inequality implies

‖w(t)‖Hs−1 ≤ Cα222n.

Then, we get for t ∈ [0, T ]

‖w(t)‖Hs ≤ ‖w(t)‖
1
2

Hs−1‖w(t)‖
1
2

Hs+1 ≤ Cα2
3
2

n.

Due to (1.9) and using Step 1-Step 3, we have for t ∈ [0, T ]

‖Sαt (u0) − S0
t (u0)‖Hs

≤ ‖Sαt (u0) − Sαt (S nu0)‖Hs + ‖Sαt (S nu0) − S0
t (S nu0)‖Hs + ‖S0

t (S nu0) − S0
t (u0)‖Hs

≤ C‖(Id − S n)u0‖Hs +C2
3
2 nα.

Using Lemma 2.3 to the above inequality enables us to complete the proof of Theorem 1.1.
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