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Abstract

We propose an augmented Lagrangian-based preconditioner to accelerate the convergence of Krylov
subspace methods applied to linear systems of equations with a block three-by-three structure such as those
arising from mixed finite element discretizations of the coupled Stokes-Darcy flow problem. We analyze the
spectrum of the preconditioned matrix and we show how the new preconditioner can be efficiently applied.
Numerical experiments are reported to illustrate the effectiveness of the preconditioner in conjunction with
flexible GMRES for solving linear systems of equations arising from a 3D test problem.
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1. Introduction

Consider the following (n+m+ p)× (n+m+ p) linear system of equations:

Au =





A11 A12 0
A21 A22 BT

0 B 0









u1

u2

u3



 =





b1
b2
b3



 = b, (1.1)

where A11 and A22 are both symmetric positive definite (SPD), A21 = −AT
12

and B has full row rank. In
this paper, we are especially interested in the case where the above system corresponds to inf-sup stable
mixed finite element discretizations of the coupled Stokes-Darcy flow problem; see [2, 3] for further details.
Krylov subspace methods (such as GMRES) in conjunction with suitable preconditioners are frequently the
method of choice for computing approximate solutions of such linear systems of equations; see [1, 2, 3] and
the references therein.

In [1], first, problem (1.1) is reformulated as the equivalent augmented system Āu = b̄, where

Ā =





A11 A12 0
A21 A22 + γBTQ−1B BT

0 B 0



 , (1.2)

and b̄ = (b1; b2+γBTQ−1b3; b3), with Q being an arbitrary SPD matrix and γ > 0 a user-defined parameter.
Then, the following preconditioner is proposed:

Pγ =





A11 A12 0
0 A22 + γBTQ−1B BT

0 0 − 1

γ
Q



 .
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In practice, this preconditioner is applied inexactly by means of inner iterations and thus is used with Flexible
GMRES (FGMRES) [5]. It was observed in [1] that FGMRES with the inexact augmented Lagrangian-
based preconditioner Pγ exhibits faster convergence for larger values of γ. However, for large γ the total
timings increase due to the fact that the condition number of the block A22 + γBTQ−1B goes up as γ
increases. Hence, the conjugate gradient (CG) method used for solving subsystems with coefficient matrix
A22 + γBTQ−1B needs to be applied with a preconditioner. Explicitly forming A22 + γBTQ−1B to compute
an incomplete Cholesky factorization leads to a considerably less sparse matrix and superlinear growth in
the fill-in in the incomplete factors, and thus to more expensive preconditioned CG (PCG) iterations; for
further details see [1, Table 2].

In this paper, we introduce a new class of preconditioners for Ā given as follows:

Pγ,α =





A11 A12 0
0 A22 + γBTQ−1B (1− γα−1)BT

0 B −α−1Q



 (1.3)

where α and γ are prescribed positive parameters such that α ≥ γ. As shown below, this form of precondi-
tioning allows us to avoid the requirement of forming the augmented block A22 + γBTQ−1B, which makes
it possible to work with large values of γ. It is also highly effective in reducing the number of FGMRES
iterations.

The rest of paper is organized as follows. In section 2, we derive some bounds for the eigenvalues of the
preconditioned matrix ĀP−1

γ,α. Numerical results are presented in section 3 which illustrate the effectiveness
of the proposed preconditioner in conjunction with FGMRES in terms of both the number of iterations and
the CPU time. Section 4 concludes the paper.

Notations. Given a square matrix A, the set of all eigenvalues (spectrum) of A is denoted by σ(A). When
the spectrum of A is real, we use λmin(A) and λmax(A) to respectively denote its minimum and maximum
eigenvalues. When A is symmetric positive (semi)definite, we write A ≻ 0 (A < 0). In addition, for two
given matrices A and B, the relation A ≻ B (A < B) means A−B ≻ 0 (A−B < 0). Finally, for vectors x,
y and z of dimensions n, m and p, (x; y; z) will denote a column vector of dimension n+m+ p. Throughout
the paper, I will denote the identity matrix (the size of which will be clear from the context).

2. Main results

In this section, we first obtain some bounds for the eigenvalues of P−1

γ,αĀ (which coincide with those of

ĀP−1
γ,α; recall that only right preconditioning is allowed with FGMRES ). We show that using large values

of α leads to a well clustered eigenvalue distribution for the preconditioned matrix. Then we explain how
the preconditioner can be efficiently implemented.

Theorem 2.1. Let Ā and Pγ,α be respectively defined by (1.2) and (1.3). The eigenvalues of σ(P−1

γ,αĀ) are

all real and positive. More precisely, for an arbitrary λ ∈ σ(P−1
γ,αĀ), we have

ξ2αλmin(Q)

λmax(Q)((λmax(A22) + λmax(AT
12
A−1

11
A12))λmin(Q) + 2α‖B‖2

2
)
≤ λ < 2 +

λmax(A
T
12A

−1

11
A12)

λmin(A22)

with ξ = min {‖By‖2 | y /∈ Ker(B), y∗y = 1} .

Proof. For simplicity, we set Ā22 = A22+γBTQ−1B. Let λ and (x; y; z) be an arbitrary eigenpair of P−1

γ,αĀ.
Therefore, we have

A11x+A12y = λ(A11x+A12y) (2.1a)

A21x+ Ā22y +BT z = λ(Ā22y + (1− γα−1)BT z) (2.1b)

By = λ(By − α−1Qz) (2.1c)
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From Eq. (2.1a), we deduce that either λ = 1 or x = −A−1

11
A12y. In particular, one can verify that λ = 1

belongs to the spectrum of P−1

γ,αĀ with a corresponding eigenvector of the form (x; y; 0) provided that x and
y are not simultaneously zero and that x ∈ Ker(A21).

In the rest of the proof, we assume that λ 6= 1. Notice that if y ∈ Ker(B), then Eq. (2.1c) implies that
z is the zero vector. Hence, from (2.1b), one can conclude that

λ = 1 +
y∗AT

12
A−1

11
A12y

y∗Ā22y
= 1 +

y∗AT
12
A−1

11
A12y

y∗A22y
. (2.2)

In the sequel, without loss of generality, we may assume that y /∈ Ker(B) and y∗y = 1. Since λ 6= 1,
from (2.1c), we further obtain

z = α

(

λ− 1

λ

)

Q−1By.

Substituting z from the above relation and x = −A−1

11
A12y in (2.1b), we obtain

AT
12A

−1

11
A12y + (1 − λ)Ā22y +

(

1− λ(1 − γα−1)
)

(

λ− 1

λ

)

(

αBTQ−1By
)

= 0 ,

having in mind that A21 = −AT
12. For ease of notation we set

p := y∗AT
12
A−1

11
A12y, q := y∗Ā22y and t := αy∗BTQ−1By.

Left-multiplying both sides of the preceding relation by λy∗, we reach to the following quadratic equation:
(

1 +
t

q
(1− γα−1)

)

λ2 −
(

1 +
t

q
(1− γα−1) +

t

q
+

p

q

)

λ+
t

q
= 0

or, equivalently,
λ2 − bλ+ c = 0 (2.3)

where

b := 1 +
p+ t

q + (1− γ
α
)t

and c :=
t

q + (1− γ
α
)t
. (2.4)

Notice that b ≥ 1 + c. As a result, it is immediate to see that the roots of (2.3) are real and given by

λ1 =
b−

√
b2 − 4c

2
and λ2 =

b+
√
b2 − 4c

2
.

It is not difficult to see that

λ1 =
2c

b+
√
b2 − 4c

≥ c

b
=

αy∗BTQ−1By

y∗A22y + p+ 2αy∗BTQ−1By

≥ αλmin(Q
−1)‖By‖22

(λmax(A22) + λmax(AT
12
A−1

11
A12)) + 2α‖B‖2

2
λmax(Q−1)

≥ ξ2αλmin(Q)

λmax(Q)((λmax(A22) + λmax(AT
12
A−1

11
A12))λmin(Q) + 2α‖B‖2

2
)

where ξ = min {‖By‖2 | y /∈ Ker(B), y∗y = 1} . Also, it can be observed that

λ2 ≤ b

= 1 +
p+ αy∗BTQ−1By

y∗A22y + αy∗BTQ−1By
(2.5)

< 2 +
λmax(A

T
12
A−1

11
A12)

λmin(A22)
.
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Figure 1: Eigenvalue distributions of Ā (top) versus that of the preconditioned matrix P
−1
γ,αĀ (bottom) for different values of

γ, with Q = diag(Mp) and α = 2γ for a 3D coupled Stokes-Darcy problem with 1695 degrees of freedom.

Remark 2.1. As pointed out in [1], for problems of small or moderate size, it can be numerically checked
that the condition A22 ≻ AT

12
A−1

11
A12 is satisfied for linear systems of the form (1.1) arising from the finite

element discretization of coupled Stokes-Darcy flow. Under this condition, for any λ ∈ σ(P−1

γ,αĀ) and α > 0,
from Eqs. (2.2) and (2.5), we can deduce that 0 < λ ≤ 1 + τ for some τ < 1. The previous theorem implies
that for fixed n, m and p, as α → ∞, except for the possible eigenvalues given by (2.2), any eigenvalue λ
(with λ 6= 1) of the preconditioned matrix tends to 1 as α → ∞ since in this case the coefficients b and c
in Eq. (2.4) go to 2 and 1, respectively. Consequently, the left-hand side of the quadratic equation (2.3)
tends to (λ − 1)2 as α → ∞. This behavior appears to be confirmed in Fig. 1. While eigenvalues alone do
not fully describe the convergence of Krylov subspace methods for nonsymmetric matrices, a well clustered
spectrum away from zero is often associated with rapid convergence.

We end this section by some brief comments on the implementation of the proposed preconditioner inside
FGMRES. While we do not claim that this implementation is optimal, it gives good results in practice and
is competitive with more sophisticated multi-level solvers while having much lower lower set-up costs. To
apply the preconditioner, in each inner iteration we need to solve linear systems of the form

Pγ,α(w1;w2;w3) = (r1; r2; r3).

To this end, we use the following block factorization

Pγ,α =





I 0 0
0 I γBTQ−1

0 0 I









A11 A12 0
0 A22 BT

0 B −α−1Q





which allows one to work with larger values of γ. In fact, we do not have to solve linear systems with

4



coefficient matrix A22 + γBTQ−1B. To apply the preconditioner, we need to solve subsystems of the form

[

A22 BT

B −α−1Q

] [

w2

w3

]

=

[

r2 − γBTQ−1r3
r2

]

. (2.6)

(note that these systems are of stabilized Stokes type, see [4]). To do so, we use GMRES (with a loose
stopping residual tolerance 0.1) in conjunction with the following block triangular preconditioner:

P =

[

Â22 0

B −Ŝ

]

in which Â22 and Ŝ are approximations of A22 and S = α−1Q + Mp obtained via incomplete Cholesky
factorizations constructed by MATLAB function “ichol(., opts)” and MATLAB backslash operator “\”,
with opts.type =’ict’ and opts.droptol =ǫi where ǫi is respectively equal to 10−3 and 10−2 for i = 1, 2
where Mp denotes the mass matrix coming from the Stokes pressure space. We further comment that the
matrix Q in our numerical implementation is diag(Mp) and α = 2γ, which means that effectively only the
parameter γ has to be set by the user. As seen, we also need to solve the linear systems with the coefficient
matrix A11 which is solved by PCG with an incomplete Cholesky factorization, as in [1]. The inner PCG
iteration was terminated when the relative residual norm was below 10−1 or when the maximum number
of 5 iterations was reached. These parameter choices, while probably not optimal, were find to be a good
compromise in terms of simplicity of implementation, low set-up costs and good preconditioner effectiveness
and robustness.

3. Numerical experiments

In this section we report on the performance of inexact variants of the proposed block preconditioner using
a test problem taken from [3, Subsection 5.3], which corresponds to a 3D coupled flow problem with large
jumps in the permeability in the porous flow region. All computations were carried out on a computer with
an Intel Core i7-10750H CPU @ 2.60GHz processor and 16.0GB RAM using MATLAB.R2020b.

In Tables 1 and 2 we report the total required number of outer FGMRES iterations and elapsed CPU time
(in seconds) under “Iter” and “CPU”, respectively. The total number of inner GMRES (PCG) iterations
to solve subsystems (2.6) (respectively, with coefficient matrix A11) is reported under Iterin (Iterpcg). No
restart is used for either FGMRES or GMRES iterations.

The initial guess is taken to be the zero vector and the iterations are stopped as soon as

‖Āuk − b̄‖2≤ 10−7‖b̄‖2

where uk is the computed k-th approximate solution. In the tables, we also include the relative error

Err :=
‖uk − u∗‖2

‖u∗‖2
,

where u∗ and uk are, respectively, the exact solution and its approximation obtained in the k-th iterate. In
addition, we have used right-hand sides corresponding to random solution vectors and averaged results over
10 test runs, rounding the iteration counts to the nearest integer.

The results show that in all cases, the outer FGMRES iteration displays mesh-independent convergence.
The number of inner iterations, on the other hand, increases as the mesh is refined, especially for the largest
test problem, resulting in less than perfect scalability of the solver. Nevertheless, the total solution time is
about 40% less, for the largest problem, than the best results reported in [1], obtained using the multi-level
preconditioner ARMS in the solution of the inner subproblems, showing the considerable advantage of the
new augmented Lagrangian preconditioner over the original version.
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Table 1: Results for FGMRES in conjunction with preconditioner Pγ,2γ .

γ = 1 γ = 10

size FGMRES Inner iterations FGMRES Inner iterations

Iter (CPU) Err Iterin Iterpcg Iter (CPU) Err Iterin Iterpcg

1695 22(0.05) 6.2804e-05 128 56 12(0.02) 7.3326e-06 75 33
10809 20(0.52) 1.0262e-04 130 49 12(0.34) 4.1502e-06 88 32
76653 19(4.66) 1.9242e-04 148 58 11(3.02) 2.2011e-05 99 35
576213 19(64.9) 3.8861e-04 248 85 11(38.1) 5.5276e-05 146 45

Table 2: Results for FGMRES in conjunction with preconditioner Pγ,2γ .

γ = 100 γ = 1000

size FGMRES Inner iterations FGMRES Inner iterations

Iter (CPU) Err Iterin Iterpcg Iter (CPU) Err Iterin Iterpcg

1695 11(0.02) 2.6911e-06 63 29 11(0.02) 2.3876e-06 62 28
10809 11(0.29) 1.1382e-06 71 26 11(0.28) 1.5137e-06 69 25
76653 11(2.70) 5.1225e-06 86 30 11(2.66) 2.9047e-06 86 29
576213 11(36.4) 1.4794e-05 133 38 11(35.6) 1.3158e-05 130 37

4. Conclusions

In this paper we have introduced a new augmented Lagrangian-based preconditioner for block three-by-three
linear systems, with a focus on the linear systems arising from finite element discretizations of the coupled
Darcy-Stokes flow problem. The main advantage of this preconditioner is that it avoids the need to explicitly
form the augmented block A22 + γBTQ−1B. Theoretical analysis shows a strong clustering of the spectrum
of the (exactly) preconditioned matrix, and numerical experiments on a challenging 3D model problem show
that the corresponding inexact preconditioner can result in much faster convergence than previous versions
of the augmented Lagrangian-based preconditioner.

Future work will focus on replacing the incomplete Cholesky inner preconditioners with multilevel pre-
conditioners, in order to obtain better scalability of the solver.
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