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Abstract

We study ill-conditioned positive definite matrices that are disturbed by the sum of m rank-one matrices of a specific
form. We provide estimates for the eigenvalues and eigenvectors. When the condition number of the initial matrix
tends to infinity, we bound the values of the coordinates of the eigenvectors of the perturbed matrix. Equivalently, in
the coordinate system where the initial matrix is diagonal, we bound the rate of convergence of coordinates that tend
to zero.
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1. Introduction

Given a d × d symmetric matrix with known eigenvectors and eigenvalues denoted B, and a rank-one matrix vvT

where v ∈ Rd, eigenvalues and eigenvectors of matrices of the form

A = B + vvT (P1)

have been widely studied, notably in the context of perturbation theory. For instance, the eigenvalues of (P1) can be es-
timated and a formula for the eigenvectors is known [1, 2, 3]. Specifically, if B is a diagonal matrix diag(λ1, λ2, . . . , λd)
with distinct eigenvalues and v has only nonzero entries, then the component j of the unit eigenvector associated to
eigenvalue νi of the updated matrix A satisfies the so-called Bunch-Nielsen-Sorensen formula

Ci ×
[v] j

λ j − νi
for i, j = 1, . . . , d (1)

where Ci is a nonzero normalization constant and [ . ] j denotes the j-th coordinate, a notation we will continue to
use in the sequel. Several results have been established for additive perturbations of rank 1 [4, 5] and of higher rank
[6, 7]. Symmetric and nonsymmetric perturbation eigenvalue problems have been studied [8] as well as perturbation
results for invariant subspaces [9]. In this paper, we provide relative perturbation bounds for the eigenvectors of
positive definite matrices. In contrast to previous relative perturbation results for eigenvalues [10] and invariant
subspaces [11, 12], the bounds in our result depend on the eigenvalues of the initial matrix B rather than the norm of
the perturbation, see Eq. (2) below.

Specifically, we consider the perturbation with a sum of m rank-one matrices of the form

A(m) = B +
√

B
m∑

i=1

[v(i)][v(i)]T
√

B (Pm)

with B = Pdiag(λ1, . . . , λd)PT where P is an orthogonal matrix, λ1 ⩾ · · · ⩾ λd > 0 are the eigenvalues of B, and
v(1), . . . , v(m) ∈ Rd. The square root

√
B := Pdiag(

√
λ1, . . . ,

√
λd)PT is defined as the unique symmetric positive
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definite matrix such that
√

B ×
√

B = B, see e.g. [13, Theorem 7.2.6]. Matrices of the form (Pm) are used in
various applications in different domains. For instance, low rank updates of covariance matrices are used in stochastic
optimization [14, 15], system identification [16, p. 369], and adaptive Markov Chain Monte Carlo methods [17]. Our
motivation is to study the eigenvectors of A in (Pm), denoted as e(m)

i in the sequel, when the matrix B is highly ill-
conditioned. When d = 2 and m = 1 we can compute the eigenvectors of A(1) explicitly. As an example, consider
B = diag(λ1, 1) where λ1 > 1 and v(1) = [1, 1]T . Then, the unit eigenvector associated to the largest eigenvalue of

A(1) obeys
√

1 + s2 × e(1)
1 = [1, s]T with s = λ1/2

1 × (1 − λ−1
1 −

√
1 − λ−1

1 + λ
−2
1 ) = −λ−1/2

1 /2 + O(λ−3/2
1 ) and hence

[e(1)
1 ]2 = λ

−1/2
1 + o(λ−1/2

1 ) when λ1 → ∞. Hence, the (second) coordinate of the (first) unit eigenvector of A(1) vanishes
like 1/

√
λ1 when λ1 → ∞. In this paper, we generalize this result to the case where d ⩾ 2 and m ⩾ 1, as summarized

in the following theorem which directly follows from Theorem 4 below.

Theorem 1. If e(m)
i is a unit eigenvector corresponding to the i-th largest eigenvalue (counted with multiplicity) of

A(m) in (Pm) and e(0)
j is a unit eigenvector corresponding to the j-th largest eigenvalue λ j of B, then

∣∣∣∣〈e(m)
i , e(0)

j

〉∣∣∣∣ ⩽ Cm ×

√
min{λi, λ j}

max{λi, λ j}
(2)

where Cm > 0 is a constant which depends polynomially on d and maxk=1,...,m ∥v(k)∥.

When B is diagonal, e(0)
j is the j-th canonical unit vector. Hence |⟨e(m)

i , e(0)
j ⟩| = [e(m)

i ] j and the theorem implies

in particular that the j-th coordinate of e(m)
i converges to zero at least as fast as

√
min{λi, λ j}/max{λi, λ j} when the

latter tends to 0 (which is tight in the above example when d = 2 and m = 1), thereby limiting the change of the
angle between these eigenvectors. Considerations on the angle between eigenspaces have been made previously [18],
however matrices on the form of (Pm) have not been studied in this context. In the remainder, we always choose
w.l.o.g. the coordinate system where the matrix B of (Pm) is diagonal and has decreasingly ordered diagonal values.

This inequality is crucial to study the stability of a Markov chain underlying the CMA-ES algorithm [19, 15].
Proofs of linear convergence for Evolutionary Strategies (ES) rely on a drift condition [20, Theorem 17.0.1] to prove
the ergodicity of an underlying Markov chain, see e.g. [21, 22]. To apply this approach to CMA-ES, a potential
function is defined on the state-space of this Markov chain and its expected decrease is proven outside a compact set.
The state space includes a covariance matrix, updated as

Ct+1 = (1 − c)Ct + c
√

Ct

m∑
i=1

wiUiUT
i

√
Ct , (3)

where c ∈ [0, 1], w1, . . . ,wm are positive weights that sum to 1, and the vectors Ui, i = 1, . . . ,m, are Gaussian vectors
ranked according to a fitness function [15, Eq. (11)]. Hence, (Pm) encompasses the update of this covariance matrix.
Eq. (2) is needed to bound the expected condition number of the updated covariance matrix, since it controls the
influence of small eigenvalues on the growth of the largest eigenvalues.

This paper is organized as follows. In Section 2, we study the eigenvalues of (Pm). In Section 3, we provide
bounds for the coordinates of the eigenvectors using Eq. (1), and provide an empirical result suggesting that these
bounds are tight.

2. Bounds on the eigenvalues of (Pm)

The Bunch-Nielsen-Sorensen formula (1) which we will use in Section 3 requires the eigenvalues of the updated
matrix. Thus, we first derive bounds on the (decreasingly ordered) eigenvalues

λi(A(m)) = max
V⊂Rd ,dim V=i

min
v∈V,v,0

vT A(m)v
vT v

= min
V⊂Rd ,dim V=d−i+1

max
v∈V,v,0

vT A(m)v
vT v

for i = 1, . . . , d (4)

where the equalities ensue from the min-max principle and from Gersgorin’s circle theorem [13, Theorems 4.2.6 and
6.1.1].
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Theorem 2.7 in [10] and Theorem 2.1 in [23, p. 175] provide an estimation for the eigenvalues of (Pm):

λi ⩽ νi ⩽ λi ×

(
1 + md × max

k=1,...,m
∥v(k)∥2∞

)
for i ∈ {1, . . . , d} . (5)

The next lemma provides a slightly tighter upper bound on these eigenvalues after a single rank-one pertubation
(m = 1) and is used in Proposition 3.

Lemma 2. Let D = diag(λ1, . . . , λd) be a diagonal matrix with λ1 > · · · > λd > 0. Let v ∈ Rd
,0 be a vector with only

nonzero entries. Let A = D +
√

DvvT
√

D and ν1 ⩾ ν2 ⩾ · · · ⩾ νd denote the eigenvalues of A. Then,

νi ⩽ λi ×
(
1 + (d − i + 1)∥v∥∞|[v] ji |

)
for all i ∈ {1, . . . , d} (6)

where ji ∈ Arg max j=i,...,d

{
|[v] j|

∣∣∣ λ j ⩾ λi ×

(
1 −

√
λ j

λi
(d − i + 1)∥v∥∞|[v] j|

)}
.

Proof. Fix i ∈ {1, . . . , d} and remark that, by Eq. (4), we have νi ⩽ maxv∈V̄i,∥v∥=1 vT Av = λ1
(
[A]i:d,i:d

)
, where V̄i =

Vect(ei, . . . , ed) with ei being the ith vector of the standard basis of Rd, and with [A]i:d,i:d denoting the submatrix of A
from rows and columns with indices between i and d included. But, by [13, Theorem 6.1.1], we also have that

λ1
(
[A]i:d,i:d

)
⩽ max

j=i,...,d

 d∑
k=i

|[A] j,k |

 C max
j⩾i

B j.

Since A = D+
√

DvvT
√

D, then |[A] j,k | ⩽
√
λ jλk(1{ j = k}+ ∥v∥∞|[v] j|). If j ⩾ i is such that λ j ⩾ λi× (1−

√
λ j/λi(d−

i + 1)∥v∥∞|[v] j|), then by definition of ji we have then |[v] j| ⩽ |[v] ji |, yielding to B j ⩽ λi × (1 + (d − i + 1)∥v∥∞|[v] ji |).
Any other j ⩾ i satisfies λ j < λi −

√
λ jλi(d − i + 1)∥v∥∞|[v] j|, hence by sum B j ⩽ λi. All in all, max j⩾i B j ⩽

λi × (1 + (d − i + 1)∥v∥∞|[v] ji |), proving Eq. (6).

3. Estimating the eigenvectors of (Pm)

We use the bounds from Lemma 2 and Eq. (5) to estimate the eigenvectors of (Pm) by applying Eq. (1), for m = 1
in the next section and m ⩾ 1 in Section 3.2.

3.1. Rank-one perturbation

In Proposition 3, we obtain bounds on the coordinates of the eigenvectors of (Pm) (B is assumed to be diagonal)
when m = 1, which comes as a consequence of Eq. (1).

Proposition 3. Let D = diag(λ1, . . . , λd) be a diagonal matrix with λ1 ⩾ · · · ⩾ λd > 0. Let v ∈ Rd and V :=
max{d−1/2, ∥v∥∞}. Consider the matrix A = D +

√
DvvT

√
D and ν1 ⩾ · · · ⩾ νd its eigenvalues and (e(1)

1 , . . . , e(1)
d ) a

corresponding orthonormal basis of eigenvectors. Then,

∣∣∣[e(1)
i ] j

∣∣∣ ⩽ 5d2V4

√
min{λi, λ j}

max{λi, λ j}
for all i, j ∈ {1, . . . , d} (7)

Proof. We prove first that, if max{λi, λ j} > (1 + dV2) ×min{λi, λ j}, then

∣∣∣[e(1)
i ] j

∣∣∣ ⩽ (d − i + 1)V2 ×
infρ∈(0,1) ψ(ρ, (d − i + 1)V2)

1 − (1 + (d − i + 1)V2) min{λi,λ j}

max{λi,λ j}

√
min{λi, λ j}

max{λi, λ j}
(8)

with ψ(ρ,W) = max{2(1 − ρ)−1/2, 2ρ−1W}, from which we deduce Eq. (7).

3



First suppose that the eigenvalues λi of D are distinct, and that all entries of v are nonzero. Then, by Eq. (1), we

have for i, j ∈ {1, . . . , d} that [e(1)
i ] j = Ci

[
√

Dv] j

λ j−νi
= Ci

√
λi[v] j

λ j−νi
, where Ci ∈ R is chosen such that ∥e(1)

i ∥ = 1, hence

|Ci| =

∥∥∥∥∥∥∥
 √

λ j[v] j

λ j − νi


j=1,...,d

∥∥∥∥∥∥∥
−1

=

 d∑
j=1

∣∣∣∣∣∣∣
√
λ j[v] j

λ j − νi

∣∣∣∣∣∣∣
2
−1/2

⩽ min
1⩽ j⩽d

|λ j − νi|√
λ j|[v] j|

. (9)

Combining [23, Theorem 2.1, p. 175] with Eq. (6), we have λi < νi ⩽ λi × (1 + (d − i + 1)V |[v] ji |), where ji is defined
in Lemma 2. By definition of ji we have 0 ⩽ λi − λ ji ⩽ λi(d − i + 1)V |[v] ji |. By sum, we obtain 0 < νi − λ ji ⩽
2λi(d − i + 1)V |[v] ji |. We apply this to Eq. (9) to get

|Ci| ⩽
νi − λ ji√
λ ji |[v] ji |

⩽
2λi(d − i + 1)V |[v] ji |√

λ ji |[v] ji |
=

λi√
λ ji

2(d − i + 1)V . (10)

Let ρ ∈ (0, 1). If (d − i + 1)V2 √
λ ji ⩽ ρ

√
λi, then by definition of ji, λ ji ⩾ λi × (1 − ρ), and by Eq. (10), |Ci| ⩽

(1 − ρ)−1/2 × 2(d − i + 1)V
√
λi. Otherwise, |Ci| ⩽ ρ−1 × 2(d − i + 1)2V3 √λi. All in all, for ρ ∈ (0, 1),

|Ci| ⩽ (d − i + 1)V
√
λi ×max

{
2(1 − ρ)−1/2, 2ρ−1(d − i + 1)V2

}
C Cρ

√
λi . (11)

Then, |[e(1)
i ] j| = |Ci|

√
λ j|[v] j|/|λ j − νi| ⩽

√
λiλ j/|λ j − νi| × infρ∈(0,1) Cρ. By Eq. (6), when λ j < λi, |[e

(1)
i ] j| ⩽

minρ∈[0,1] Cρ × (1 − λ j/λi)−1
√
λ j/λi. By Eq. (5), when λ j > (1 + dV2)λi, |[e

(1)
i ] j| ⩽ minρ∈[0,1] Cρ × (1 − (1 +

dV2)λi/λ j)−1
√
λi/λ j.

If the eigenvalues of D are not distinct or not all entries of v are nonzero, we consider a sequence of diagonal
matrices {Dk = diag(λk

1, . . . , λ
k
d)}k∈N such that the diagonal elements λk

1 > λk
2 > · · · > λk

d > 0 are distinct and Dk → D
when k → ∞, and a sequence of vectors {vk ∈ Rd

,0}k∈N with only nonzero entries where ∥vk∥∞ ⩽ N and vk → v
when k → ∞. Denote then Ak = Dk +

√
DkvkvT

k

√
Dk and νk

1 ⩾ · · · ⩾ νk
d its eigenvalues. Note that Ak → A when

k → ∞, so by continuity of the eigenvalues, νk
i → νi when k → ∞. Furthermore, we just proved that if ek

1, . . . , e
k
d are

unit eigenvectors of Ak corresponding respectively to the eigenvalues νk
1, . . . , ν

k
d, then ek

1, . . . , e
k
d and λk

1, . . . , λ
k
d satisfy

Eq. (8). Moreover, the vectors ek
i all belong to the unit sphere of Rd, so up to considering a subsequence of {Ak}k∈N,

we can assume w.l.o.g. that each ek
i tends to a vector e(1)

i ∈ R
d when k → ∞. As (ek

1, . . . , e
k
d) is an orthonormal system

of Rd, so is its limit (e(1)
1 , . . . , e(1)

d ) and e(1)
i is an eigenvector of A corresponding to the eigenvalue νi. Therefore, Eq. (8)

holds by taking the limit k → ∞ in the equation satisfied by ek
1, . . . , e

k
d and λk

1, . . . , λ
k
d.

To obtain Eq. (7), note that when ρ = 1/2, we have 2(1 − ρ)−1/2 ⩽ 4 ⩽ 4dV2, and 2ρ−1(d − i + 1)V2 ⩽ 4dV2, and
when max{λi, λ j}/min{λi, λ j} > 1 + 4dV2, by Eq. (8), then,

(1 − (1 + dV2) min{λi, λ j}/max{λi, λ j})−1 ⩽ (1 + 4dV2)/(4dV2) ⩽ 5/4,

as V ⩾ d−1/2, and thus Eq. (7) holds. If otherwise max{λi, λ j} ⩽ (1+4dV2) min{λi, λ j}, as max{λi, λ j}/min{λi, λ j} ⩾ 1,
we find |[ei] j| ⩽ 1 ⩽ (1 + 4dV2)

√
max{λi, λ j}/min{λi, λ j}. Since 1 ⩽ dV2, then (1 + 4dV2) ⩽ 5dV2 and Eq. (7)

holds.

3.2. Sum of m rank-one matrices pertubation
Our final Theorem 4 generalizes Proposition 3 to any value m ⩾ 1 and is obtained by induction using Eq. (8).

Theorem 4 implies in particular Theorem 1 via the spectral theorem.

Theorem 4. Let D = diag(λ1, . . . , λd) be a diagonal matrix with λ1 ⩾ · · · ⩾ λd > 0. Let V ⩾ 1/
√

d and consider a
sequence of vectors v(i) ∈ Rd such that ∥v(i)∥∞ ⩽ V for all i ∈ N. For m ∈ N, let A(m) = D +

√
D

∑m
i=1[v(i)][v(i)]T

√
D

and ν(m)
1 ⩾ · · · ⩾ ν(m)

d the eigenvalues of A(m) and (e(m)
1 , . . . , e(m)

d ) a corresponding orthonormal system of eigenvectors.
Then

|[e(m)
i ] j| ⩽ Cm

√
min{λi, λ j}

max{λi, λ j}
for all i, j ∈ {1, . . . , d} and m ∈ N (12)

with C0 = 1 and Cm+1 = 5d7V4C5
m

√
1 + dmV2.
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Figure 1: Value of |[e(m)
1 ] j | as a function of λ1/λ j where

e(m)
1 is an eigenvector associated to the largest eigenvalue

of A(m) from (Pm) for different dimensions and values of
m as given in the legend. The v(i) are independent standard
Gaussian vectors (with the same realization for all values
of λ1) and the eigenvalues of the diagional matrix B are
chosen uniformly on a log scale between λd = 1 and λ1.
The value |[e(m)

1 ] j | behaves consistent with Θ(
√
λ j/λ1).

Proof. For a, b > 0, denote α(a, b) =
√

min{a, b}/max{a, b}. Let m ∈ N and assume that Eq. (12) holds which is
true if m = 0 since C0 = 1. Observe now that A(m+1) = A(m) +

√
D[v(m+1)][v(m+1)]T

√
D. In the system of coordinates

B(m) B (e(m)
1 , . . . , e(m)

d ), A(m) writes as D(m) B diag(ν(m)
1 , . . . , ν(m)

d ). Since λ1, . . . , λd > 0, and as A(m) ⪰ D, then
ν(m)

i ⩾ λi > 0 for i ∈ {1, . . . , d}, and

〈√
Dv(m+1), e(m)

i

〉
=

d∑
j=1

[e(m)
i ] j

√
λ j[v(m+1)] j =

√
D(m)

ii ×

d∑
j=1

√
λ j/ν

(m)
i [e(m)

i ] j[v(m+1)] j C
[√

D(m)w(m+1)
]
i
.

Hence
[
A(m+1)

]
B(m)
= D(m) +

√
D(m)[w(m+1)] [w(m+1)]T

√
D(m) with

∥w(m+1)∥∞ ⩽
d∑

j=1

√
λ j/ν

(m)
i |[e

(m)
i ] j| × V ⩽

d∑
j=1

√
λ j/λi|[e

(m)
i ] j| × V ⩽ dV ×Cm.

We apply Proposition 3 to
[
A(m+1)

]
B(m)

so that, for i, k ∈ {1, . . . , d},

|⟨e(m+1)
i , e(m)

k ⟩| = |[[e
(m+1)
i ]B(m) ]k | ⩽ 5d6V4C4

mα(ν(m)
i , ν(m)

k ).

By Eq. (5), |⟨e(m+1)
i , e(m)

k ⟩| ⩽ (5d6V4C4
m)(1 + dmV2)1/2 α(λi, λk). Since |[e(m)

k ] j| ⩽ Cmα(λi, λk), then,

|[e(m+1)
i ] j| ⩽

d∑
k=1

|[e(m)
k ] j| × |⟨e

(m+1)
i , e(m)

k ⟩| ⩽ dCm × 5d6V4C4
m(1 + dmV2)1/2α(λi, λ j).

This proves by induction that Eq. (12) holds for all m ∈ N.

3.3. Thightness
Figure 1 shows numerical computations of coordinates of the first eigenvector of A(m) in dimension 2, 5, 10. The

coordinates seem to obey Θ(min{λi, λ j}/max{λi, λ j}) in all cases which suggests that this rate in our upper bounds is
tight. However we do not expect the constant Cm given in Theorem 4 to be tight.
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