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Abstract

We consider a Kirchhoff-type diffusion problem driven by the magnetic fractional Laplace operator. The main result in this paper

establishes that infinite time blow-up cannot occur for the problem. The proof is based on the potential well method, in relationship

with energy and Nehari functionals.
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1. Introduction

Let Ω ⊂ Rn (n > 2s) be a bounded domain with smooth boundary. In this paper we study the following Kirchhoff-

type diffusion problem


























ut + M
(

‖u‖2X0,A

)

(−∆)s
A
u = f (|u|)u, in Ω × (0, T ),

u(x, t) = 0, in (Rn \Ω) × (0, T ),

u(x, 0) = u0(x), in Ω.

(1)

Given s ∈ (0, 1) and A ∈ L∞
loc

(Rn), we define the magnetic fractional Laplace operator defined (−∆)s
A

by

(−∆)s
Au(x, t) = 2 lim

ε→0+

∫

Rn\B(x,ε)

u(x, t) − ei(x−y)·A(
x+y

2
)u(y, t)

|x − y|n+2s
dy, (2)
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for x ∈ Rn and u ∈ C∞
0

(Rn,C). This differential operator is weighted by a Kirchhoff-type function M : [0,∞)→ [0,∞)

(see [7]), satisfying (M1)-(M2) below. When A ≡ 0 in (2), then we have the usual fractional Laplacian differential

operator denoted by (−∆)s. Such differential operator was studied in the context of problems in quantum mechanics

and of the motion of chains or arrays of particles connected by elastic springs, as well as in the context of problems

of unusual diffusion processes in turbulent fluids and of mass transport in fractured media. We refer to [1] (Lévy

processes), [3] (nonlocal diffusions, drifts and games), [2, 8, 9, 10, 16, 17] for other classes of nonlocal operators. In

all the aforementioned works, the authors deal with Schrödinger operators with magnetic fields. For instance, [10]

establish the existence of nontrivial solutions to a parametric fractional Schrödinger equation in the case of critical

or supercritical nonlinearity. Next, the operator (−∆)s
A

(see (2)) was introduced in [4], as a fractional counterpart of

the magnetic Laplacian (∇ − iA)2, where A : Rn → R
n is a L∞

loc
-vector potential. Zuo & Lopes [19] established the

existence of weak solutions to problem (1). The strategy is based on the potential well method, hence they obtain

global in time solutions and blow-up in finite time solutions. Here, we show that the global in time solutions to (1)

can not blow-up in infinite time. We also mention [18] (non-local parabolic equation in a bounded convex domain),

[4] (for the equation (−∆)s
A
u + u = |u|p−2u posed in R3), [11] (fractional Choquard equation), and [15] (system of

Kirchhoff type equations).

2. Mathematical background and hypotheses

The right framework for the analysis of equation (1) is the function space X0,A (hence H s
A
(Ω)) defined as follows.

For an open and bounded set Ω ⊂ R
n (n > 2s), let |Ω| be the measure of the set Ω. By Lp(Ω,C) we mean the Lebesgue

space of complex valued functions with norm ‖ · ‖Lp(Ω) and inner product 〈·, ·〉. For p = 2, s ∈ (0, 1) and A ∈ L∞
loc

(Rn),

we consider the magnetic Gagliardo semi-norm defined by

[u]2
H s

A
(Ω) :=

∫ ∫

Ω×Ω

|u(x, t) − ei(x−y)·A( x+y

2 )u(y, t)|2

|x − y|n+2s
dx dy.

Hence we consider the space H s
A
(Ω) of functions u ∈ L2(Ω,C) with [u]H s

A
(Ω) < ∞ and furnished with the norm

‖u‖H s
A
(Ω) := (‖u‖2

L2(Ω)
+ [u]2

H s
A
(Ω)

)
1
2 . Referring to [5, 6], we define X0,A := {u ∈ H s

A
(Rn) : u = 0 a.e. in Rn \ Ω}, with the

real scalar product (see [4]) given as

〈u, v〉X0,A
:= R

∫ ∫

R2n

(

u(x, t) − ei(x−y)·A( x+y
2 )u(y, t)

) (

v(x, t) − ei(x−y)·A( x+y
2 )v(y, t)

)

|x − y|n+2s
dx dy,

where, for every z ∈ C, by Rz we mean the real part of z and by z its complex conjugate. This scalar product induces

the following norm

‖u‖X0,A
:=













∫ ∫

R2n

|u(x, t) − ei(x−y)·A( x+y

2 )u(y, t)|2
|x − y|n+2s

dx dy













1
2

.

We will use
w−→ and→ to denote weak and strong convergences, respectively. Our hypotheses on problem (1) are the

following:

(F) f ∈ C1([0,∞)), and we can find C > 0 and γ ≥ p, for p ∈ (2, 2∗s) with 2∗s =
2n

n−2s
, such that

|F(u)| ≤ Cup, f (u)u2 ≤ pCup, for u ≥ 0,

0 < γF(u) ≤ f (u)u2, u2(u f ′(u) − (p − 2) f (u)) ≥ 0 for u > 0,
(3)

where F(u) :=
∫ u

0
f (τ)τ dτ.

Further, the Kirchhoff function M : [0,∞)→ [0,∞) is as follows:

(M1) it is a continuous function and there exist constants m0 > 0 and θ ∈ (1,
2∗s
2

) such that M(u) ≥ m0uθ−1 for all

u ∈ [0,∞);

(M2) there exists a constant µ ∈ (1,
2∗s
2

) such that µM (u) ≥ M(u)u for all u ∈ [0,∞), where M (u) :=
∫ u

0
M(τ) dτ.

2
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Here, θ and µ satisfy the condition: (P) 2 max{θ, µ} < p < 2∗s.
We consider the C1-functional related to problem (1) and defined by

J(u) :=
1

2
M (‖u‖2X0,A

) −
∫

Ω

F(|u|) dx. (4)

We have 〈J′(u), φ〉 = M(‖u‖2X0,A
)〈u, φ〉X0,A

− R
∫

Ω
f (|u|)uφ dx, for any φ ∈ X0,A, and we introduce the Nehari functional

for (1) given by I(u) := 〈J′(u), u〉. Hence, we can consider the non-negative value d (i.e., mountain pass level) given

as d = infu∈X0,A\{0} : I(u)=0 J(u). According to Sattinger [14] and Payne & Sattinger [13] we know that if the initial

energy J(u0) is less than the mountain pass level d, then the solution to problem (1) exists globally if it begins in the

stable set W = {u ∈ X0,A : I(u) > 0, J(u) < d} ∪ {0}, and fails to exist globally if it starts from the unstable set

U = {u ∈ X0,A : I(u) < 0, J(u) < d}. The functionals I(·) and J(·) are energy functionals of the stationary problem

{

M(‖u‖2X0,A
)(−∆)s

A
u = f (|u|)u, in Ω,

u(x) = 0, in Rn \Ω, (5)

and we recall that u ∈ X0,A(Ω) is a solution to (5) (i.e., stationary solution to problem (1)) if 〈J′(u), φ〉 = 0, namely

M(‖u‖2X0,A
)〈u, φ〉X0,A

− R
∫

Ω
f (|u|)uφ dx = 0, for all φ ∈ X0,A(Ω), see also [19, Definition 1]. So, u ∈ X0,A(Ω) solves (1)

on (0, T ) for T > 0 if u ∈ L∞(0,∞; L2(Ω)) ∩ L∞(0,∞; X0,A) ∩ C(0,∞; L2(Ω)) with ut ∈ L2(0,∞; L2(Ω)) and

R
∫ T

0

∫

Ω

utφ dx dt +

∫ T

0

M(‖u‖2X0,A
)〈u, φ〉X0,A

dt

− R
∫ T

0

∫

Ω

f (|u|)uφ dx dt = 0 for all φ ∈ X0,A(Ω).

Remark 2.1. We note that [19] established the existence of a weak solution u ∈ X0,A(Ω) to problem (1), based on

hypotheses (F) and (M1) (see [19, Theorem 2.1] for the precise requirements). Imposing also (M2), they obtained

that weak solutions blow-up in a finite time, provided that the initial energy is negative (see [19, Theorem 2.2]).

Further, problem (1) has a weak solution for all T > 0 (namely, a global solution) such that u ∈ L∞(0,∞; L2(Ω)) ∩
L∞(0,∞; X0,A) ∩ C(0,∞; L2(Ω)) with ut ∈ L2(0,∞; L2(Ω)), provided that u0 ∈ W (see [19, Theorem 2.3]).

3. Main result

Let u = u(t) be solution of (1) with initial data u0 ∈ X0,A, then by T = T (u0) we denote the maximal existence

time of u = u(t) given as

(i) T = ∞ if u(t) ∈ X0,A for t ∈ [0,∞);

(ii) T = tmax (> 0) if u(t) ∈ X0,A for t ∈ [0, tmax), u(tmax) < X0,A.

Theorem 3.1. Assume that hypotheses (F), (M1), (M2) and (P) hold and p ∈ (2, 2∗s) (n > 2s). Let u = u(t) be a

solution of (1) with u0 ∈ X0,A such that J(u0) ≤ d and I(u0) > 0. If the maximal existence time is T = ∞, then

there exists an increasing sequence {tk}∞k=1
with tk → ∞ as k → ∞, such that u(tk) converges to a stationary solution

v ∈ X0,A(Ω) of problem (1), that is u(tk)→ v as k → ∞.

Proof. We show global in time solutions to (1) can not blow-up in infinite time, by arguing in three steps.

Step 1: Existence of an increasing sequence {tk}.
Let u = u(t) be a solution of problem (1) with u0 ∈ X0,A and maximal existence time T = ∞. Now, [19, Theorem

2.3] gives us u ∈ L∞(0,∞; L2(Ω)) ∩ L∞(0,∞; X0,A) ∩ C(0,∞; L2(Ω)), ut ∈ L2(0,∞; L2(Ω)).Multiplying equation (1)

by φ ∈ X0,A and integrating over Ω, we get

(u′(t), φ) = −M(‖u‖2X0,A
)〈u(t), φ〉X0,A

+ R
∫

Ω

f (|u(t)|)u(t)φ dx. (6)

3
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By [19, Lemma 3.3] J(u(t)) is non-increasing with respect to t, hence

0 ≤ J(u(t)) ≤ J(u0), (7)

where we use a contradiction argument to conclude the first inequality in (7). So, we assume that there exists a time

t0 such that J(u(t0)) < 0, then by (4) we deduce that 0 > J(u(t0)) = 1
2
M (‖u(t0)‖2X0,A

) −
∫

Ω
F(|u(t0)|) dx. It follows that

1

2
M (‖u(t0)‖2X0,A

) <

∫

Ω

F(|u(t0)|) dx. (8)

Combining the Nehari functional I(·), together with assumptions (3), (M2), (P) and inequality (8), we conclude

that

I(u(t0)) =M(‖u(t0)‖2X0,A
)‖u(t0)‖2X0,A

− R
∫

Ω

f (|u(t0)|)|u(t0)|2 dx

≤µM (‖u(t0)‖2X0,A
) − γ

∫

Ω

F(|u(t0)|) dx < µM (‖u(t0)‖2X0,A
) − γ

2
M (‖u(t0)‖2X0,A

)

≤(µ − p

2
)M (‖u(t0)‖2X0,A

) < 0 (recall that γ ≥ p).

So, at time t = t0 we have J(u(t0)) < 0 and I(u(t0)) < 0, hence u(t0) is in the so-called unstable set U = {u ∈ X0,A :

I(u) < 0, J(u) < d (d > 0)}. By [19, Theorem 2.4], u(t) blows-up in a finite time, which contradicts T = ∞. Since

J(u(t)) is non-increasing with respect to t, by (7) we can find c with 0 ≤ c ≤ J(u0) and such that J(u(t))→ c as t→ ∞.

Passing to the limit as t → ∞ in
∫ t

0
‖u′(s)‖2

L2(Ω)
ds+ J(u) = J(u0), then we get c = J(u0)−

∫ ∞
0
‖u′(s)‖2

L2(Ω)
ds. It follows

that we can find an increasing sequence {tk}∞k=1
with tk → ∞ as k → ∞ satisfying

lim
k→∞
‖u′(tk)‖L2(Ω) = 0. (9)

Step 2: Convergence of {u(tk)} to a function v ∈ X0,A.

Equation (6) leads to the following

〈J′(u(t)), φ〉 = M(‖u(t)‖2X0,A
)〈u(t), φ〉X0,A

− R
∫

Ω

f (|u(t)|)u(t)φ dx = (−u′(t), φ) for all φ ∈ X0,A.

Combining the Schwartz inequality, the definition of the first eigenvalue λ1 of (−∆)s
A

(see [6, Proposition 3.3]) and the

limit in (9), we conclude

‖J′(u(tk))‖X′
0,A
= sup

φ∈X0,A

‖φ‖X0,A
=1

〈J′(u(tk)), φ〉 = sup
φ∈X0,A

‖φ‖X0,A
=1

(−u′(tk), φ)

≤ sup
φ∈X0,A

‖φ‖X0,A
=1

‖u′(tk)‖L2(Ω)‖φ‖L2(Ω) ≤ ‖u′(tk)‖L2(Ω) sup
φ∈X0,A\{0}

( ‖φ‖L2(Ω)

‖φ‖X0,A

)

≤‖u′(tk)‖L2(Ω)

(

inf
φ∈X0,A\{0}

( ‖φ‖X0,A

‖φ‖L2(Ω)

))−1

≤ 1
√
λ1

‖u′(tk)‖L2(Ω) → 0 (10)

as k → ∞. As usual, by X′
0,A

we denote the dual space of X0,A, hence we can find c1 > 0, independent of the index k,

such that

‖J′(u(tk))‖X′
0,A
≤ c1, k = 1, 2, · · · . (11)

For the Nehari energy functional I(·), the bound from above in (11) and the Young inequality lead to

|I(u(tk))| ≤ |〈J′(u(tk)), u(tk)〉| ≤ ‖J′(u(tk))‖X′
0,A
‖u(tk)‖X0,A

≤ c1‖u(tk)‖X0,A
≤ c2 +

(p − 2µ)m0

4pµ
‖u(tk)‖2θX0,A

.

4
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Using J(·) and I(·), together with (12) and (M1), we obtain

J(u(tk)) =
1

2
M

(

‖u(tk)‖2X0,A

)

−
∫

Ω

F(|u(tk)|) dx

≥ 1

2µ
M(‖u(tk)‖2X0,A

)‖u(tk)‖2X0,A
− 1

γ

∫

Ω

f (|u(tk)|)|u(tk)|2 dx

=
1

2µ
M(‖u(tk)‖2X0,A

)‖u(tk)‖2X0,A
+

1

p
I(u(tk)) − 1

p
M(‖u(tk)‖2X0,A

)‖u(tk)‖2X0,A

≥ (p − 2µ)

2pµ
M(‖u(tk)‖2X0,A

)‖u(tk)‖2X0,A
− c2 −

(p − 2µ)

4pµ
m0‖u(tk)‖2θX0,A

≥ (p − 2µ)

2pµ
m0‖u(tk)‖2θX0,A

− (p − 2µ)

4pµ
m0‖u(tk)‖2θX0,A

− c2.

This inequality, taking into account the bound from above in (7), gives us J(u0) + c2 ≥ (p−2µ)

4pµ
m0‖u(tk)‖2θ

X0,A
, which

implies that

‖u(tk)‖X0,A
≤

[ (J(u0) + c2)4pµ

(p − 2µ)m0

]
1
2θ
, k = 1, 2, · · · . (12)

From (12) and the fact that the embedding X0,A →֒ Lq(Ω,C) is compact for all q ∈ [1, 2∗s) (see [5, Lemma 2.2]),

then there exist an increasing subsequence, still denoted by {tk}∞k=1
, and a function v ∈ X0,A such that uk := u(tk)

satisfies the following convergences

uk

w−→ v in X0,A as k → ∞, (13)

uk → v in Lq(Ω,C) for all q ∈ [1, 2∗s) as k → ∞. (14)

By (14), there exist a subsequence, still denoted by {uk}∞k=1
, and a function w ∈ Lq(Ω,C) for all q ∈ [1, 2∗s), such

that

uk(x)→ v(x) a.e. in Ω as k → ∞, (15)

for all k, |uk(x)| ≤ w(x) a.e. in Ω. (16)

Step 3: v is a solution to the stationary problem (5).

Let us prove that for all φ ∈ X0,A we have

R
∫

Ω

f (|uk|)ukφ dx→ R
∫

Ω

f (|v|)vφ dx as k → ∞. (17)

By (15) and f ∈ C1([0,∞)), we get f (|uk|)ukφ → f (|v|)vφ, for a.e. x ∈ Ω as k to ∞. Using (3) and (16) we get

| f (|uk|)ukφ| ≤ pC|w|p−2|w||φ| = pC|w|p−1|φ|, for a.e. x ∈ Ω. The Hölder inequality implies

∫

Ω

pC|w|p−1|φ| dx ≤ c‖φ‖Lp

(∫

Ω

|w|(p−1)
p

p−1 dx

)
p−1

p

= c‖φ‖Lp ‖w‖p−1

Lp ≤ c,

thanks to w ∈ Lq(Ω,C) for all q ∈ [1, 2∗s) and φ ∈ X0,A →֒ Lp(Ω,C) for p ∈ (2, 2∗s). We conclude |w|p−1|φ| ∈ L1(Ω).

The Lebesgue dominated convergence theorem gives us (17). We show that

〈J′(uk), φ〉 = M(‖uk‖2X0,A
)〈uk, φ〉 − R

∫

Ω

f (|uk|)ukφ dx, (18)

converges to 0 = M(‖v‖2X0,A
)〈v, φ〉 − R

∫

Ω
f (|v|)vφ dx as k → ∞ and uk → v in X0,A. We show that M(‖uk‖2X0,A

) →
M(‖v‖2

X0,A
) and uk → v strongly in X0,A (see [12]). Since M is continuous, (12) implies M(‖uk‖2X0,A

) ≤ c for all

k ∈ N, some c > 0, hence {M(‖uk‖2X0,A
)}k∈N is bounded in R. Now, there is a subsequence, still say {M(‖uk‖2X0,A

)}k∈N,

converging to M, so limk→∞ M(‖uk‖2X0,A
)〈v, φ〉X0,A

= M〈v, φ〉X0,A
and

lim
k→∞

∫ ∫

R2n

[

M(‖uk‖2X0,A
) − M

]2 |v(x) − ei(x−y)·A( x+y

2 )v(y)|2
|x − y|n+2s

dx dy = 0,

5
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that is, M(‖uk‖2X0,A
)v→ Mv in X0,A. This together with (13) imply limk→∞ M(‖uk‖2X0,A

)〈uk, v〉X0,A
= M〈v, v〉X0,A

. By (10),

(13) and (17), we pass to the limit as k → ∞ in (18) to get 0 = M〈v, φ〉X0,A
− R

∫

Ω
f (|v|)vφ dx for all φ ∈ X0,A. For

φ = v, we get M〈v, v〉X0,A
=

∫

Ω
f (|v|)|v|2 dx. Similar to (17), we deduce limk→∞

∫

Ω
f (|uk |)|uk|2 dx =

∫

Ω
f (|v|)|v|2 dx. So,

(13), (10) lead to |〈J′(uk), uk〉| ≤ ‖J′(uk)‖X′
0,A
‖uk‖X0,A

≤ ‖J′(uk)‖X′
0,A

[

(J(u0)+c2)4pµ

(p−2µ)m0

]
1
2θ → 0 as k → ∞. We first deduce that

lim
k→∞

M(‖uk‖2X0,A
)〈uk, uk〉X0,A

= lim
k→∞

(〈J′(uk), uk〉 +
∫

Ω

f (|uk|)|uk|2 dx)

=

∫

Ω

f (|v|)|v|2 dx = lim
k→∞

M(‖uk‖2X0,A
)〈uk, v〉X0,A

,

then limk→∞ M(‖uk‖2X0,A
)(〈uk, uk〉X0,A

− 〈uk, v〉X0,A
) = 0, and so

0 = lim
k→∞

M(‖uk‖2X0,A
)〈uk, uk − v〉X0,A

= lim
k→∞

M(‖uk‖2X0,A
)
[

‖uk − v‖2X0,A
+ 〈v, uk − v〉X0,A

]

= lim
k→∞

M(‖uk‖2X0,A
)‖uk − v‖X0,A

.

Since M(σ) ≥ m0σ
θ−1 for all σ ≥ 0, then limk→∞ ‖uk − v‖X0,A

= 0. So, uk(x) → v(x) in X0,A, which implies that

‖uk‖2X0,A
→ ‖v‖2X0,A

as k → ∞. Using the continuity of M, we get limk→∞ M(‖uk‖2X0,A
) = M(‖v‖2X0,A

), which allows us to

conclude that M = M(‖v‖2X0,A
).
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[1] D. Applebaum, Lévy processes - From probability to finance quantum groups, Notices Amer. Math. Soc. 51 (2004) 1336-1347.

[2] J.E. Avron, I.W. Herbst, B. Simon, Schrödinger operators with magnetic fields. Commun. Math. Phys. 79 (1981) 529–572.

[3] L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear Partial Differential Equations, Abel Symposia, Vol. 7 (Springer, 2012), pp.

37–52.

[4] P. d’Avenia, M. Squassina, Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 24 (2018) 1–24.

[5] A. Fiscella, A. Pinamonti, E. Vecchi, Multiplicity results for magnetic fractional problems, J. Differential Equations. 263 (2017) 4617–4633.

[6] A. Fiscella, E. Vecchi, Bifurcation and multiplicity results for critical magnetic fractional problems, Electron. J. Diff. Equ. 153 (2018) 1–18.

[7] G. Kirchhoff, Mechanik. Teubner, Leipzig, 1883.
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[12] X. Mingqi, V. D. Rădulescu, B. Zhang, Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity. 31

(2018) 3228–3250.

[13] L.E. Payne and D.H. Sattinger, Saddle points and instability of nonlinear hyperbolicequations, Israel J. Math. 22 (1975), 273–303.

[14] D.H. Sattinger, Stability of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal. 28 (1968) 226–244.

[15] E. Toscano, C. Vetro, D. Wardowski, Systems of Kirchhoff type equations with gradient dependence in the reaction term via subsolution-

supersolution method, Discrete Contin. Dyn. Syst. Ser. S (2023), doi:10.3934/dcdss.2023070
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