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Abstract

This paper is devoted to the complete axiomatization of dynamic extensions of
arrow logic based on a restriction of propositional dynamic logic with intersection.
Our deductive systems contain an unorthodox inference rule: the inference rule
of intersection. The proof of the completeness of our deductive systems uses the
technique of the canonical model.
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1 Introduction

Within the framework of the research carried out into the subject of arrow
logic, arrows may be considered as abstract objects equipped with the ternary
relation of composition C, the binary relation of converse R and the unary
relation of identity I. Intuitively speaking C(x, y, z) means that arrow x is a
composition of arrows y and z, R(x, y) means that arrow x is a converse of
arrow y and I(x) means that arrow x is an identity arrow. In this approach
arrows have no explicitly stated internal structure, seeing that one uses arrow
frames of the form (W,C,R, I) where W is a nonempty set of arrows, C is a
ternary relation on W , R is a binary relation on W and I is a unary relation on
W . These frames constitute the semantical basis of a propositional modal logic
with the binary modality •, the unary modality ⊗ and the nullary modality
id corresponding to the relations of composition, converse and identity be-
tween arrows. Venema [20] gives an extensive introduction to this approach.
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Another approach is possible and consists in considering arrows as concrete
objects with a beginning and an end. In this approach arrows have an ex-
plicitly stated internal structure, for the simple reason that one uses arrow
frames of the form (Ar, Po, f) where Ar is a nonempty set of arrows, Po is
a nonempty set of points and f is a function from Ar × {1, . . . , n} to Po.
Intuitively speaking f(x, 1) defines the beginning point of arrow x, f(x, 2),
. . ., f(x, n − 1) define the intermediate points of arrow x and f(x, n) defines
the end point of arrow x. Using the function f one can define the follow-
ing binary relations between arrows: for all i, j ∈ {1, . . . , n}, let xR(i, j)y iff
f(x, i) = f(y, j). These binary relations explore the different possibilities for
two arrows to share points and are used as the semantical basis of a propo-
sitional modal logic with the unary modalities [πi,j] corresponding to the bi-
nary relations R(i, j) between arrows. The first propositional modal logic of
this type is introduced by Vakarelov [17,18] who shows that the interest to
consider the binary relations R(i, j) between arrows stems from the fact that
the first-order conditions which characterize them are modally definable. In
other respects it appears that, in the particular case where n = 2, the rela-
tions of composition, converse and identity have simple definitions in terms of
the relations R(i, j): C(x, y, z) iff xR(1, 1)y, xR(2, 2)z and yR(2, 1)z, R(x, y)
iff xR(1, 2)y and xR(2, 1)y, I(x) iff xR(1, 2)x. Moreover, in the general case
where n ≥ 3, one may consider the extension of arrow logic with the modal-
ities [πi] corresponding to the intersection of the binary relations R(j, j) for
all j ∈ {1, . . . , n} such that i 6= j. However neither the modalities •, ⊗ and
id, in the particular case where n = 2, nor the modalities [πi], in the general
case where n ≥ 3, are definable in terms of the modalities [πi,j]. Neverthe-
less these modalities are definable in a dynamic extension of arrow logic. Our
dynamic extension of arrow logic is an iteration-free propositional dynamic
logic with intersection, the atomic programs of which correspond to the bi-
nary relations R(i, j) between arrows. This paper is devoted to its complete
axiomatization. Our deductive systems contain an unorthodox inference rule:
the inference rule of intersection. The proof of the completeness of our deduc-
tive systems uses the technique of the canonical model. The plan of the paper
is as follows. Arrow structures and arrow frames are introduced in section 2.
Section 3 presents the basic arrow logic as well as some of its extensions.
The iteration-free propositional dynamic logic with intersection is presented
in section 4. Our dynamic extension of arrow logic uses the concepts defined
in section 3 and section 4. It is introduced and developed in section 5.

2 Arrow structures and arrow frames

Adapted from Vakarelov [18], an arrow structure will be any structure of the
form S = (Ar, Po, f) where:
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- Ar is a nonempty set of arrows;
- Po is a nonempty set of points;
- f is a function with domain Ar × {1, . . . , n} and range Po.

Arrow structure S = (Ar, Po, f) will be defined to be normal if for all x, y ∈
Ar:

- If f(x, 1) = f(y, 1), . . ., f(x, n) = f(y, n) then x = y.

Arrow structures constitute the starting point for the formal examination of
the relationships that reflect the ways arrows share points. Given any arrow
structure S = (Ar, Po, f), the arrow frame derived from S is the structure of
the form FS = (WS, {RS(i, j): i, j ∈ {1, . . . , n}}) where:

- WS = Ar;
- For all i, j ∈ {1, . . . , n}, RS(i, j) is the binary relation on WS defined as

follows for all x, y ∈ WS:
- xRS(i, j)y iff f(x, i) = f(y, j).

We leave it to the reader to prove the following result.

Proposition 1 Let S = (Ar, Po, f) be an arrow structure and FS = (WS,
{RS(i, j): i, j ∈ {1, . . . , n}}) be the arrow frame derived from S. For all i, j, k ∈
{1, . . . , n} and for all x, y, z ∈ WS:

T(i) xRS(i, i)x;
B(i,j) If xRS(i, j)y then yRS(j, i)x;
4(i,j,k) If xRS(i, j)y and yRS(j, k)z then xRS(i, k)z.

Moreover, if S is normal then for all x, y ∈ WS:

(?) If xRS(1, 1)y, . . ., xRS(n, n)y then x = y.

Proposition 1 motivates the following definitions. An arrow frame is a structure
of the form F = (W, {R(i, j): i, j ∈ {1, . . . , n}}) where:

- W is a nonempty set of arrows;
- For all i, j ∈ {1, . . . , n}, R(i, j) is a binary relation on W ;
- For all i, j, k ∈ {1, . . . , n} and for all x, y, z ∈ W , the conditions T(i), B(i,j)

and 4(i,j,k) of proposition 1 are satisfied.

Arrow frame F = (W, {R(i, j): i, j ∈ {1, . . . , n}}) will be defined to be normal
if for all x, y ∈ W , the condition (?) of proposition 1 is satisfied. An important
step in the study of arrow frames is their representability. Generalizing the
logical foundations of coincidence relations in arrow structures developed by
Vakarelov [17], Vakarelov [18] was the first to prove the following result.
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Proposition 2 (Characterization theorem for arrow frames) Let F = (W,
{R(i, j): i, j ∈ {1, . . . , n}}) be an arrow frame. There is an arrow struc-
ture S = (Ar, Po, f) such that the arrow frame FS = (WS, {RS(i, j): i, j ∈
{1, . . . , n}}) derived from S is isomorphic to F . Moreover, if F is normal
then S is normal.

Proposition 2 suggests defining propositional modal logics with standard in-
terpretation in arrow frames.

3 Basic arrow logic

The most natural way to define propositional modal logics with standard inter-
pretation in arrow frames is to extend the language of propositional classical
logic with the modalities [πi,j] corresponding to the binary relations R(i, j).
The first propositional modal logics of this type were given by Vakarelov [17]
in the particular case where n = 2 and Vakarelov [18] in the general case where
n ≥ 3.

3.1 Syntax

The set of all formulas is defined as follows:

- φ ::= p | ⊥ | (φ→ ψ) | [πi,j]φ;

where p ranges over a countably infinite set of propositional variables and i, j
range over the set {1, . . . , n}. We will use φ, ψ, χ, etc, for formulas. It is well
worth noting that each formula is a finite string of symbols, these symbols
coming from a countable alphabet. It follows that there are countably many
formulas. Other connectives are introduced by the usual abbreviations. We
shall agree to use the most readable notation for formulas. This permits us to
adopt the standard rules for omission of the parentheses.

3.2 Semantics

The standard semantics for this language is a Kripke-style semantics over
arrow frames. Let F = (W, {R(i, j): i, j ∈ {1, . . . , n}}) be an arrow frame.
A function V with domain the set of all propositional variables and range
the set of all subsets of W will be defined to be a valuation on F . The pair
M = (F, V ) is called the model over F defined from V . We define the relation
“formula φ is true at arrow x in model M”, denoted M,x |= φ, as follows:
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- M,x |= p iff x ∈ V (p);
- M,x 6|= ⊥;
- M,x |= φ→ ψ iff if M,x |= φ then M,x |= ψ;
- M,x |= [πi,j]φ iff for all y ∈ W , if xR(i, j)y then M, y |= φ.

Formula φ is true in model M , denoted M |= φ, if for all x ∈ W , M,x |= φ.
Formula φ is true in arrow frame F , denoted F |= φ, if φ is true in all models
over F . Formula φ is true in a set Σ of arrow frames, denoted Σ |= φ, if φ is
true in all arrow frames of Σ. The set of all formulas true in a set Σ of arrow
frames is denoted L(Σ). Let us introduce the following sets of arrow frames:

- ARROW n is the set of all arrow frames;
- ARROW nNOR is the set of all normal arrow frames;
- ARROW nFIN is the set of all finite arrow frames;
- ARROW nFINNOR is the set of all finite normal arrow frames.

3.3 Axiomatization

Let BALn be the smallest normal logic that contains the axioms given below:

T(i) φ→ 〈πi,i〉φ;
B(i,j) φ→ [πi,j]〈πj,i〉φ;
4(i,j,k) 〈πi,j〉〈πj,k〉φ→ 〈πi,k〉φ.

A formula φ is called provable in BALn, denoted `BALn φ, if φ belongs to
BALn.

3.4 Completeness

The proof of the following completeness theorem for BALn uses general tech-
niques that can be found in most elementary texts.

Theorem 3 (Completeness theorem for BALn) Let φ be a formula. The fol-
lowing conditions are equivalent:

- `BALn φ;
- φ ∈ L(ARROW n);
- φ ∈ L(ARROW nNOR);
- φ ∈ L(ARROW nFIN);
- φ ∈ L(ARROW nFINNOR).

Completeness theorem for BALn was first shown by Vakarelov [17] in the
particular case where n = 2 and Vakarelov [18] in the general case where
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n ≥ 3.

3.5 Extensions of basic arrow logic

The language of our propositional modal logics can be extended in different
ways. In the particular case where n = 2, we can think of a set of arrows as
a device which produces an output for any input. Then, for all arrow frames
F = (W, {R(i, j): i, j ∈ {1, 2}}), the following operations on sets of arrows are
defined for all subsets σ, τ of W :

Composition: σ•τ = {x: x ∈ W and there are y, z ∈ W such that xR(1, 1)y,
xR(2, 2)z, yR(2, 1)z, y ∈ σ and z ∈ τ};

Converse: ⊗σ = {x: x ∈ W and there is y ∈ W such that xR(1, 2)y,
xR(2, 1)y and y ∈ σ};

Identity: id = {x: x ∈ W and xR(1, 2)x}.

Within this context, it is natural to consider the extension of BAL2 with
the modalities •, ⊗ and id corresponding to the operations of composition,
converse and identity on sets of arrows in arrow frames. To be more precise,
the set of all formulas of the extended language is defined as follows:

- φ ::= p | ⊥ | (φ→ ψ) | [πi,j]φ | (φ • ψ) | ⊗φ | id;

where the semantics of the new modalities is defined as follows:

- M,x |= φ •ψ iff there is y, z ∈ W such that xR(1, 1)y, xR(2, 2)z, yR(2, 1)z,
M, y |= φ and M, z |= ψ;

- M,x |= ⊗φ iff there is y ∈ W such that xR(1, 2)y, xR(2, 1)y and M, y |= φ;
- M,x |= id iff xR(1, 2)x.

The extension of BAL2 with the modalities •, ⊗ and id has been considered by
Arsov [1], Arsov and Marx [2] and Marx [14]. In the general case where n ≥ 3,
Vakarelov [18] has considered the extension of BALn with the modalities [πi]
corresponding for all arrow frames F = (W, {R(i, j): i, j ∈ {1, 2}}) to the
intersection of the binary relations R(j, j) on W for all j ∈ {1, . . . , n} such
that i 6= j. Formally, the set of all formulas of the extended language is defined
as follows:

- φ ::= p | ⊥ | (φ→ ψ) | [πi,j]φ | [πi]φ;

where the semantics of the new modalities is defined as follows:

- M,x |= [πi]φ iff for all y ∈ W , if xR(j, j)y for all j ∈ {1, . . . , n} such that
i 6= j, then M, y |= φ.
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Let us be clear that neither the modalities •, ⊗ and id, in the particular
case where n = 2, nor the modalities [πi], in the general case where n ≥ 3,
are modally definable in the basic language of arrow logic. However, these
modalities will become definable in our dynamic extension of arrow logic, an
iteration-free PDL with intersection the atomic programs of which correspond
for all arrow frames F = (W, {R(i, j): i, j ∈ {1, 2}}) to the binary relations
R(i, j).

4 Iteration-free PDL with intersection

Propositional dynamic logic, PDL, is a polymodal logic with the following
operations in the set of modalities:

- Composition α; β: sequential execution of programs α and β corresponding
to the composition of the accessibility relations R(α) and R(β);

- Disjunction α∨β: nondeterministic choice of programs α and β correspond-
ing to the union of R(α) and R(β);

- Iteration α?: nondeterministic iteration of program α corresponding to the
transitive closure of R(α);

- Test φ?: an operation transforming the formula φ into a program φ? corre-
sponding to the partial identity relation in the states of the PDL-models
where the formula φ is true.

Balbiani and Vakarelov [6] were the first to propose a complete axiomatiza-
tion of iteration-free PDL with intersection, an extension of the iteration-free
fragment of PDL with the following operation in the set of modalities:

- Intersection α ∧ β: conjunction of programs α and β corresponding to the
intersection of R(α) and R(β).

The question of the complete axiomatization of iteration-free PDL with in-
tersection lies outside the scope of this paper. However we present the line
of reasoning suggested by Balbiani and Vakarelov [6], because we will follow
the same line of reasoning with respect to the complete axiomatization of our
dynamic extension of arrow logic.

4.1 Syntax

We now give a formal definition of the syntax of iteration-free PDL with
intersection, PDL∩0 . The set of all formulas and the set of all programs of the
language of PDL∩0 are defined as follows:
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- φ ::= p | ⊥ | (φ→ ψ) | [α]φ;
- α ::= π | (α; β) | (α ∨ β) | (α ∧ β) | φ?;

where p ranges over a countably infinite set of propositional variables and π
ranges over a countable set of atomic programs. We will use α, β, γ, etc, for
programs. The method developed by Balbiani and Vakarelov [6] uses a special
inference rule, the inference rule of intersection. For its definition, the concept
of admissible form will be of use to us. Each admissible form has a positive
integer as a rank and the definition of admissible forms is by induction on
the rank. Let the syntax be extended with a new propositional variable ]. If
α(]?) is a program with a unique occurrence of the test ]? as a part of it then
for all formulas φ, α(φ?) will denote the program obtained as the result of
the replacement of the propositional variable ] in its place in α(]?) with the
formula φ. The admissible forms are defined as follows:

- For all programs α(]?) with a unique occurrence of the test ]? as a subpro-
gram, α(]?) is an admissible form of rank 0;

- For all positive integers a, for all programs α(]?) with a unique occurrence
of the test ]? as a subprogram, for all admissible forms β(]?) of rank a and
for all formulas φ with no occurrence of the propositional variable ] as a
part of it, α(¬[β(]?)]φ?) is an admissible form of rank a+ 1.

Note that each admissible form α(]?) contains a unique occurrence of the test
]? as a part of it. What is more, test ]? occurs as a subprogram of admissible
form α(]?) only if α(]?) is of rank 0.

4.2 Semantics

The standard semantics for the language of PDL∩0 uses the concept of PDL-
frame, i.e., structures of the form F = (W,R) where W is a nonempty set of
states and R is a function with domain the set of all atomic programs and
range the set of all binary relations on W . A function V with domain the set of
all propositional variables and range the set of all subsets of W will be called
valuation on F . We shall say that the pair M = (F, V ) is the PDL-model over
F defined from V . The relation “formula φ is true at state x in PDL-model
M”, denoted M,x |= φ, is inductively defined as follows:

- M,x |= p iff x ∈ V (p);
- M,x 6|= ⊥;
- M,x |= φ→ ψ iff if M,x |= φ then M,x |= ψ;
- M,x |= [α]φ iff for all y ∈ W , if xR(α)y then M, y |= φ;

where the binary relations R(α) on W corresponding to the modalities [α]
reflect the intended meanings of programs α:
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- R(π) = R(π);
- R(α; β) = R(α) ◦R(β);
- R(α ∨ β) = R(α) ∪R(β);
- R(α ∧ β) = R(α) ∩R(β);
- R(φ?) = {(x, x): M,x |= φ}.

Formula φ is true in PDL-model M , denoted M |= φ, if for all x ∈ W ,
M,x |= φ. Formula φ is true in PDL-frame F , denoted F |= φ, if φ is true in
all PDL-models over F . Formula φ is true in a set Σ of PDL-frames, denoted
Σ |= φ, if φ is true in all PDL-frames of Σ. The set of all formulas true in a set
Σ of PDL-frames is denoted L(Σ). Let PDL be the set of all PDL-frames.

4.3 Axiomatization

The axiomatic system for PDL∩0 developed by Balbiani and Vakarelov [6]
is the smallest normal logic in the language of PDL∩0 that contains all the
instances of the following axiom schemata:

- 〈α; β〉φ↔ 〈α〉〈β〉φ;
- 〈α ∨ β〉φ↔ 〈α〉φ ∨ 〈β〉φ;
- 〈α ∧ β〉φ→ 〈α〉φ ∧ 〈β〉φ;
- 〈α ∧ (β ∨ γ)〉φ↔ 〈α ∧ β〉φ ∨ 〈α ∧ γ〉φ;
- 〈φ?〉ψ ↔ φ ∧ ψ;

and is closed under the following inference rule:

- If for all propositional variables p, `PDL∩
0

[α(¬(〈β〉(φ∧p)∨〈γ〉(φ∧¬p))?)]ψ
then `PDL∩

0
[α(¬〈β ∧ γ〉φ?)]ψ;

where α(]?) is an admissible form. Following standard usage, `PDL∩
0
φ means

that φ is a theorem of PDL∩0 . The inference rule of intersection is similar in
some sense to the inference rules considered by Goranko [11] and Venema [19].
It is based on the following idea. Although intersection of programs is not
definable in ordinary quantifier-free polymodal logics, intersection of programs
becomes definable in polymodal logics with quantification over propositional
variables. In the language of PDL∩0 , the inference rule of intersection simulates
this definition of the operation of intersection. We conclude this section by the
soundness theorem of PDL∩0 .

Theorem 4 (Soundness theorem of PDL∩0 ) Let φ be a formula. If `PDL∩
0
φ

then φ ∈ L(PDL).

PROOF. See Balbiani and Vakarelov [6].
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4.4 Completeness

We now want to see that every formula true in the set of all PDL-frames is
provable in PDL∩0 . The general technique of the canonical model has to be
modified in many details for our situation, for the simple reason that PDL∩0
is closed for the inference rule of intersection, an infinitary rule of inference.
In this respect, Balbiani and Vakarelov [6] introduced the concept of theory.
Following the line of reasoning suggested by Goldblatt [9,10] within his frame-
work for infinitary modal logic, a set S of formulas is said to be a theory if it
satisfies the following conditions:

- If `PDL∩
0
φ then φ ∈ S;

- If φ ∈ S and φ→ ψ ∈ S then ψ ∈ S;
- If for all propositional variables p, [α(¬(〈β〉(φ ∧ p) ∨ 〈γ〉(φ ∧ ¬p))?)]ψ ∈ S

then [α(¬〈β ∧ γ〉φ?)]ψ ∈ S;

where α(]?) is an admissible form, i.e., a theory is any set of formulas that
contains every formula provable in PDL∩0 and is closed under the inference
rule of modus ponens and the inference rule of intersection. We will use S, T ,
U , etc, for theories. A theory S is called consistent if ⊥ 6∈ S. By a maximal
theory we mean a consistent theory S such that for all formulas φ, φ ∈ S
or ¬φ ∈ S. The method of the canonical model uses the following important
lemma.

Lemma 5 (Lindenbaum’s lemma for PDL∩0 ) Let S be a consistent theory.
There is a maximal theory T such that S ⊆ T .

PROOF. See Balbiani and Vakarelov [6].

The canonical frame for PDL∩0 is the PDL-frame Fc = (Wc, Rc) where Wc

is the set of all maximal theories and Rc is the function with domain the set
of all atomic programs and range the set of all binary relations on Wc such
that for all atomic programs π and for all maximal theories S, T , SRc(π)T iff
[π]S = {φ: [π]φ ∈ S} ⊆ T . The canonical model for PDL∩0 is the PDL-model
over Fc defined from the valuation Vc on Fc such that for all propositional
variables p, Vc(p) = {S: p ∈ S}. The next lemma is the fundamental lemma
for canonical models.

Lemma 6 (Truth lemma for PDL∩0 ) Let φ be a formula. For all maximal
theories S, the following conditions are equivalent:

- Mc, S |= φ;
- φ ∈ S.

10



PROOF. For normal modal logics such as K, T , S4, etc, the proof of the
truth lemma can be done by induction on the complexity of φ. To prove the
truth lemma for PDL∩0 , we have to use in parallel an additional induction.
This additional induction involves the new concept of maximal program. Like
maximal theories, which are special sets of formulas, maximal programs are
special sets of programs, with a precise definition that lies outside the scope
of this paper. The interested reader is invited to consult the paper of Balbiani
and Vakarelov [6] for details.

We are now ready for the completeness theorem of PDL∩0 .

Theorem 7 (Completeness theorem of PDL∩0 ) Let φ be a formula. If φ ∈
L(PDL) then `PDL∩

0
φ.

PROOF. By lemmas 5 and 6.

We have no idea whether the resort to the inference rule of intersection is
necessary. In other words, we do not know whether the set of all formulas
true in the set of all PDL-frames is finitely axiomatizable by an orthodox
derivation system or not. Orthodox completeness results for a syntactically
restricted version of PDL∩0 in which programs are built up from atomic pro-
grams by means of the operations of composition and intersection are given
in [3,5]. The completeness proof treated in Balbiani [3] draws from the subordi-
nation method of Hughes and Cresswell [13] whereas Balbiani and Fariñas del
Cerro [5] base their line of reasoning on a suitable modification of the mosaic
method of Marx and Venema [15]. Both arguments consist in a step-by-step
method for constructing irreflexive models. This brings us to the question of
whether the proofs in [3,5] can be extended in the presence of tests, a ques-
tion that remains unsolved, although [4] brings new ideas that may lead to
a positive answer. Additional topics related to PDL∩0 , which space does not
permit us to discuss in depth, include the decidability/complexity issue of
the satisfiability problem. Decidability of the satisfiability problem for PDL
with intersection — PDL∩ — is proved in Danecki [8], but it is not known at
present whether the upper bound of deterministic exponential-time obtained
for PDL in [16] carries over to PDL∩. Hence, the satisfiability problem for
PDL∩0 is decidable. However, there is no known results concerning its inherent
complexity. The intersection operator is also investigated in Harel [12] which
gives the proof that the satisfiability problem for PDL∩ is undecidable if the
semantics is modified so as to refer only to deterministic programs variables.
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5 Dynamic extensions of arrow logic

In this section, we shall suppose that the set of atomic programs is equal to
the set {πi,j: i, j ∈ {1, . . . , n}}, these atomic programs corresponding for all
arrow frames F = (W, {R(i, j): i, j ∈ {1, 2}}), to the binary relations R(i, j).
A number of constructs can be defined from them such as the constructs •, ⊗
and id considered in [1,2,14] or the constructs πi considered in [18].

5.1 Syntax

The language of BALnPDL∩0 is obtained from the language of PDL∩0 by
supposing that the set of atomic programs is equal to the set {πi,j: i, j ∈
{1, . . . , n}}. Hence, the set of all formulas and the set of all programs of the
language of BALnPDL∩0 are defined as follows:

- φ ::= p | ⊥ | (φ→ ψ) | [α]φ;
- α ::= πi,j | (α; β) | (α ∨ β) | (α ∧ β) | φ?;

where p ranges over a countably infinite set of propositional variables and
i, j range over the set {1, . . . , n}. What gives our language its interest is the
possibility of defining modalities that are not definable in the language of
basic arrow logic. To illustrate the truth of this, one can consider formulas
like 〈(π1,1;φ?; π2,1) ∧ π2,2〉ψ, 〈π1,2 ∧ π2,1〉φ and 〈π1,2 ∧ >?〉>, in the particular
case where n = 2, or formulas like [π1,1 ∧ . . . πi−1,i−1 ∧ πi+1,i+1 ∧ . . .∧πn,n]φ, in
the general case where n ≥ 3. The former formulas correspond to the formulas
φ • ψ, ⊗φ and id considered by Arsov [1], Arsov and Marx [2] and Marx [14]
whereas the latter formulas correspond to the formulas [πi]φ considered by
Vakarelov [18].

5.2 Semantics

The standard semantics for this language is a Kripke-style semantics over
arrow frames. Let F = (W, {R(i, j): i, j ∈ {1, . . . , n}}) be an arrow frame, V
be a valuation on F and M = (F, V ) be the model over F defined from V .
We define the relation “formula φ is true at arrow x in model M”, denoted
M,x |= φ, as follows:

- M,x |= p iff x ∈ V (p);
- M,x 6|= ⊥;
- M,x |= φ→ ψ iff if M,x |= φ then M,x |= ψ;
- M,x |= [α]φ iff for all y ∈ W , if xR(α)y then M, y |= φ;
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where the binary relations R(α) on W corresponding to the modalities [α]
reflect the intended meanings of programs α:

- R(πi,j) = R(i, j);
- R(α; β) = R(α) ◦R(β);
- R(α ∨ β) = R(α) ∪R(β);
- R(α ∧ β) = R(α) ∩R(β);
- R(φ?) = {(x, x): M,x |= φ}.

The notions of truth in a model, truth in an arrow frame and truth in a set of
arrow frames are those defined in the section devoted to basic arrow logic. As
a result, L(ARROW n) and L(ARROW nNOR) will respectively denote the
set of all formulas true in the set of all arrow frames and the set of all formulas
true in the set of all normal arrow frames.

5.3 Axiomatization

What we have in mind is to propose complete axiomatic systems for
L(ARROW n) and L(ARROW nNOR). Concerning the axiomatization of
L(ARROW n), let BALnPDL∩0 be the smallest normal logic in our extended
language that contains all the instances of the following axiom schemata:

- φ→ 〈πi,i〉φ;
- φ→ [πi,j]〈πj,i〉φ;
- 〈πi,j〉〈πj,k〉φ→ 〈πi,k〉φ;
- 〈α; β〉φ↔ 〈α〉〈β〉φ;
- 〈α ∨ β〉φ↔ 〈α〉φ ∨ 〈β〉φ;
- 〈α ∧ β〉φ→ 〈α〉φ ∧ 〈β〉φ;
- 〈α ∧ (β ∨ γ)〉φ↔ 〈α ∧ β〉φ ∨ 〈α ∧ γ〉φ;
- 〈φ?〉ψ ↔ φ ∧ ψ;

and is closed under the following inference rule:

- If for all propositional variables p, `BALnPDL∩
0

[α(¬(〈β〉(φ ∧ p) ∨ 〈γ〉(φ ∧
¬p))?)]ψ then `BALnPDL∩

0
[α(¬〈β ∧ γ〉φ?)]ψ;

where α(]?) is an admissible form. Concerning the axiomatization of
L(ARROW nNOR), let BALnPDL∩0NOR be the smallest normal logic in our
extended language that contains BALnPDL∩0 together with all the instances
of the following axiom schema:

- φ→ [π1,1 ∧ . . . ∧ πn,n]φ.

Seeing that the axiomatic system BALnPDL∩0 is obtained by adding the ax-
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iomatization of PDL∩0 to the axiomatization of BALn, soundness of
BALnPDL∩0 is easy to check. Seeing that the schema φ→ [π1,1 ∧ . . . ∧ πn,n]φ
modally defines ARROW nNOR within ARROW n, soundness of
BALnPDL∩0NOR follows immediately.

Theorem 8 (Soundness theorem of BALnPDL∩0 ) Let φ be a formula. If
`BALnPDL∩

0
φ then φ ∈ L(ARROW n).

Theorem 9 (Soundness theorem of BALnPDL∩0NOR) Let φ be a formula.
If `BALnPDL∩

0 NOR φ then φ ∈ L(ARROW nNOR).

5.4 Completeness

Following the line of reasoning suggested in the proof of the completeness
theorem of PDL∩0 , the method of the canonical model can be used to demon-
strate that every formula true in the set of all arrow frames is provable in
BALnPDL∩0 and every formula true in the set of all normal arrow frames is
provable in BALnPDL∩0NOR. Let L be either BALnPDL∩0 or
BALnPDL∩0NOR. The proof of the Lindenbaum’s lemma for L is similar
to the proof of the Lindenbaum’s lemma for PDL∩0 .

Lemma 10 (Lindenbaum’s lemma for L) Let S be a consistent theory. There
is a maximal theory T such that S ⊆ T .

The canonical frame for L is the structure of the form Fc = (Wc, {Rc(i, j):
i, j ∈ {1, . . . , n}}) where Wc is the set of all maximal theories and for all
i, j ∈ {1, . . . , n}, Rc(i, j) is the binary relation on Wc such that for all maximal
theories S, T , SRc(i, j)T iff [πi,j]S = {φ: [πi,j]φ ∈ S} ⊆ T . The canonical model
for L is the model over Fc defined from the valuation Vc on Fc such that for all
propositional variables p, Vc(p) = {S: p ∈ S}. The proof of the truth lemma
for L is similar to the proof of the truth lemma for PDL∩0 .

Lemma 11 (Truth lemma for L) Let φ be a formula. For all maximal theories
S, the following conditions are equivalent:

- Mc, S |= φ;
- φ ∈ S.

Using the schemata φ → 〈πi,i〉φ, φ → [πi,j]〈πj,i〉φ and 〈πi,j〉〈πj,k〉φ → 〈πi,k〉φ,
the reader may easily verify that for all maximal theories S, T, U :

- [πi,i]S ⊆ S;
- If [πi,j]S ⊆ T then [πj,i]T ⊆ S;
- If [πi,j]S ⊆ T and [πj,k]T ⊆ U then [πi,k]S ⊆ U .

14



Hence, the canonical frame for L is an arrow frame. To see that the canonical
frame for BALnPDL∩0NOR is normal, we first need a useful lemma concerning
the inference rule of intersection.

Lemma 12 Let α, β be programs. For all maximal theories S, T , the following
conditions are equivalent:

- [α ∧ β]S ⊆ T ;
- [α]S ⊆ T and [β]S ⊆ T .

PROOF. Suppose [α ∧ β]S ⊆ T , we demonstrate [α]S ⊆ T and [β]S ⊆
T . If [α]S 6⊆ T then there is a formula φ such that φ ∈ [α]S and φ 6∈ T .
Consequently, [α]φ ∈ S. Hence, [α ∧ β]φ ∈ S. It follows that φ ∈ [α ∧ β]S.
Since [α ∧ β]S ⊆ T , then φ ∈ T , a contradiction. As a conclusion, [α]S ⊆ T .
The proof that [β]S ⊆ T is similar.
Suppose [α]S ⊆ T and [β]S ⊆ T , we demonstrate [α∧β]S ⊆ T . If [α∧β]S 6⊆ T
then there is a formula φ such that φ ∈ [α ∧ β]S and φ 6∈ T . It follows that
¬φ ∈ T . In order to show that [¬〈α ∧ β〉¬φ?]⊥ ∈ S, we take an arbitrary
propositional variable p. Obviously, ¬φ∧p ∈ T or ¬φ∧¬p ∈ T . Since [α]S ⊆ T
and [β]S ⊆ T , then 〈α〉(¬φ∧p) ∈ S or 〈β〉(¬φ∧¬p) ∈ S. Thus, 〈α〉(¬φ∧p)∨
〈β〉(¬φ∧¬p) ∈ S and [¬(〈α〉(¬φ∧p)∨〈β〉(¬φ∧¬p))?]⊥ ∈ S. Seeing that S is
closed under the inference rule of intersection, therefore [¬〈α ∧ β〉¬φ?]⊥ ∈ S
and ¬[α∧β]φ ∈ S. Consequently, [α∧β]φ 6∈ S and φ 6∈ [α∧β]S, a contradiction.
As a conclusion, [α ∧ β]S ⊆ T .

To infer that the canonical frame for BALnPDL∩0NOR is normal, let S, T be
maximal theories such that [π1,1]S ⊆ T , . . ., [πn,n]S ⊆ T , we demonstrate
S = T . Since [π1,1]S ⊆ T , . . ., [πn,n]S ⊆ T , then, by the lemma above,
[π1,1 ∧ . . . ∧ πn,n]S ⊆ T . Seeing that the schema φ ↔ [π1,1 ∧ . . . ∧ πn,n]φ
is provable in BALnPDL∩0NOR, therefore [π1,1 ∧ . . . ∧ πn,n]S = S. Since
[π1,1 ∧ . . . ∧ πn,n]S ⊆ T , then S = T . From all this, the completeness theorem
of BALnPDL∩0 and the completeness theorem of BALnPDL∩0NOR easily
follow.

Theorem 13 (Completeness theorem of BALnPDL∩0 ) Let φ be a formula. If
φ ∈ L(ARROW n) then `BALnPDL∩

0
φ.

Theorem 14 (Completeness theorem of BALnPDL∩0NOR) Let φ be a for-
mula. If φ ∈ L(ARROW nNOR) then `BALnPDL∩

0 NOR φ.

Again, it is not known whether there exists a sound and complete orthodox
proof system capable of dealing with eitherBALnPDL∩0 orBALnPDL∩0NOR.
Similarly, the decidability of the satisfiability problem for either BALnPDL∩0
or BALnPDL∩0NOR is still open.
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6 Conclusion

In this paper we have presented deductive systems for BALnPDL∩0 and
BALnPDL∩0NOR which explore the following idea: although intersection of
binary relations is not definable in the ordinary language of modal logic it
becomes definable in a modal language strengthened by the introduction of
propositional quantifiers. The one drawback is that our deductive systems use
an unorthodox inference rule: the inference rule of intersection. The interesting
question of course is to know whether the use of this unorthodox inference rule
is essential or not. In other words it is of the utmost importance to determine
whether the unorthodox inference rule of intersection can be replaced with a
recursively enumerable set of axioms, a question that remains unsolved.
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