Available online at www.sciencedirect.com

. ANNALS OF
SCIENCE@DIRECT PURE AND

APPLIED LOGIC

ELSEVIER Annals of Pure and Applied Logic 130 (2004) 3-31

www.elsevier.com/locate/apal

The complexity of first-order and monadic
second-order logic revisited

Markus Fricl Martin Groh&*

3SAP AG, Neurottstr. 15a, 69190 Walldorf, Germany
bnstitut fiir Informatik, Humboldt-Universitt' zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

Available online 20 July 2004

Abstract

The model-checking problem for a logic L on a class C of structures asks whether a given
L-sentence holds in a given structure in C. In this paper, we give super-exponential lower bounds for
fixed-parameter tractable model-checking problems for first-order and monadic second-order logic.

We show that unless PTIME= NP, the model-checking problem for monadic second-order
logic on finite words is not solvable in timé(k) - p(n), for any elementaryfunction f and any
polynomial p. Herek denotes the size of the input sentence antle size of the input word. We
establish a number of similar lower bounds for the model-checking problem for first-order logic, for
example, on the class of all trees.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Model-checking problems

We study the complexity of a fundamental algorithmic problem, the so-cailedel-
checkingproblem: given a sentengeof some logic L and a structuté, decide whethep
holds in.A. Model-checking and closely related problems are of importance in several areas
of computer science, for example, in database theory, artificial intelligence, and automated
verification. In this paper, we prove new lower bounds on the complexity of the model-
checking problems for first-order and monadic second-order logic.

It is known that model-checking for both first-order and monadic second-order logic is
PSPACE-completel[7,20] and thus most likely not solvable in polynomial time. While this

* Corresponding author.
E-mail addressesnarkus.frick@sap.com (M. Frick), grohe@informatik.hu-berlin.de (M. Grohe).

0168-0072/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2004.01.007

http://www.elsevier.com/locate/apal

4 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

result shows that the problems are intractdblgenera) it does not say too much about
their complexity in practical situations. Typically, we have to check whether a relatively
smallsentence holds in large structure. For example, when evaluating a database query,
we usually have a small query and a large database. Similarly, when verifying that a finite
state system satisfies some property, the specification of the property in a suitable logic
will usually be small compared to the huge state space of the system. When analysing the
complexity of the problem, we should take this imbalance between the size of the input
sentence and the size of the input structure into account.

1.2. Parameterized complexity theory

Parameterized complexity theory (seég)[is a relatively new branch of complexity
theory that provides the framework for a refined complexity analysis of problems whose
instances consist of different parts that typically have different sizes. In this framework, a
parameterized probleis a problem whose instances consist of two parts of sizzsdk,
respectivelyk is called theparametey and the assumption is thiais usually small, small
enough that an algorithm that is exponentiakimay still be feasible. A parameterized
problem is calledixed-parameter tractabl# it can be solved in timef (k) - p(n) for an
arbitrary computable functiof and some polynomigd. The motivation for this definition
is that, sincék is assumed to be small, the feasibility of an algorithm for the problem mainly
depends on its behaviour in termsrofUnder this definition, a running time @(2X - n)
is considered tractable, but running times@¢n¥) or O(k - 2") are not, which seems
reasonable.

Let us remark that although fixed-parameter tractability has proven to be a valuable
concept allowing fine distinctions on the borderline between tractability and intractability,
it seems somewhat questionable to adatlitcomputable functiond for the parameter
dependence of a fixed-parameter tractable algorithrii.isf doubly exponential or worse,
anO(f (k) - n)-algorithm can hardly be considered tractable. The main contribution of this
paper to parameterized complexity theory is to show that there are natural fixed-parameter
tractable problems requiring parameter dependefdbat are doubly exponential or even
non-elementary.

1.3. The parameterized complexity of model-checking problems

Model-checking problems have a natural parameterization in which thek sif¢he
input sentence is the parameter. We have argued abovk ihasually small in the prac-
tical situations we are interested in, so a parameterized complexity analysis is appropri-
ate. Unfortunately, it turns out that the model-checking problem for first-order logic is
complete for the parameterized complexity class [AYWwhich is conjectured to strictly
contain the class FPT of all fixed-parameter tractable problems. Thus probably model-
checking for first-order logic is not fixed-parameter tractable. Of course this implies that
model-checking for the stronger monadic second-order logic is also most-likely not fixed-
parameter tractable. As a matter of fact, it follows immediately from the observation that
there is a monadic second-order sentence saying that a graph is 3-colourable that model-
checking for monadic second-order logic is not fixed-parameter tractable urdedP

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 5

It is interesting to compare these intractability results for first-order logic and monadic
second-order logic with the following: the model-checking problem for linear time
temporal logic LTL is solvable in time2K).n [14], making it fixed-parameter tractable and
also tractable in practise. On the other hand, model-checking for LTL is PSPACE-complete
(as it is for first-order and monadic second-order logic). So parameterized complexity
theory helps us in establishing an important distinction between problems of the same
classical complexity.We may argue, however, that the comparison between LTL model-
checking and first-order model-checking underlying these results is slightly unfair. As
the name linear time temporal logic indicates, LTL only speaks about a linearly ordered
sequence of events. On an arbitrary structure, an LTL formula can thus only speak about
the paths through the structure. First-order formulas do not have such a restricted view. It
is therefore more interesting to compare LTL and first-order logioords which are the
natural structures describing linear sequences of events. A well-known result of Kamp [
states that LTL and first-order logic have the same expressive power on words. And indeed,
model-checking for first-order logic and even for monadic second-order logic is fixed-
parameter tractable if the input structures are restricted to be words. This is a consequence
of Buchi's theorem 2], saying that for every sentence of monadic second-order logic one
can effectively find a finite automaton accepting exactly those words in which the sentence
holds. A fixed-parameter tractable algorithm for monadic second-order model-checking
on words may proceed as follows: it first translates the input sentence into an equivalent
automaton and then tests in linear time whether this automaton accepts the input word. But
note that since there is no elementary bound for the size of a finite automaton equivalent
to a given first-order or monadic second-order senteb8g(&lso see 19)), the parameter
dependence of this algorithm is non-elementary, thus it does not even come close to the
29K . n model-checking algorithm for LTL. Of course this does not rule out the existence
of other, better fixed-parameter tractable algorithms for first-order or monadic second-order
model-checking.

1.4. Our results

Our first theorem shows that there is no fundamentally better fixed-parameter tractable
algorithm for first-order and monadic second-order model-checking on the class of words
than the automata based one described in the previous paragraph.

Theorem 1. (1) Assume thaPTIME # NP. Let f be an elementary function and p a
polynomial. Then there is no model-checking algorithm for monadic second-order
logic on the class of words whose running time is bounded &y -fp(n).

(2) Assume thaFPT # AW[x]. Let f be an elementary function and p a polynomial.
Then there is no model-checking algorithm for first-order logic on the class of words
whose running time is bounded bykj - p(n).

1 A critical reader may remark that this distinction between the complexities of LTL model-checking and first-
order model-checking was known before anybody thought of parameterized complexity-theory. This is true, but
how can we be sure that there is f8® - n model-checking algorithm for first-order model-checking? The role
of parameterized-complexity theory is to give evidence for this.

6 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

Here k denotes the size of the input sentence of the model-checking problem and n the
size of the input word.

Recall that a functiorf : N — N is elementaryf it can be formed from the successor
function, addition, subtraction, and multiplication using compositions, projections, boun-
ded additions and bounded multiplications (of the fo@gSy g(X, 2) and]‘[ZSy g(x, 2)).

The crucial fact for us is that a functiof is bounded by an elementary function if,
and only if, it is bounded by ah-fold exponential function for some fixeld (see, for
example, §]).

To prove the theorem, we use similar coding tricks as those that can be used to prove
that there is no elementary algorithm for deciding the satisfiability of first-order sentences
over words 1§].

Model-checking for first-order and monadic second-order logic is known to be fixed-
parameter tractable on several other classes of structures besides words: model-checking
for monadic second-order logic is also fixed-parameter tractable on trees and graphs of
bounded tree-width3]. The latter is a well-known theorem due to Cource8glaying a
prominent role in parameterized complexity thedrigeorem limplies that the parameter
dependence of monadic-second-order model-checking on trees and and graphs of bounded
tree-width is also non-elementary. In addition to trees and graphs of bounded tree-width,
model-checking for first-order logic is fixed-parameter tractable on further interesting
classes of graphs such as graphs of bounded defjégeplanar graphs10], and more
generally locally tree-decomposable classes of structur@s Theorem 12) doesnot
imply lower bounds for the parameter dependence here. The reason for that is a peculiar
detail in the encoding of words by relational structures. The standard encoding includes
the linear order of the letters in a word as an explicit relation of the structure. If we omit
the order and just include a successor relafidgrgorem {1) still holds, because the order
is definable in monadic second-order logic. However, the order is not definable in first-
order logic, andrheorem 12) does not extend to words without order. Indeed, we give a
model-checking algorithm for first-order logic on words without order, and more generally
on structures of degree 2, with a running tinfe'® . n, that is, with a doubly exponential
parameter dependence. We also give a model-checking algorithm for first-order logic on
structures of bounded degrde> 3 with a triply exponential parameter dependence. We
match these upper bounds by corresponding lower bounds:

Theorem 2. Assume thaEPT # AW([x], and let p be a polynomial.

(1) There is no model-checking algorithm for first-order logic on the class of words without
order whose running time is bounded by

22 . p(n).

(2) There is no model-checking algorithm for first-order logic on the class of binary trees
whose running time is bounded by

20(K)

27 . p(n).

Again, k denotes the size of the input sentence and n the size of the input structure.

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 7

Finally, we obtain a non-elementary lower bound for first-order model-checking on
trees, which implies lower bounds for planar graphs and all other classes of graphs that
contain all trees.

Theorem 3. Assume thaFPT # AW([x]. Let f be an elementary function and p a
polynomial. Then there is no model-checking algorithm for first-order logic on the class of
trees whose running time is bounded bg)f- p(n).

2. Preliminaries

A vocabularyis a finite set of relation, function, and constant symbols. Each relation and
function symbol has aarity. t always denotes a vocabulary.sé&ucture.A of vocabulary
7, or T-structure, consists of a sétcalled theuniverse and an interpretation“* of each
symbol T < t: relation symbols and function symbols are interpreted by relations and
functions onA of the appropriate arity, and constant symbols are interpreted by elements
of A. All structures considered in this paper are assumed to have a finite univEnse
reductof a r-structureA to a vocabulary’ C 7 is thet’-structure with the same universe
as.A and the same interpretation of all symbolscin An expansion of a structurd is a
structured’ such thatd is a reduct of4’. In particular, if A is a structure and € A, then
by (A, a) we denote the expansion gdfby the constars.. We write 4 = B to denote that
structures4 andB are isomorphic.

Let X' be afinite alphabet. We lei(Y) be the vocabulary consisting of a binary relation
symbol<, a unary function symbd, two constant symbols ‘min’ and ‘max’, and a unary
relation symbolPs for everys € Y. A word structureover) is at (X)-structurely with
the following properties:

— <"isalinear order oV, min”Y and maX” are the minimum and maximum element of
<", andS" is the successor function associated witfi, where we lelS"¥ (maxV) =
max”.

— For everya € W there exists precisely orgee X' such that € PY”.

We refer to elementa € W as thepositionsin the word (structure) and, for every position
a € W, to the uniques such that € P}V as theletter at a

It is obvious how to associate a word from the &t of all words over)’ with every
word structure ovek’ and, conversely, how to associate an up to isomorphism unique word
structure with every word it*. We identify words with the corresponding word structures
and writeWW € X* to refer both to the word and the structure.

The class of all words (or word structures) over any alphabet is denoté&ll.byhe
length of a word/V is denoted byW)|.

A subwordof awordW = g...5-1 € X* is either the empty word or awosl. . . s;
forsomei, j,0<i < j < n. We writeV C W to denote thaV’ is a subword oiV.

We assume that the reader is familiar with propositional logic, first-order logic FO and
monadic second-order logic MSO (see, for exampip, [f 6 is a formula of propositional
logic and« is a truth-value assignment to the variableothen we writea = 6 to
denote thatr satisfiesd. Similarly, if ¢(x1, ..., Xx) is a first-order or monadic second-
order formula with free variables, ..., X, A is a structure, andy, ..., a € A, then

8 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

we write A = ¢(ay, ..., a) to denote thatd satisfiesy if the variablesx, ..., xx are
interpreted byay, . . ., ak, respectively. Asentencés a formula without free variables. The
guantifier-rankof a formulag, that is, the maximum number of nested quantifierg,iis
denoted by qip).

The model-checking problerfor a logic L on a class C of structures, denoted by
MC(L, C), is the following decision problem:

Input: Structure4 € C, sentence € L
Problem: DecideifA = ¢.

We fix a reasonable encoding of structures and formulas by word$@vgr We denote
the length of the encoding of a structuseby ||.4|| and the length of the encoding of a
formulag by ||¢||. When reasoning about model-checking problems, we usually tze
denote the sizéA|| of the input structure ankito denote the sizfy || of the input sentence.

Our underlying model of computation is the standard RAM-model with addition and
subtraction as arithmetic operations (cf,19]). In our complexity analysis we use the
uniform cost measure.

It is well-known that if we are interested in the complexity of first-order or monadic
second-order model-checking on words, the alphabet is inessential. This can be phrased as
follows:

Fact 4. Let L € {FO, MSO}. Then there is a linear time algorithm that, given a sentence
¢ € Land awordV € W, computes a sentengé € L of vocabularyr ({0, 1}) and a word
W' e {0, 1}* such thatl¢'|| € O(llelD, W'l € OUIWI), andWV = ¢ <= W' |= ¢').

N denotes the set of natural numbers (including 0). Fonall € N we let biti, n)
denote theth bit in the binary representation of (Here we count the lowest priority bit
as the Oth bit.) Ig denotes the base-2 logarithm, andj ferN, Ig®” denotes theé-fold
logarithm. More formally, I§’ is defined by I? (n) = nand If'*P (n) = Ig Ig® (n).

We define theower function T: Nx R — Rby T(0,r) =r andT(h+1,r) = 2T
forallh € N, r € R. ThusT(h,r) is a tower of 2s of height with anr sitting on top.
Observe that for alh, h € N'with n > 1 we haveT (h, lg™ n) = n.

3. Succinct encodings

We introduce a sequence of encodings for h > 1, of natural numbers by words
over certain finite alphabets. They are more and more “succinct” not in the sense that the
codewords are shorter and shorter, but in the sense that they can be “decoded” by shorter
and shorter first-order formulas. Decoding is actually said too much here, what we mean
is that there are shorter and shorter first-order formulas stating that two words encode the
same number. For example, if we encode numbers in unary, for exbeye is a first-order
formula of lengthO(n) stating that two words encode the same number smaller than 2
If we encode numbers in binary, there is a first-order formula of le@th) stating that
two words encode the same number smaller tifan\&e shall give, for everpt > 0, an
encoding such that for everythere is a first-order formula of length(n) stating that two

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 9

words encode the same number smaller fhém n). This is what_emma 8 the key result
of this section, states.

Forallh > 1weletX}, = {0, 1,<1>,</1>,..., <h>, </h>}. The “tags"<i>and</i>
represent single letters of the alphabet and are just chosen to improve readability. We define
L:N—- NbyL0 =0,L(1)=1,L(n) = |lg(n—1)] + 1forn > 2. Note that for
n > 1, L(n) is precisely the length of the binary representation ef 1.

We are now ready to define our encodings : N — X, forh > 1. We let
11(0) = <1></1>and

ui(n) = <1>bit(O,n — 1) bit(L, n—21)...bit(L(n) =1, n—1)</1>

forn > 1. Forh > 2, we letup (0) = <h></h>and

uh(n) = <h>
4in_1(0) bit(0, n — 1)
pn_1(D) bit(L, n — 1)
pn_1(L() — 1) bit(L(n) — L, n — 1)
</h>

for n > 1. Here empty spaces and line breaks are just used to improve readability.

Example5.
w2047 = <2> = <>
n1(0) 0 <1></1>0
n1(l) 1 <1>0</1>1
n1(2) 1 <1>1</1>1
n1(3) 1 <1>01</1>1
un1(4) 0 <1>11</1>0
n1(®) 1 <1>001</1> 1
</2> </2>
Lemma 6.

lun(m| € O(h - 1g?n).

Proof. We define functiond; : N — N as follows:L1(n) = L(n) foralln € N and
Li(n) = Lj_1(L(n)) foralli,n € Nwithi > 2. Moreover, we defin® : N — N for
i >1hy

i
Rm=J]Lim.
j=1

Observe that for all > 2 andn > 1 we haveP, (n) = L(n) - P_1(L(n)).
We first prove, by induction oh > 1, that for alln > 1,

lun(n)| < 4h - Pa(n). 1)

10 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

We haveui(n) = 2+ L(n) < 4L(n) = 4P1(n), so () is true forh = 1. Leth > 2 an
suppose thatl) holds forh — 1. Then

L(n)-1
lun(Ml =2+LM)+ Y lun-1)]
i=0
L)—1
=2+LM+2+ Y |un-1()]
i=1
L(n—-1
<4+LMm+ Y 4h—1-Pral)
i=1
<4+ LM +4LM -1 - (=1 Prs(L()

<L) +4h-1) -L(n)- Ph_1(L(n)
<L) +4h—1)-Py(n)
< 4h- Ph(n).

This proves D).

SinceL(n) € O(gn), to complete the proof of the lemma it suffices to show that
there is a constant such that for allh,n > 1 we haveP,(n) < c- L(n)2. Since
L(L(n)) € O(glgn) andL(n) € 2(lgn), there is amg such that for allh > ng we
have

L(L(n)? < L(n).

Note thatP = {P,(m) | m < ng, h > 1} is a finite set and lat = max(P).

We prove thatP,(n) < ¢ - L(n)? by induction onh > 1. SincePi(n) = L(n),
this statement is true fdn = 1. Forh > 2, we haveP,(n) = L(n) - Ph_1(L(n)). If
L(n) < ng, we haveP,_1(L(n)) < c and thusP,(n) < cL(n). If L(n) > ng, we have
L(L(n))?2 < L(n). By induction hypothesish_1(L(n)) < ¢- L(L(n))2. Thus

Ph(n) = L(n) - Phoa(L() < L()-c- L(LM)* <c-Lm?2 O
Lemma?7. There is an algorithm that, given,h € N, computesun(n) in time
O(lun(M1) = O(h - 1g”n).
Proof. The algorithm computegn(n) in a straightforward recursive manner. We get the
following recurrence for the running tim(h, n):
L(n)
R(h,n) < O(L()) + > R(h— 1, L(i)).
i=0
This recurrence is very similar to the one we obtained in the proadkaima 6and can
easily be solved using the same methods.

Observe that for alin > 1 we have

2" =maxne N | L(n) <mj.

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 11

Recall thafT (h, £) is a tower of 2s of height with an¢ on top. Thus, in particular, for all
h, ¢ > 1 we have

Th,¢)=maxne N |Ln) <Th-110)} (2)

Lemma8. Leth> 1, ¢ > 0. There s afirst-order formulgn ¢ (X, y) of size Qh-lgh+¢)
such that for all wordsV, a,b € W, andmn € {0, ..., T(h, £)} the following holds:

If a is the first position of a subwoid C VW withif = up(m) and b is the first position
of a subwordy C W withV = up(n), then

W E xne(@ b)y<=m=n.
Furthermore, the formulgn ¢, can be computed from h ardn time Och - Igh + £).

Proof. Let h = 1. Recall that thet;-encoding of an integep > 1 is just the binary
encoding ofp — 1 enclosed irk1>, </1>. Hence to say that andy areui-encodings of
the same numbers, we have to say that for all paitsi, y + i of corresponding positions
betweenx respectivelyy and the next closing /1>, there are the same lettersxat- i
andy +i. For numberg in {0, ..., T(1, £)}, there are at modt(p) < ¢ positions to be
investigated. To express this, we let

XLe(X, y) = 3IXg ... IX Ay ... Y,

-1

(SXZ X1 A /\ ((Pe/1sXi AXi = Xig1) V (=Pe/1sX A SX = Xi+1))

i=1
-1

ASYy=Yy1 A /\ ((Pe/1>¥i AV =Yi41) V (7 Pe/1>Yi A SY = Vit1))
i=1

¢
A\ ((Poxi < Poyi) A (Prxi < Plyi») :
i=1

Now leth > 2 and suppose that we have already defined ((x, y). It will be convenient
to have the following auxiliary formulas available:

xiEt(x, V) =X < YAVZ(X<ZAZ<Y)—> P2,
xgst(x, V) =X < YAPypYAVZ(X<zZAZ<Y)—> —Pp>2).

Intuitively, xi',]t(x, y) says thay is in the interior of the subword of the forpy (p) starting
atx and X,gst(x, y) says thay is the last position of the subword of the foym(p) starting
atx, provided such a subword indeed startg at

To say that the subwords startingaandy areun-encodings of the same numbers, we
have to say that for all positions betweerx and the next closing/h> and all positiong
betweery and the next closing/h>, if w andz are first positions of subwords isomorphic
to un—1(q) for someq € N, then the positions following these two subwords are either both
1s or bothos. For all subwords ofi,(p) of the formun—_1(q) we haveq € {0, ..., L(p)}.
In order to apply the formulgn—1,, to test equality of such subwords, we must have
g < L(p) < T(h-1,¢).By (2), the last inequality holds for alp < T (h, £). Thus for
suchp we can use the formulgn_1 ¢ to test equality of subwords @i, (p) of the form

12 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

h—1(Q). As a first approximation to our formula, ¢, we let
.00) = Yoo (%, w) A Pea- 150)
= 32(1f (¥, D) A Par- 152 A xh-1.0(w,)
A Vz((xiﬂt(y, 2) A Py - 152)
= (X W) A Par- 5w A 1w, 2)))
A Vsz((xiﬂt(x, W) A Pap - 5w A x4 (Y, 2) APan - 152 Axn-1.0(w, 2))

— Elw/EIZ’(XQS_tl(w, w’) A th_l(z, Z)A(PSZ & P, Sw/))).

ast

The first line of this formula says that every subword of the fefim1(q) in the subword
of the formun(p) starting atx also occurs in the subword of the fopm (p) starting aty.
The second line says that every subword of the foaim1(q) in the subword of the form
un(p) starting aty also occurs in the subword of the formp, (p) starting atx. The third
and fourth lines say that ib andz are the first positions of isomorphic subwords of the
form un—1(q), then they are either both followed bylar both by a0 (since the only two
letters that can appear immediately after a subvugyd; (q) in a wordun (p) ared andi).

This formula says what we want, but unfortunately it is too large to achieve the desired
bounds. The problem is that there are three occurrences of the subformula(w, z).
We we can easily overcome this problem. We let

ast

Z(w, z) = Jw'37 <x|25_t1(w, w) A xlh_l(z, ZYAP,SZ & Plsw’)

and
Xhe(X,y) = Vwaz((x{n‘t(x, w) = xm (¥, 2))

A (XY, w) = xim(X. 2)
VAN (P<h— 1>W —> P<h— 1>Z)

A <<(xi'.lt(y, w) vV xiﬂt(x, w)) A Pay - 1>w)

— xh-1.¢(w, 2) A& (w, z)>).

Itis not hard to see thagh ¢ (X, y) has the desired meaning.

Observing thaf x1.¢|l € O(¢) and that| xn.¢ll = || xh—1.¢ll+c-1g h for some constart,
we obtain the desired bound on the size of the formulas. To see why we need the factor Ig
here, recall thaflgn ¢ | is the length of éinary encoding ofgn . The vocabulary of the
formulagn ¢ is of size O(h), thus the binary encoding of the symbols in this vocabulary
will require O(lg h) bits.

The fact thatyn ¢ can be computed in time linear in the size of the output is immediate
from the construction. O

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 13

4. Encodings of propositional formulas

In this section, we give a sequence encoding of propositional formulas in conjunctive
normal form and assignments to the variables of these formulas such that there are shorter
and shorter first-order formulas stating that the encoded assignment satisfies the encoded
formula. The key idea is to use the encodings of the natural numbers to encode
propositional variables by their index. Then hgmma 8 we can check with a very
short first-order formula if two subwords of a codeword that represent variables actually
represent the same variable. This way we can look up the value of a variable in a table
representing the assignment.

The class of all formulas in conjunctive normal form is denoted by CNF, and for every
k > 1 the class of all formulas ik-conjunctive normal form, that is, conjunctions of
clauses of size at mokt is denoted bk-CNF.

We assume that propositional formulas only contain variakje$ori € N. For a set®
of propositional formulas, we le® (n) denote the set of all formulas il whose variables
are amondXo, ..., Xp—1.

To encode formulas and assignments, we will use an alphabet that is obtained from the
alphabet’}, introduced in the previous section by adding a number of symbols in several
stages throughout this section. We start by adding the symbols

+,-,<1it>, </1it>, <clause>, </clause>, <cnf>, </cnf>.

We fix h and define an encoding of CNF-formulas by words as follows: For a literak
let

<1it> pup(i) +</1it> if A =X
<lit> up(i) - </1it> if A = =X

ph(r) = {
(foreveryi € N). Foraclausé = (A1 Vv -+ - vV) We let
Uh(8) = <clause> un(A1) - - - uh(Am) </ clause>,
and for a CNF-formular = (81 A - -+ A 8m) we let
ph(y) = <cnf>pun(81) -+ 1h(8m) </cnf>.
Next, we need to encode assignments. Agt) denote the set of all assignments
o :{Xo,..., Xn—1} = {TRUE, FALSE}.

We add the symbolsval>, </val>, <asn>, </asn>, true, false to our alphabet. For
an assignment € A(n), we let

un(@) = <asn>

<val>unp(0) a(Xg)</val>

<val>up(n — 1) a(Xp—1)</val>
</asn>.

14 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

Of course what is meant by(X;) here is the symbotrue if «(Xj) = TRUE and the
symbolfalse otherwise. For a paify, @) € CNF(n) x A(n) we simply letun(y, @) =

Uh(y) ph(er).
The following lemma is an immediate consequenckerhmas Gand7:

Lemma9. Lethe Nand(y, o) € CNF(n) x A(n). Then|un(y,)| = O(h-1g?n-(|ly ||+
n)) and there is an algorithm that computes(y, «) in time O(h - Ign - (||y || +n)) (that
is, linear in the size of the output).

Lemma 10. Forall h, ¢ € Nthere is a first-order senteneg , of size Qh-lgh+¢) such
that foralln < T(h, ¢) and(y, @) € CNF(n) x A(n),

Mh(y, @) = ohe+——a E=y.

Furthermore, the formulan ¢ can be computed in time @ - Igh + ¢).

Proof. Let xn ¢(X,Yy) be the formula defined ihemma 8 Recall that it says that the
subwords of the formup(m) and un(n) starting atx, y, respectively, are identical,
provided that such subwords startxaendy and thatn, m < T(h, ¢). Also recall the
formula

x|23t(x, V) =X <YAPyusYAVZ(X <ZAZ<Y)—> =Pn>2),

defined in the proof oEemma 8 which says thay is the last position of the subword of
the formun(n) starting atx.

We first define a formula;o"t (X) such that if the subword of starting atx is the
encoding of a literal, then it is satlsﬂed by We let

Y, (0 = 3yAXIY (Pevar> Y A xh,e(SX SY) A xfis(SX X) A xie(SY.)
A (P+S>(RS Pmesy».

Suppose that the encoding of the litefal X; starts atx. The formulawi{l’o(x) looks for
ay such that the encoding of a pdif, (X)) starts aty, then comparesand j, and if
they are equal, checks that the symbol indicating the sign of the literdf,ignd only if,
a(Xj) = TRUE. Next, we define a formulaﬁ'aus"(x) such that if the subword of starting
atx is the encoding of a clause, then it is satisfiedrbyVe let

YESEX) = Y(VZ((X < ZAZ = Y) = =Pe/ctanses?) A PaiesY A Yl (Y)).

It simply says that there is a positignwhich is still within the boundary of the clause
starting atx such that a literal starts gtand this literal is satisfied. Finally, we let

Yh,e(X) = VY(Pectausery = V53"51Y)).
This formula says that all clauses and thus the whole CNF-formula are satisfied.

For reasons that will become clear in the next section, we will also have to encode tuples
(v, V1,..., Vi), wherey € CNF(n) andVj, ..., V; is a partition of{1, ..., n}. We add

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 15

symbolsvi, ..., Vt to the alphabet. So now our alphabet depends on the two parameters
handt. Foreveryi € {0,...,n—1}and 1< j <tweletparfi) = Vjif Xj € Vj. Then
we let

mh(y, V1, ..., V) = un(y)<asn>
<val> up(0) part0) </val>

<val> up(n — 1) parin — 1) </val>

</asn>.
Even in the casé = 1 it will be useful to work with the encodingnh (v, {0, ...,n—1})
instead of justun(y), because the wordun(y,{0,...,n — 1}) already provides

the “infrastructure” for an assignment. For brevity, we write(y,*) instead of
un(y,{0,...,n—1}.

5. Satisfiability testing through model-checking

In this section, we prov&heorem 1

5.1. Monadic second-order logic

Theorem 11. Assume thaPTIME # NP. Let he N and p a polynomial. Then there is no
algorithm forMC(MSO, W) whose running time is bounded by

T(h,k) - p(n).

As usual, k denotes the size of the input sentence and n the size of the input word.

Proof. Suppose that there is an algorittinfor MC(MSO, W) whose running time is
bounded by

T(h,Kk) - p(n),

for someh € N and polynomialp.
We shall prove that the satisfiability problem for 3-CNF-formulas is in polynomial time,
which, by contradiction, proves the theorem. Fortadl N, let

Oht1,e = AX XXX = Pyx) A (0;1+1,g),

where<p(1+1’l is the formula obtained from the formufa_1 . of Lemma 10by replacing
the subformulaP;,,.SY by X Sy. Recall thatP;,,.SY is the only subformula opn1.¢
that involves eitheP; . Or Praise. The subformula/x(Xx — Py;x) says thatX only
contains elements that are at a position with symtigpwhich may simply be viewed as a
placeholder fotrue or false in an assignment. The intended meaningads to indicate
all variables set toRUE. It is easy to see that for eveny < T (h+1, £) andy € 3-CNKn')
we have

Uh+1(¥, *) E @hy1,e <> yis satisfiable. (3)

16 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

Input: ¥ € 3-CNF(n')

Compute pj4+1(y, *).

Compute £ = [Ig "+ (n')].

Compute @41 ¢.

Check if 1141 (¥, *) = @h41.¢ using algorithm A.

oo~

Fig. 1.

Consider the algorithm displayed irig. 1, which decides if the input formulg is
satisfiable. The correctness of the algorithm follows fr@reind

n =T(h+1,IgMYm)) < Th+1, g™).

For the running time analysis, without loss of generality we can assumg’tkat|y || <
O((n")3), that is, that|y || andn’ are polynomially related. We claim that the running time
of the algorithm is bounded by(n") for some polynomiat] depending only on the fixed
constant.

Lines 1-3 of the algorithm can be implemented in time polynomialim’. Recall that
by Lemma 9 |un+1(y, *)| is polynomially bounded in terms df andn’. Thus by our
assumption on the algorithf, Line 4 requires time

T(h, [18h+1.eD) - PUrnta(y, WD = T, 1@htaelD) - p'(h, 0,

for some polynomiap’. By Lemma 10and the definition ofh+1 , we have||ghiiell €
O(h-lgh+¢), thatis,||Zhs1¢ll < c(h-lgh+¢) < c(h-lgh+Ig®"*tD 1) + 1) for some
constant. Since

m— 00 Ig m

’

there is amgp (depending ore, h) such that for alh’ > ng we have
ch-lgh +1g™P @) + 1) < Ig™m).

Thus forn’ > ng we haveT(h, [ghirel) < T(h, lg™®m)) < n'. This proves the
polynomial time bound. O

5.2. First-order logic

We need a few preliminaries from parameterized complexity theoparameterized
problemis a setP € X* x N for some finite alphabekl. If (x,k) € X* x N is an
instance of a parameterized problem, we refer & theinputand tok as theparameter
A parameterized problefd C X* x N is fixed-parameter tractabléthere is a computable
function f : N — N, a polynomialp, and an algorithm that, given a pdi, k) € 2* x N,
decides if(x, k) € P in time at mostf (k) - p(|x]) steps. The class of all fixed-parameter
tractable problems is denoted by FPT.

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 17

Thealternating weighted satisfiability problefar a class© of propositional formulas
is a parameterized version of the satisfiability problem for quantified Boolean formulas
defined as follows:

AWSAT [O]
Input: « € 6,t e N, apartitionVy U ... UV, of the variables o
Parameter: kte N
Problem: Decide if there exists a sidesubsetJ; of V1 such that
for all sizek subsetdJ, of V> there exists . .. such that the
truth assignment setting all variablesih U ... U U; to
TRUE and all other variables teAL SE satisfiesy

The parameterized complexity class AW is defined in terms of the alternating
weighted satisfiability problem for a hierarchy of classes of propositional formulas. All
we need to know here, however, is the following theorem:

Theorem 12 (Downey et al. §], Flum and Groheq]). If AWSAT[3-CNF] is fixed-pa-
rameter tractable then

AW[x] = FPT.
We are now ready to prove our theorem:

Theorem 13. Assume thaFPT # AW[x]. Let h € N and p a polynomial. Then there is
no algorithm forMC(FO, W) whose running time is bounded by

T(h. k) - p(n).
As usual, k denotes the size of the input sentence and n the size of the input word.

To prove this theorem, we will use the following alternative characterization of fixed-
parameter tractability. A parameterized problenc X x N is eventually in polynomial
time if there is a computable functiof and an algorithm, whose running time is
polynomial in|x| that, given an instancg, k) € X* x N of P with |x| > f (k) correctly
decides if(x, k) € P. (The behaviour of the algorithm on instanggsk) € X* x N with
IX] < f(k)isirrelevant.)

Lemma 14 (Flum and Grohe§]). A parameterized problem is fixed-parameter tractable
if, and only if, it is computable and eventually in polynomial time.

Proof of Theorem 13. Suppose that there is an algorithtn for MC(FO, W) whose
running time is bounded by

T(h,Kk) - p(n),

for someh € N and polynomialp. We shall prove that AWST[3-CNF] is in FPT.
Forallh, ¢,k,t e N, let <p(1+1’l’k’t be the formula obtained from the formug.1 ¢ of
Lemma 10by replacing the (unique) subformuRy,..Sy by \/it:1 \/‘j‘:1 Sy = x;j, for

18 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

Input: y € 3-CNF(n"), partition Vi, ..., V, of {0,...,n — 1}k’ e N
1. Compute ppe1(y, Vi,..., Vi)
2. Compute £ = [lg "D (n")7].
3. Compute @p1.¢.4/.1
4. Check if up4+1(y, Vi, ..., Vi) |E @pt1.6.47 using algorithm A.
Fig. 2.

new variablesij, 1 <i <t,1<j <k. Let
k-1

k
Pheiekt = IXa1. .. IXik (/\ PyiXai A /\ X1 < X1+
i=1 =

k k-1
VXa1. .. ¥Xak ((/\ PyaXai A /\ X2 < X2(|+1))
i=1

i=1

k k—1
QX1 .. QXik ((/\ Prexii A\ Xti < xm+1)) 5 <p(1+1,z’k’t>) .

i=1 i=1

HereQisV if t is even andl otherwise. Moreovers represents» if t is even andh if t
is odd.

Then for everyn < T(h + 1,¢), y € 3-CNKn), k € N, and for every partition
Vi, ...,V of {0, ..., n— 1} we have

wh1(v, Vi, - V) | @hitekt <= (v, Vi, ..., Vo)
with parametersgk, t) is a ‘yes’-instance AW 8t [3-CNF]. (4)

To see this, note that the first line @hi1 ¢kt Says “there exists a subskly =
{X11, ..., X1k} of V1 of sizek” (the inequalities are used to make sure that the are
distinct). The second line says “for all subselts = {x21, ..., X2k} of V> of sizek”, etc.
Finally, by Lemma 10 the formulagy ,; , \ , in the last line ofghi1.¢kt says thaty is
satisfied if precisely the variableshy U - - - U U; are set torRUE.

Consider the algorithm displayed Fig. 2 The correctness of the algorithm follows
from (4) and

n =Th+1,IgMYm)) < Th+1, g™).

For the running time analysis, without loss of generality we assumenthat |y | <
O((n")?). We claim that ifn’ is sufficiently large, then the running time of the algorithm
is bounded byq(n") for some polynomialj. More precisely, we claim that there is a
polynomialg and anng € N, which is computable frorh, k', t, such that fon” > ng the
running time of the algorithm is bounded Qyn’). Sinceh is fixed and since AWST[3-
CNF] is computable, bemma 14this implies that AW3T[3-CNF] is in FPT.

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 19

Lines 1-3 of the algorithm can be implemented in time polynomidi,in’. By our
assumption on the algorithf, Line 4 requires time

T(h, [Bh+1ek.tlD - P() = T(h, [Ghsae ke elD - p'(h, Y,

for some polynomialp’, becausen = |un+1(y, V1, ..., Vi)| is polynomially bounded
in terms ofn” andh. Since we only replace one subformi®a... Sy by the disjunction
ViZ1 V¥_1 SY = xij, we have

I@h+1ek.tll € P'(h, K,) + O(0)

for a suitable polynomiap”. Using a similar argument as in the proofidieorem 11we
can now derive that there is a computafjelepending o, k', t such that for alh’ > ng
we have

T, IPhserel) < T(h g™ m)) <.

This proves our claim that if’ is sufficiently large, then the running time of the algorithm
is bounded by (n) for some polynomiad] and thus the theorem.[

Remark 15. For readers familiar with least fixed-point logic, let us point out that with the
same techniques it can be proved that there is no model-checking algoritinofiadic
least fixed-pointogic on words whose running time is boundedbgh, k) - p(n), for any
h € N and polynomialp, under the weaker assumption tHW[P] = FPT.

AW[P] is a parameterized complexity class that containgAWA complete problem
for AW[P] is the alternating weighted satisfiability problem for arbitrary Boolean circuits
(as opposed to bounded depth circuits for 4.

6. First-order model-checking on structures of bounded degree

In this and the next section, we investigate the parameterized complexity of first-order
model-checking over structures of bounded degree. Adte at-structure for some
vocabularyr. We call two elements, b € A adjacentif they are distinct and there is
anR e 7, sayr-ary,and atuple;...a € RA suchthad, b e {ay, ..., a). Thedegree
of an element € A in the structured is the number of elements adjacentoand the
degree of4 is the maximum degree of its elements. Hor 1, we denote the class of all
structures of degree at masby D(d).

Theorem 16 (Seesel6]). Let d > 1. Then there is a function £ N — N and an
algorithm solvingMC(FO, ID(d)) in time f(k, d) - n, where, as usual, k denotes the size of
the input sentence and n the size of the input structure.

Itis quite easy to derive from Seese’s proof a triply-exponential upper bouridona
non-uniformversion of this theorem, stating that for every fixed first-order senigticere
is a triply exponential functiorf and an algorithm checking whether a given structdre
of degree at mosl satisfiesp. We shall prove a uniform version of this result, which has
the additional benefit that our algorithm is quite simple.

The crucial idea, which has also been explored by Seese, is to use the locality of first-
order logic. Without loss of generality we assume that vocabularies only contain relation

20 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

model-check(g,.4)

1. if ¢ is quantifier free then
accept it ¢ holds in .4 and reject otherwise.
In the following, assume that ¢ = Qx ¥ (x) for some quantifier Q.
3. Compute r = 29)
4. Compute a set X © A of representatives of the equivalence classes of the
relation %;_4.
5. Recursively call model-check (¥ (a),(A, a)) foralla € X.

6. if ¢ = Jxy(x) then

7 accept if at least one of the recursive calls accepts and
reject otherwise.

8. if ¢ = Vxyr(x) then

9. accept if all recursive calls accept and reject otherwise.

Fig. 3.

and constant symbols. (Functions can easily be simulated by relations.) We need some
additional notation. Apath of lengthl is a sequence of vertices, ..., a € A such that
ai-1,a,i =1,...,1 are adjacent ind. The distance between two elemeatd € A of
the universe is 0, il = b andr, if the shortest path betweenandb has lengthr. Let
r > 1 anda € A. Ther-neighbourhoof a in A, denoted by\l;“(a) isthe setob € A
such thata, b have distance at most Let J\/}A(a) denote the substructure induced dy
on N;“(a). For elements, b of a structured we writea =2 b if there is an isomorphism
from VA (a) to Vi (b) that mapsa to b.
Recall that gfy) denotes the quantifier-rank of a formyla

Lemma 17 ([11,13]). For every first-order formulay(x) there is an r> 1 such that for
every structured and a b € A we havea 2;4 b= A E ¢p@) <= A = ¢))).
Furthermore, r can be chosen to B&®),

Fig. 3displays a recursive model-checking algorithm for first-order sentences in prenex
normal form that is based dremma 17 Since we can easily transform arbitrary first-order
sentences into sentences in prenex normal form (algorithmically, this can be done in linear
time), this also gives us an algorithm for arbitrary sentences.

Note that in the recursive callsodel-check(y(a), (A, a)) of the algorithm, we
replace all occurrences afin by a new constant symbol which is interpreted by the
elementa € A and check if this new sentence holds in the expanded structur). The
correctness of the algorithm follows from an easy induction on the structure of the input
formula¢ applyingLemma 17in each step. Note that this algorithm works for arbitrary
input structuresA.

Theorem 18. The algorithmmodel-check (displayed inFig. 3) decidesMC(FO, ID(2))
in time
22°% p,

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 21

andMC(FO, D(d)) ford > 3intime

22|gd-20<k>

3

where as usual k denotes the size of the input sentence and n the size of the input
structure.

Proof. We denote the running time afodel-check(yp, .A) by R(n, p, q), wheren =
IAll, g = qr(e), and p is the size of the quantifier-free part @f Note thatp + q < k(=
lel). Letr =r(q) = 29,

_ A
s(q) = aer/?,i)éc N @],

the maximal size of an-neighbourhood, and le{q) denote the number of equivalence
classes OE;“. Note that there exist upper bounds $0g) andt (q) only depending on the
degree of the input structure (and notmor ¢). Remember that the degree is constant for
the classes under consideration.

Now consider the algorithm displayed ig. 3. Line 1 only requires constant time. If
Line 2 is executed, it requires tin@(p - n), and the algorithm stops. Otherwise, it proceeds
to Line 3, which can be executed in constant time. To execute Line 4, we maintain a list
of pairs(/\/’(“(a), a) such that no induced substructtﬁré(“(a), a) occurs twice. The size
of this list never exceedd(q), hence for eacla in turn, we simply compute the induced
substructure, and look if it is already in the list. This requires t@ - f(s(q)) - t(qQ)),
if we denote the time to check isomorphism of structures of sizgy f (m). The loop in
Lines 5-9 requires time

Ot(m) +t(@ - R(n, p,q—1).

Putting everything together, we obtain the following recurrencdfor

R(n, p,0) <c1-p-n
R(n, p,g) <c2-n- f(s(@)-t(@ +t(@RM, p,g—1) (forg > 1),

for suitable constants, co. To solve this equation, we use the following simple lemma:

Lemma19. Let F, g, h: N — Nsuch that

F@O) <90
F(m) < g(m)+h(m)- F(m—-1)

forallm € N. Then
m m
Famy <> g~ [] ha)
i=0 j=i+1

forallm e N.

22 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

The lemma can be proved by a straightforward inductio.on
Applied to our functionR, the lemma yields

q q q
R, p.a)<ci-p-n-JJth+Y cz-n-fsin-ti)- [] th)

j=1 i=1 j=i+1

q q
Ht(j)(cl- p-n+Y caon- f(s(i))).

j=1 i=1

IA

Degree 2:The size of arr-neighbourhood in a structutd < D(2) is at most 2 + 1.
Thus

s() < 2°@ <200

To give an upper bound driq), we have to take into account the numbesf symbols in
the vocabulary. Since we only have to consider symbols that actually appgawcan
assume that < k. Moreover, without loss of generality we can assume that the vocabulary
only contains unary and binary relation symbols (because we are considering structures of
degree 2).

Let us count the number of isomorphism types ohawertex structurds of degree 2
whose vocabulary containg unary relation symbols andy binary relation symbols.
The unary relations can take at most? different values. There are at mast pairs
of elements which can be connected by a binary relation, thus the binary relations can take
at most 22’™ different values. Thus the overall number of isomorphism types is bounded
by 2(ug+uzym

Ourr-neighbourhoods have size at most1, so we obtain

t(q) < ZO(k-r) — 20(k~2q).

Thus

q q))
l_[t(l) < 1—[Zo(k.zl) < 20(k2?2121) < 220(k)'
j=1 j=1

Since isomorphism of structures of degree 2 can be decided in polynomial time, we
obtain

q

(cl- p-n+> c2on-f(si) -t(i)) <02 .n)
i=1

and thus

RM, p,q) < 227 -,

Degree at least 3The calculations are similar in this case, the only important difference
being that arr -neighbourhood may be of siz@(d") and thus doubly exponential i,
which yields a triply exponential bound fé&t. O

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 23

7. Lower boundsfor first-order model-checking on structures of bounded degree

In this subsection we prove lower bounds for first-order model-checking on two
particularly simple classes of structures of degree two and three, respectively: The class
of words without ordeiand the class adrdered binary trees

7.1. Words without order

Formally, a word without order over an alphahbegtis a reduct of a word oveE to
the vocabularys(Y) = t(X)\{<}. We denote the class of all words without orderSy
Since we will only consider words without order in the following, for simplicity we often
just refer to them as words.

In this section we will only work with the encoding; (recall the definition from
Section 3, but we need a refined versionlodmma 8for h = 1:

Lemma20. Let¢ > 1 and letY 2 X;. There is a first-order formulg(x, y) of
vocabularyrs(21) and size @¢) such that for all words without ordew € X*,a,b e W,

andmn € {0, ..., 2%} the following holds:
If a is the first position of a subwoid = W with&/ = w1(m) and b is the first position
of a subwordy C W with V = p1(n), then

W k= xe(@ b)y<—=m=n.
Furthermore, the formula, can be computed fromin time O(¢).

Note thatLemma 8only provides a formulaa | (x, y) that works form, n < 2¢.

Before we prove the lemma, we define a few basic formulas and notations that we need
in dealing with words without order. Let(x, y) be a formula. For a structuré, elements
a,b € A and¢ > 0, ay-path of length¢ from a to bis a sequenceg, ay, . .., a of
elements ofA such thatag = a,a, = b, and A = ¥ (a,a4+1) for0 < i < ¢. We let
b —y a be the minimum length of g-path froma to b if there is such a path. If there is
no y-path froma to b, we letb —y, a = occ.

Lemma2l. Let¢ > 1andy (X, y) a first-order formula.

(1) There exists a first-order formu@" (X1, X2) of size Q¥) such that for every structure
Aandalla, ap € A,

A=) (a1, a0 <=>ap —y a1 < 2.

(2) There exists a first-order formul@‘”(xl, X2, Y1, Y2) of size Q¢) such that for every
structure A and all elementsa ap, b1, by € A,

A6 (ar, a2, by, bp) =2y —y a1 < 2° Ny —y a1 = by —y b,
Proof. We only prove (2); the proof of (1) is similar, but simpler. We let

8¢ (X1, X2, Y1, Y2) = (X1 = X2 A Y1 = Y2)
V(X1 = X2 A my1 = Yo AY(Xe, X2) A Yy, Y2)),

24 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

and for¢ > 1

5}3&(X1, X2, Y1, Y2) = 50«// (X1, X2, Y1, ¥2)
\Y EIX33y3VxVx’VyVy’<

((x:xl/\x’=X3/\y=y1/\y/=YS)
VIX=X3AX =X Ay =Yy3AY =)

— 82”_1(x, Xy, y/)>. O

Proof of Lemma 20. We lety(X, y) = (—P</15X A SX=Y) V (P¢;1-X A X = y) and
Xe (X, Y) = VXYY (8) (%, X, ¥, ¥) = (PoX' < Poy) A (PiX' < P1y))),

whereéZ’ is taken fromLemma 212). O

Recall that 3-CNF) denotes the set of all formulas in 3-conjunctive normal form
whose variables are among, . .., Xy—1 and thatA(n) denotes the set of all truth-value
assignments to these variables. Recall further the encodings of propositional formulas
introduced inSection 4

Lemma 22. For alll € N there is a first-order senteneg of size Ql) such that for all
n< 22 and(y, @) € 3-CNFKn) x A(n) we haveui(y, o) E ¢ <=« = y. Furthermore,
¢ can be computed in time ©.

Proof. Recall the proof ofLemma 10 Instead of the formulgn we now usey, of
Lemma 20 We have to eliminate all occurrences of the order symbolvhich is used
in the formulasy (. y) andygause

Observe that the length of an encodjing(n) for ann < 22 isin 0(2%). We have seen
above that we can describe subwords of length up toy2formulas of lengthO(¢) that
only use the successor relation. Therefore, repj@i};ggx, y) by a formula of lengthD (¢)
that only involves the successor relation.

Moreover, since we are only considering 3-GNFformulas forn < 222, subwords
describing clauses have lendir(¢). Thus again we can replace the subformulas involving
the order symbol by suitable formulas of lengdi¢). O

Note that the previous proof does not work for arbitrary CNF-formulas; it is crucial that
the clauses have bounded length.
We are now ready to prove the main result of this section (whidih&orem 21)):

Theorem 23. Assume thaFEPT = AW[x], and let p be a polynomial. Then there is no
algorithm forMC(FO, S) whose running time is in

22 . p(ny,

where k denotes the size of the input sentence and n the size of the input word.

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 25

Input: ¥ € 3-CNF(n'), partition Vi, ..., V; of {0,...,n" — 1}, k' e N

1. Compute (¥, Vi, ..., V)
2. Compute £ = [lglgn'].
3. Compute (?Q‘g_kf‘r

4. Check if p1(y, V1, ..., Vi) = @ using algorithm A.

Fig. 4.

Proof. Essentially, we proceed as for words with order. Suppose that there is an algorithm
A for the problem MQFO, W) whose running time is bounded by

2f(k)

- p(n),

for some polynomiap and a functionf (k) € o(k). We shall prove that AWST[3-CNF]
isin FPT.
Forall¢,k,t e N, let
k—1

k
Pkt = IXaz... Ixak (/\ PuiXai A /\ X1 < X1+ A
i=1 i=1

k k-1
VX21. .. VX2k ((/\ PyaXai A /\ X2 < X2(|+1)>
i=1

i=1

k k—1
Qx%1... QXk ((/\ PoeXti A /\th < Xt(l+l)> - 90/@ kt) >’

i= i=1
wherego,’j’k’t is the formula obtained from the formula, of Lemma 22by replacing

the (unique) subformul#, .Sy by \/it=.1. \/'J-‘=1 Sy = xij. Then for everyn < 22
y € 3-CNHn), k € N, and for every partitiovy, ..., V; of {0, ..., n — 1} we have

pa(ys Vi, ..., Vi) E Qe kt <= (v, V1, ..., W)
with parametergk, t)is a ‘yes’-instance of AWST[3-CNF]. (5)

The algorithm decidindy’-satisfiability of 3-CNF is displayed ddg. 4.

The correctness of this algorithm follows frors) (For the analysis, without loss of
generality we assume that < ||y| < O((")?). We claim that ifn’ is sufficiently large,
then the running time of the algorithm is boundeddiy’) for some polynomiat. Then
Lemma ldimplies that AWSAT[3-CNF] is in FPT.

Lines 1-3 of the algorithm can be done in time polynomiahinThe crucial part is
Line 4. By the assumption on algorithfthis line requires time

)

227 p(n),

26 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

Fig. 5. The tree(38).

wheren = |u1(y, »)| is polynomial inr'. It follows from Lemma 22that
1@ewl < P'(K,) +c- L.

for some polynomiap’ and constant. Hence for sufficiently large’ we have||g| k|| <
c'lg Ign’, say, forc’ = 2c. Sincef (k) € o(k), there is amg such that for alh’ > ng we
havef (c’lg Ign’) <Ig Ign’ and thus

U@ o D f(cIg lgn’) Ig Ign’
22 1K < 22 glg 2919 < n/'

<2

This gives us the desired upper bound on the running time of our algorithin.

7.2. Ordered binary trees

We view ordered binary treess{So, Si}-structuresZ, with §7 andS/ being the left
child and right child relations. We allow nodes to only have one child. For a finite alphabet
Y, we lettg(Y) = {S, S} U {Ps | s € X}, wherePs, for s € X, is a unary relation
symbol. An ordered binary tremver X' is atg(X)-structure whose-reduct is an ordered
binary tree in which each vertex is contained in precisely Bﬁe fors € Y. We denote
the class of all ordered binary trees over some finite alphabBt Bpr a node of a tree
7T € B andd > 1, thedepth d subtree below is the subtree of” whose nodes are all
descendants @& of distance at mogt from a.

To proceed as in the word cases, we will encode natural numbers by trees and provide
“short” formulas allowing to compare “large” encoded numbers.#&arN, let 7, be the
ordered binary tree with vertex §&, . . ., £} and root 0 in which the children ofare 2 +1
and 2 + 2. Recall that_(n) denotes the length of the binary encodinghoé N. We let
v(n) be the ordered binary tree o, 1} whose underlying tree i%_) and in which, for
i=0,1,

P7™ — (j < L) | bit(j,n) =i}.
Example 24. Fig. 5 shows the encoding of 38, the binary representation of which is
100110.

The next lemma correspondsltemmas 8nd20.

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 27

Lemma25. Let? > 1. There is a formulg,(x, y) of vocabularyrg ({0, 1}) of size Q¥)

such that for all ordered binary tree® € B, a,b € T and mn € {0, ...,222|} the
following holds:

If the depth2® subtree below a is isomorphic tgn) and the depti2 subtree below b
is isomorphic tav(m) then

T k= y@b)y<=m=n.
Furthermorey,(x, y) can be computed in time @).

Proof. We construct a formulay,(x,y) characterizing depth ‘2 subtrees up to

isomorphism. This formula identifies binary encodings of length upzﬁo\ﬂhich proves
the claim. We proceed as in the prooflafmma 21 First, we say that to go from vertices
X1 to X2 and fromy to y> we must follow the same sequenceSf S -successors. Let

Yo(X1, X2, Y1, Y2) = (SX1X2 A SY1Y2)
V (SiXaX2 A S1Y1Y2)
V(X1 =X2AY1=Y2),
andforl > 1

Y1 (X1, X2, Y1, Y2) = IXgIYaVXYX VYWY (e =X Axg=X' Ay1=yAys=Y)
VXa=XAXo=X Ay3=YAY2=Y)
— Y1 XLy, Y)).

Using this formula we let

XX, Y) =IXVY WX, X, Y, y) = (PiX' < Piy) A (PoX' < Poy')),
which is the sought formula.d

Now we proceed as before and encode formulas of 3@Nfer somen as an ordered

binary tree over some alphahb®gt Fory € 3-CNF letv(y) be the binary tre@ constructed
as follows: letWW be the word without order1(y), and considedV as a tree ofS;-
successors without an§p-successors. To gé&t we substitute each subwotd of W of

the form u1(m) by a single vertex such that’s S-successor is the root of a copy of
v(m), while its S;-successor is the first position aftirin W. v itself carries the new

symbolvar.
We extend the definition ob to pairs (y,a) € 3-CNHn) x A(n) and tuples
(v, V1, ..., V1) by applying the same substitution process. This encoding gives us the

following lemma, whose proof is omitted since it resembles the prob&aima 10using

the newly introduced encodingtogether with the decoding formulas(x, y).

Lemma 26. For all ¢ € N there is a first-order sentenag, of size Ql) such that for all
¢

n< 22 and(y, «) € 3-CNHn) x A(n) we have(y, o) E Yy <= o & y. Furthermore,

¢ can be computed in time @).

Now we are ready to state the second main result of this section, whitlerem 22).
We omit the proof, which is analogous to the proofléifeorem 23

28 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

®» © O

Fig. 6. The tree3(409617).

Theorem 27. Assume thaFEPT = AW[x], and let p be a polynomial. Then there is no
algorithm forMC(FO, B) whose running time is in

20(k)
22 p(n),

where k denotes the size of the input sentence and n the size of the input tree.

8. Lower boundsfor first-order model-checking on trees

In this last section we prove a non-elementary lower bound for first-order model-
checking over unranked trees. We need the same ingredients as before: suitable encodings
of natural numbers and small formulas for comparing two numbers.

For simplicity, we work withdirected labelled treedn Remark 33ve describe how to
getrid of labels and directed edges in order to transfer the results to plain undirected trees.
But for now we view aree as an{E}-structuresZ” with EZ being the child-relation. For
a finite alphabet’ we lettr(X) = {E} U {Ps | s € X}. Then a tremver X is at1(X)-
structureZ whose{E}-reduct is a tree and in which each vertex is contained in precisely
one PST, for s € Y. We denote the class of all trees over some alphab@t by

Recall thatT (h, 2) denotes a tower of 2s of height+ 1 and that biti, n) denotes the
i th bit in the binary representation of For everyh > 0 andn € {0, ..., T(h,2) — 1} we
definevy(n) to be the following tree ovelo, 1, *}:

(1) If h = 0, we letvg(0) be a single node labelled lay Likewise, letvg(1) be a single
node labelled byt.

(2) If h = 1, we letvy(n) be the tree formed by taking a new root, labelling ithyand
attaching to it the treen_1 (i) for eachi such that biti, n) = 1.

Example 28. Fig. 6 shows thevz-encoding of 40961= 215 4 213 4 20, The tree is
constructed as follows:

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 29

— To construct3(40 962, by clause (2), we take a new root labelleddgnd attach three
trees to this rootv,(0), v2(13), v2(15).

— The binary representation of 0 consists of Os only. Thus to consts(@, we take a
new root labelled by and attach no children. This explains the leftmost leaf labeiled

— We have 13= 2° + 22 + 23, Thus to construct>(13), we take a new root labelled by
and attach three children labelled0), v1(2), andv1(3).

— v1(0) is again a tree consisting of just one node labeHethis explains the second leaf
labelledx.

— We have 2= 2. Thus to construct;(2), we take a new root labelled byand attach
one child labelled byo(1).

— vo(1) is the 1-node tree labelled

— The remaining subtrees are constructed similarly.

Lemma 29. There is an algorithm that, given h anden{0, ..., T (h, 2)}, computesn(n)
in time O(h - Ig? n). Furthermore|vh(n)| € O(h - Ig n).

Proof. A simple recursive procedure will do. The running time analysis uses the same
ideas as the proofs dfemmas Gand7. O

The next lemma correspondsltemmas 8&nd20.

Lemma30. Let h > 1. There is a first-order formulgn (X, y) of size Qh) such that for
alltrees7 overX,a,be T,andmn € {0, ..., T(h, 2) — 1} the following holds:

If the subtrees of rooted at g b are isomorphic ton(m) andvy(n), respectively, then
T = xn(a, b) if, and only if, m=n.

Proof. & (X, y) simply is the formulaPgx <> Pgy. Let &(X, y) already be defined.
&nt+1(X, y) says that for each successar of x there is a successagn of y such that
&n(X1, y1) and vice versa. As usual, we have to take care to avoid duplication of the
subformulag,. We let

én+1(X,y) = Vz1((Exz v Eyz) — 322((Exza — Ey2z)
N (Byz — EX2) A én(z1, 22))),
which has the intended meaning and the desired size.

We encode 3-CNF-formulas as trees over a suitable alplaleessentially the same
way we did with binary trees iSection 7.2using the encodingy, instead ofv. Then for
everyh we get an encoding, of formulas in 3-CNFEn) for n < T (h, 2). We extended the
definition of v, to pairs(y, a) € 3-CNHn) x A(n) and to tuplesy, V1, ..., Vy).

Lemma3l. Forall h € N there is a first-order sentengg of size Qh) such that for all
n < T(h,2) and(y, @) € 3-CNFx A(n) we havey (v, @) = ¢th < o = y. Furthermore,
¢n can be computed in time @).

We omit the simple proof.

Theorem 32. Assume thaFPT # AW[x]. Let h € N and p a polynomial. Then there is
no algorithm forMC(FO, T) whose running time is bounded by

30 M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31

T(h, k) - p(n),
where k denotes the size of the input sentence and n the size of the input tree.
The proof is analogous to our earlier lower bound proofs.

Remark 33. Even though we only stated the lower bound result for labelled binary trees,
it also holds for unlabelled undirected trees, that is, connected acyclic undirected graphs.
To see this, we first note that the alphabet and thus the vocabulary of the fajmefla
Lemma 31does not depend dn Suppose the vocabulary &f is {E, Py, ..., Pp}. To get

rid of the directed edges, we replace each directed edge from a wetbex vertexw by

the following subgraph:

e &9 @

To get rid of the unary relations, we attagh+ 2) new children to each node iR and
deleteP,.

9. Conclusions

It is interesting to observe that the complexity-theoretic assumptions we use to prove
our theorems, that is, PTIME: NP for the theorem on MSO and FRZ AW([x] for the
theorems on MSO, are precisely the assumptions needed to prove that the model-checking
problem for the respective logic on arbitrary structures is not FPT. It remains an open
problem to weaken the complexity-theoretic assumptions to PTBMEPSPACE. Note
that PTIME £ PSPACE is a necessary assumption for all our lower bounds, because if
PTIME = PSPACE then model-checking for monadic second-order logic is in PTIME.

There is a significant gap between the lower bounds for model-checking on words
provided byTheorem land the upper bounti(O(k), 1) - n (a tower of 2s of heigh© (k)).

It would be nice to narrow this gap, maybe by proving that there i3 k), 1) - p(n)
algorithm for first-order or monadic second-order model-checking on words.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Uliman, The Design and Analysis of Computer Algorithms, Addison-Wesley,
1974.

[2] J.R. Buchi, Weak second-order arithmetic and finite automata, ZeitschmifMthematische Logik und
Grundlagen der Mathematik 6 (1960) 66—92.

[3] B. Courcelle, Graph rewriting: an algebraic and logic approach, in: J. van Leeuwen (Ed.), Handbook of
Theoretical Computer Science, vol. B, Elsevier Science Publishers, 1990, pp. 194-242.

[4] N.J. Cutland, Computability, Cambridge University Press, 1980.

[5] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer-Verlag, 1999.

[6] R.G. Downey, M.R. Fellows, K. Regan, Parameterized circuit complexity and the W-hierarchy, Theoretical
Computer Science 191 (1998) 97-115.

[7] H.-D. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic, 2nd edition, Springer-Verlag, 1994.

[8] J. Flum, M. Grohe, Describing parameterized complexity classes, in: H. Alt, A. Ferreira (Eds.), Proceedings
of the 19th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer
Science, vol. 2285, Springer-Verlag, 2002, pp. 359-371.

M. Frick, M. Grohe / Annals of Pure and Applied Logic 130 (2004) 3-31 31

[9] J. Flum, M. Grohe, Model-checking problems as a basis for parameterized intractability, Technical Report
23/2003, Fakutt fiir Mathematik und Physik, Albert-Ludwigs-UnivewsitFreiburg, 2003.

[10] M. Frick, M. Grohe, Deciding first-order properties of locally tree-decomposable structures, Journal of the
ACM 48 (2001) 1184-1206.

[11] W. Hanf, Model-theoretic methods in the study of elementary logic, in: J. Addison, L. Henkin, A. Tarski
(Eds.), The Theory of Models, North Holland, 1965, pp. 132-145.

[12] H. Kamp, Tense Logic and the theory of linear order, Ph.D. Thesis, University of California, Los Angeles,
1968.

[13] L. Libkin, Logics with counting and local properties, ACM Transactions on Computational Logic 1 (2000)
33-59.

[14] O. Lichtenstein, A. Pnueli, Finite state concurrent programs satisfy their linear specification, in: Proceedings
of the Twelfth ACM Symposium on the Principles of Programming Languages, 1985, pp. 97-107.

[15] K. Reinhardt, The complexity of translating logic to finite automata, in: Ead8l,"W. Thomas, T. Wilke
(Eds.), Automata, Logics, and Infinite Games, Lecture Notes in Computer Science, vol. 2500, Springer-
Verlag, 2002, pp. 235-242 (Chapter 13).

[16] D. Seese, Linear time computable problems and first-order descriptions, Mathematical Structures in
Computer Science 6 (1996) 505-526.

[17] L.J. Stockmeyer, The Complexity of Decision Problems in Automata Theory, Ph.D. Thesis, Department of
Electrical Engineering, MIT, 1974.

[18] L.J. Stockmeyer, A.R. Meyer, Word problems requiring exponential time, in: Proceedings of the 5th ACM
Symposium on Theory of Computing, 1973, pp. 1-9.

[19] P. van Emde Boas, Machine models and simulations, in: J. van Leeuwen (Ed.), Handbook of Theoretical
Computer Science, vol. 1, Elsevier Science Publishers, 1990, pp. 1-66.

[20] M.Y. Vardi, The complexity of relational query languages, in: Proceedings of the 14th ACM Symposium on
Theory of Computing, 1982, pp. 137-146.

	The complexity of first-order and monadic second-order logic revisited
	Introduction
	Model-checking problems
	Parameterized complexity theory
	The parameterized complexity of model-checking problems
	Our results

	Preliminaries
	Succinct encodings
	Encodings of propositional formulas
	Satisfiability testing through model-checking
	Monadic second-order logic
	First-order logic

	First-order model-checking on structures of bounded degree
	Lower bounds for first-order model-checking on structures of bounded degree
	Words without order
	Ordered binary trees

	Lower bounds for first-order model-checking on trees
	Conclusions
	References

