A proof of topological completeness for S 4 in $(0,1)$

Grigori Mints ${ }^{1}$ and Ting Zhang ${ }^{2}$
${ }^{1}$ Philosophy Department, Stanford University mints@csli.stanford.edu
${ }^{2}$ Computer Science Department, Stanford University tingz@cs.stanford.edu

Summary. The completeness of the modal logic $S 4$ for all topological spaces as well as for the real line \mathbb{R}, the n-dimensional Euclidean space \mathbb{R}^{n} and the segment $(0,1)$ etc. (with \square interpreted as interior) was proved by McKinsey and Tarski in 1944. Several simplified proofs contain gaps. A new proof presented here combines the ideas published later by G. Mints and M. Aiello, J. van Benthem, G. Bezhanishvili with a further simplification. The proof strategy is to embed a finite rooted Kripke structure \boldsymbol{K} for $S 4$ into a subspace of the Cantor space which in turn encodes $(0,1)$. This provides an open and continuous map from $(0,1)$ onto the topological space corresponding to \boldsymbol{K}. The completeness follows as S 4 is complete with respect to the class of all finite rooted Kripke structures.

1 Introduction

The correspondence between elementary topology and the modal logic $S 4$ was first established by McKinsey. In [1] McKinsey introduced the topological interpretation of $S 4$ where the necessitation connective \square is interpreted as the topological interior. McKinsey showed that $S 4$ is complete for the class of all topological spaces. Later more mathematically interesting results were obtained by McKinsey and Tarski [2], [3]. McKinsey and Tarski showed that $S 4$ is complete for any dense-in-itself separable metric space. As a consequence, $S 4$ is complete for the real line \mathbb{R}, the n-dimensional Euclidean space \mathbb{R}^{n}, the Cantor set and the real segment $(0,1)$ etc. Recently several attempts were made to simplify the proof by McKinsey and Tarski. Mints gave a completeness proof of $S 4$ for the Cantor set [4] and a completeness proof of the intuitionistic propositional logic for the real segment $(0,1)$ ($[5]$, Chapter 9). Aiello, van Benthem and Bezhanishvili gave a completeness proof of $S 4$ for $(0,1)([6]$, Section 5). However, simplified proofs in [6], Section 5 and [5], Chapter 9 contain gaps. We present here a new proof, which combines the ideas in [4], [5] and [6], and provides a further simplification. It goes by (1) encoding reals in $(0,1)$ using a Cantor set \mathscr{B}, (2) unwinding a finite rooted Kripke structure \boldsymbol{K} for $S 4$ to cover \mathscr{B}. Step 1 gives a one-to-one correspondence between elements of \mathscr{B} (infinite paths in the full binary tree) and real numbers in (0,1). Step 2 generates a labeling of the full binary tree by worlds in \boldsymbol{K} and hence establishes a one-to-one correspondence between infinite paths in \mathscr{B} and infinite sequences of worlds in \boldsymbol{K}. Hence we have a one-to-one correspondence between reals in $(0,1)$ and infinite sequences of worlds in \boldsymbol{K}. Since \boldsymbol{K} is finite, every infinite sequence of worlds must eventually enter a stable loop which consists of equivalent worlds with respect to the frame relation. For each such sequence we pick the label at the stabilization point where the sequence enters the loop. We map each real in $(0,1)$ to the label of its corresponding sequence. This provides an open and continuous map from $(0,1)$ onto the topological space corresponding to \boldsymbol{K}. The completeness follows as S4 is complete with respect to the class of finite rooted Kripke structures.

We assume basic topology terminology. In particular, we use $\boldsymbol{I} \boldsymbol{n t}$ and $\boldsymbol{C l}$ to denote the interior and closure operators respectively.

Definition 1.1 (Topological Model) A topological model is an ordered pair $M=\langle X, V\rangle$, where X is a topological space and V is a function assigning a subset of X to each propositional variable. The valuation V is extended to all $S 4$ formulas as follows:

$$
\begin{aligned}
V(\alpha \vee \beta) & =V(\alpha) \cup V(\beta), & & V(\neg \alpha)=X \backslash V(\alpha), \\
V(\alpha \& \beta) & =V(\alpha) \cap V(\beta), & & V(\square \alpha)=\operatorname{Int}(V(\alpha)) .
\end{aligned}
$$

We say that α is valid in a topological model M and write $M \models \alpha$ if and only if $V(\alpha)=X$.

Definition 1.2 (Kripke Model) A Kripke frame (for $S 4$) is an ordered pair $F=\langle W, R\rangle$ where W is a non-empty set and R is a reflexive and transitive relation on W. The elements in W are called worlds. We say that a world w is an R-successor of a world w^{\prime} if $R w w^{\prime}$, and w is R-equivalent to w^{\prime} (written $w \equiv_{R} w^{\prime}$) if both $R w w^{\prime}$ and $R w^{\prime} w$. A Kripke frame is rooted if there exists a world w_{0} such that any world w in W is an R-successor of w_{0}.

A Kripke model is a tuple $M=\langle W, R, V\rangle$ with $\langle W, R\rangle$ a Kripke frame and V a valuation function, which assigns a subset of worlds in W to every propositional variable. Validity relation \models is defined recursively in the standard way. In particular,

$$
(M, w) \models \square \alpha \text { iff }\left(M, w^{\prime}\right) \models \alpha \text { for every } w^{\prime} \text { such that } R w w^{\prime} .
$$

We say that a formula α is valid in M if and only if $(M, w) \models \alpha$ for every $w \in W$. A formula α is valid (written $\models \alpha$) if α is valid in every Kripke model.

We can think of a Kripke frame as being a topological space by imposing a topology on it.

Definition 1.3 (Kripke Space) Let $\boldsymbol{K}=\langle W, R\rangle$ be a Kripke frame. A Kripke space on \boldsymbol{K} is a topological space $\mathcal{T}=\langle W, \mathcal{O}\rangle$ where W is the carrier and \mathcal{O} is the collection of all subsets of W closed under R :

$$
M \in \mathcal{O} \quad \text { iff } \quad\left(w \in M \text { and } R w w^{\prime} \text { implies } w^{\prime} \in M\right) \text { for all } w, w^{\prime} \in W
$$

It is well-known that $S 4$ is complete for finite rooted Kripke models [7].

Theorem 1.1 For any $S 4$ formula $\alpha, S 4 \vdash \alpha$ if and only if α is valid in all finite rooted Kripke frames.

2 A correspondence between $(0,1)$ and finite Kripke structures

2.1 Binary encoding of real numbers

Let $\Sigma=\{0,1\}$, and let Σ^{ω} be the full infinite binary tree where each node in the tree is identified by a finite path (a finite Σ-word) from the root Λ to it. We use \bar{b} and \boldsymbol{b} to denote finite paths and infinite paths
respectively. Let \mathscr{C} be the standard Cantor set represented by Σ^{ω}, where each element of \mathscr{C} is identified with an infinite path (an infinite Σ-word). For each $\boldsymbol{b} \in \mathscr{C}, \boldsymbol{b} \upharpoonright n$ denotes the prefix of length n, i.e., the finite sequence $\boldsymbol{b} \upharpoonright n=\boldsymbol{b}(1) \boldsymbol{b}(2) \ldots \boldsymbol{b}(n)$. We write $\boldsymbol{b}_{1} \equiv_{n} \boldsymbol{b}_{2}$ if $\boldsymbol{b}_{1} \upharpoonright n=\boldsymbol{b}_{2} \upharpoonright n$. One can imagine adding the component $\boldsymbol{b}(0)=0$ to account for the root Λ, but we do not do that. (See Figure 1.)

Fig. 1. The full infinite binary tree

Let

$$
\mathscr{B}=\mathscr{C} \backslash\left(\left\{0^{\omega}\right\} \cup \Sigma^{*} 1^{\omega}\right),
$$

i.e., \mathscr{B} is obtained by deleting from \mathscr{C} the leftmost path which corresponds to the word 0^{ω}, as well as paths going right from some point on, which correspond to sequences with the infinite tail of 1's. So for each path $\boldsymbol{b} \in \mathscr{B}, \boldsymbol{b}$ either always goes left from some point on, or goes both left and right infinitely often. In the former case \boldsymbol{b} ends with 0^{ω} and in the latter case \boldsymbol{b} contains infinitely many 0 's as well as infinitely many 1 's. Formally let

$$
\mathscr{B}_{1}=\left\{\boldsymbol{b} \in \mathscr{B} \mid \boldsymbol{b}=b_{1} b_{2} \ldots b_{i} 0^{\omega} \text { for some } i>0\right\}, \quad \mathscr{B}_{2}=\mathscr{B} \backslash \mathscr{B}_{1} .
$$

We view a sequence in \mathscr{B} as a binary encoding of a real number in $(0,1)$. A one-to-one correspondence between \mathscr{B} and $(0,1)$ is given by

$$
\boldsymbol{r e a l}(\boldsymbol{b})=\sum_{i=1}^{\infty} \boldsymbol{b}(i) 2^{-i}
$$

$$
B(x)=\text { the unique } \boldsymbol{b} \in \mathscr{B} \text { such that } \operatorname{real}(\boldsymbol{b})=x
$$

The sequences in \mathscr{B}_{1} represent binary rational numbers in $(0,1)$; the sequences in \mathscr{B}_{2} represent all other real numbers in $(0,1)$. For example, 0.375 , in binary 0.011 , is represented by 0110^{ω}. Now it should be clear why \mathscr{B} excludes some binary sequences; sequence 0^{ω} represents 0 , and numbers represented by sequences of the form $b_{1} b_{2} \ldots b_{n} 01^{\omega}$ can also be represented by sequences of the form $b_{1} b_{2} \ldots b_{n} 10^{\omega}$.

Proposition 2.1 Let $x, y \in(0,1), B(x) \upharpoonright(n+1)=b_{1} b_{2} \ldots b_{n} 0$ and $B(y) \upharpoonright(n+1)=b_{1} b_{2} \ldots b_{n} 1$. Then for any $z \in(0,1)$, if $x<z<y$, then $B(z) \upharpoonright n=b_{1} b_{2} \ldots b_{n}$.

Proof. It follows immediately from basic properties of the binary representation.

Proposition 2.2 Let $x \in(0,1)$ and $B(x)=b_{1} b_{2} \ldots b_{n} 10^{\omega}$. Then for any $y \in(0,1)$,

1. if $0<x-y<2^{-(n+2)}$, then $B(y) \upharpoonright(n+2)=b_{1} b_{2} \ldots b_{n} 01$, and
2. if $0<y-x<2^{-(n+2)}$, then $B(y) \upharpoonright(n+2)=b_{1} b_{2} \ldots b_{n} 10$.

Proof. (See Figure 2.) Let $\boldsymbol{b}=b_{1} b_{2} \ldots b_{n} 10^{\omega}, \boldsymbol{b}^{\prime}=b_{1} b_{2} \ldots b_{n} 01^{\omega}$, $\boldsymbol{l}=b_{1} b_{2} \ldots b_{n} 010^{\omega}$ and $\boldsymbol{u}=$ $b_{1} b_{2} \ldots b_{n} 101^{\omega}$. We know that $B(x)=\operatorname{real}(\boldsymbol{b})=\boldsymbol{r e a l}\left(\boldsymbol{b}^{\prime}\right)$. Let $l=\boldsymbol{r e a l}(\boldsymbol{l})$ and $u=\boldsymbol{r e a l}(\boldsymbol{u})$. Since $l+2^{-(n+2)}=x$, for any y such that $0<x-y<2^{-(n+2)}, l<y<x$, and so by Proposition $2.1 B(y)$ has the prefix $b_{1} b_{2} \ldots b_{n} 01$. Similarly, since $x+2^{-(n+2)}=u$, for any y such that $0<y-x<2^{-(n+2)}$, $x<y<l$, and so $B(y)$ has the prefix $b_{1} b_{2} \ldots b_{n} 10$.

Fig. 2. Proposition 2.2

Proposition 2.3 Let $x, y \in(0,1)$. If $B(x) \equiv_{n} B(y)$, then $|x-y|<2^{-n}$.
Proof. If $B(x) \equiv_{n} B(y)$, then obviously $|x-y| \leq 2^{-n}$. To have $|x-y|=2^{-n}$, one of $B(x)$ and $B(y)$ must end with 0^{ω} and the other must end with 1^{ω}. Since paths ending with 1^{ω} has been excluded from \mathscr{B}, we have $|x-y|<2^{-n}$.

Proposition 2.4 Let $x \in(0,1)$ and $B(x) \upharpoonright(n+2)=b_{1} b_{2} \ldots b_{n} 01$. If $y \in(0,1),|y-x|<2^{-(n+2)}$, then $B(y) \upharpoonright n=b_{1} \ldots b_{n}$ and $B(y) \neq b_{1} b_{2} \ldots b_{n} 0^{\omega}$.

Proof. (See Figure 3.) Let $\boldsymbol{u}=b_{1} b_{2} \ldots b_{n} 01^{\omega}, \boldsymbol{l}=b_{1} b_{2} \ldots b_{n} 010^{\omega}, \boldsymbol{u}_{1}=b_{1} b_{2} \ldots b_{n} 001^{\omega}, \boldsymbol{l}_{1}=b_{1} b_{2} \ldots b_{n} 0^{\omega}$, $\boldsymbol{u}_{2}=b_{1} b_{2} \ldots b_{n} 101^{\omega}$, and $\boldsymbol{l}_{2}=b_{1} b_{2} \ldots b_{n} 10^{\omega}$. Let $u=\operatorname{real}(\boldsymbol{u}), l=\operatorname{real}(\boldsymbol{l}), u_{1}=\operatorname{real}\left(\boldsymbol{u}_{1}\right), l_{1}=$
$\boldsymbol{r e a l}\left(\boldsymbol{l}_{1}\right), u_{2}=\boldsymbol{r e a l}\left(\boldsymbol{u}_{2}\right)$ and $l_{2}=\boldsymbol{r e a l}\left(\boldsymbol{l}_{2}\right)$. Obviously, we have $l_{1}+2^{-(n+2)}=u_{1}=l, l+2^{-(n+2)}=u=l_{2}$ and $l_{2}+2^{-(n+2)}=u_{2}$. Since $B(x) \upharpoonright(n+2)=b_{1} b_{2} \ldots b_{n} 01, l \leq x<u$ and so $l_{1}<y<u_{2}$ as $|y-x|<2^{-(n+2)}$. Hence by Proposition $2.1 B(y) \upharpoonright n=b_{1} \ldots b_{n}$ and $B(y) \neq b_{1} b_{2} \ldots b_{n} 0^{\omega}$.

Fig. 3. Proposition 2.4

Proposition 2.5 For any $x, y \in(0,1)$ if $B(x)=b_{1} b_{2} \ldots b_{n} 10^{\omega}, B(y) \upharpoonright m=b_{1} b_{2} \ldots b_{n} 011^{m-(n+2)}$, then $B(y) \neq b_{1} b_{2} \ldots b_{n} 011^{m-(n+2)} 0^{\omega}$ if and only if $|x-y|<2^{-m}$.

Proof. Let $\boldsymbol{u}=b_{1} b_{2} \ldots b_{n} 01^{\omega}, \boldsymbol{l}=b_{1} b_{2} \ldots b_{n} 011^{m-(n+2)} 0^{\omega}$ and $u=\boldsymbol{r e a l}(\boldsymbol{u}), l=\boldsymbol{r e a l}(\boldsymbol{l})$. Obviously, $u=x$ and $u-l=2^{-m}$. Since $B(y) \upharpoonright m=b_{1} b_{2} \ldots b_{n} 011^{m-(n+2)}, y<u=x$. If $|x-y|<2^{-m}$, then $y>l$ and so $B(y) \neq \boldsymbol{l}$. On the other hand, if $B(y) \neq \boldsymbol{l}$ and $B(y) \upharpoonright m=b_{1} b_{2} \ldots b_{n} 011^{m-(n+2)}$, then $l<y<u$ and so $|x-y|<2^{-m}$.

2.2 Unwinding a finite rooted model into the Cantor space

Let $\boldsymbol{K}=\langle W, R\rangle$ be a finite Kripke model with root w_{0} and \mathcal{K} be the corresponding Kripke space. In the following sections by Kripke model we always mean a finite rooted one.

Definition 2.1 (Unwinding and Labeling) The labeling function $\mathcal{W}: \Sigma^{*} \rightarrow W$ is defined recursively as follows. (See Figure 4.)

1. $\mathcal{W}(\Lambda)=w_{0}$.
2. Let $\bar{b} \in \Sigma^{*}$ be a node in \mathscr{B}. Suppose \bar{b} is already labeled by a world w (i.e., $\mathcal{W}(\bar{b})=w$), while none of its children has yet been labeled. Let w, w_{1}, \ldots, w_{m} be all R-successors of w. Then

$$
\begin{aligned}
\mathcal{W}\left(\bar{b} 0^{i}\right) & =w \text { for } 0<i \leq 2 m, \\
\mathcal{W}\left(\bar{b} 0^{2 i-1} 1\right) & =w_{i} \text { for } 0<i \leq m, \\
\mathcal{W}\left(\bar{b} 0^{2 i} 1\right) & =w \text { for } 0 \leq i<m .
\end{aligned}
$$

Note that in placing R-successors of w at right branches $\bar{b} 0^{2 i-1} 1(i>0)$, we interleave w with each of its other successors. This is the main distinction from the construction in [6]. (See Figure 4.)

Fig. 4. Unwinding and labeling

Definition 2.2 (Monotonic Sequences) Let $\boldsymbol{K}=\langle W, R\rangle$ be a Kripke model. An infinite sequence \boldsymbol{b} of worlds in W is monotonic (with respect to R) if $R \boldsymbol{b}(i) \boldsymbol{b}(j)$ holds for any $i<j$. We write W^{*} for the set of all monotonic sequences in W^{ω}.

By Definition 2.1 each path in \mathscr{B} is labeled by a monotonic sequence in W^{*}. We write \boldsymbol{W} for the induced map from \mathscr{B} to W^{*}, i.e.,

$$
\boldsymbol{W}(\boldsymbol{b})=\lambda n: \omega \cdot \mathcal{W}(\boldsymbol{b} \upharpoonright n)=\mathcal{W}(\boldsymbol{b} \upharpoonright 1) \mathcal{W}(\boldsymbol{b} \upharpoonright 2) \ldots
$$

Proposition 2.6 Let $\mathcal{W}(\bar{b})=w_{1}, \mathcal{W}(\bar{b} 1)=w_{2}$. If $w_{1} \neq w_{2}$, then $\mathcal{W}(\bar{b} 01)=w_{1}$.

Proof. If $\mathcal{W}(\bar{b})=w_{1}$, then $\mathcal{W}(\bar{b} 0)=w_{1}$. In addition, if $\mathcal{W}(\bar{b} 1)=w_{2}$, then $R w_{1} w_{2}$. But since $w_{1} \neq w_{2}$, and w_{1} is interleaved with any other proper successor of w_{1} during the unwinding process, $\bar{b} 01$ must be labeled by w_{1}, that is, $\mathcal{W}(\bar{b} 01)=w_{1}$.

Proposition 2.7 Let $\mathcal{W}(\bar{b})=w$. Then for any $w^{\prime} \in W$ with $R w w^{\prime}$ there exist infinitely many $i>0$ such that $\mathcal{W}\left(\bar{b} 0^{i} 1\right)=w^{\prime}$.

Proof. Let w, w_{1}, \ldots, w_{m} be all R-successors of w. By Definition 2.1

$$
\mathcal{W}\left(\bar{b} 0^{2 i-1} 1\right)=w_{i} \quad \text { for } \quad 0<i \leq m \quad \text { and } \quad \mathcal{W}\left(\bar{b} 0^{2 m} 0\right)=w
$$

By our definition, we have for all $k \geq 0$

$$
\mathcal{W}\left(\bar{b} 0^{2 m k+(2 i-1)} 1\right)=w_{i} \quad \text { for } \quad 0<i \leq m
$$

Proposition 2.8 Let $\mathcal{W}(\bar{b})=w$. If $\mathcal{W}(\bar{b} 1)=w$, then for any $i \geq 1, \mathcal{W}\left(\bar{b} 1^{i}\right)=w$.
Proof. Note that $\bar{b} 11$ gets labeled only after $\bar{b} 1$ has been labeled. By Definition 2.1, $\mathcal{W}(\bar{b} 11)=w$. Repeating this argument we have $\mathcal{W}\left(\bar{b} 1^{i}\right)=w$ for any $i \geq 1$.

Definition 2.3 (Stabilization Point) We say a point i is a stabilization point for a monotonic sequence \boldsymbol{b} if $\boldsymbol{b}(i) \equiv_{R} \boldsymbol{b}(j)$ for any $j>i$.

If \boldsymbol{K} is a finite model, each sequence in W^{*} must eventually enter a stable loop consisting of R equivalent worlds. (Note that the loop may consist of a single world.) We define function $\lambda: \mathscr{B} \rightarrow \mathbb{N}$ by

$$
\lambda(\boldsymbol{b})=\mu n[n \geq 1 \&(\forall i, j \geq n R \boldsymbol{W}(\boldsymbol{b})(i) \boldsymbol{W}(\boldsymbol{b})(j))]
$$

In other words, the function λ returns the non-root " R-stabilization point" of $\boldsymbol{W}(\boldsymbol{b})$ for each $\boldsymbol{b} \in \mathscr{B}$.

Definition 2.4 We define a map $\delta: \mathscr{B} \rightarrow \mathbb{N}$ as follows:

$$
\delta(\boldsymbol{b})= \begin{cases}\delta_{1}(\boldsymbol{b}) & \text { if } \boldsymbol{b} \in \mathscr{B}_{1} \\ \delta_{2}(\boldsymbol{b}) & \text { if } \boldsymbol{b} \in \mathscr{B}_{2}\end{cases}
$$

where $\delta_{1}: \mathscr{B}_{1} \rightarrow \mathbb{N}$ is defined by

$$
\delta_{1}(\boldsymbol{b})=\max (1, n), \quad \text { if } \quad \boldsymbol{b}=b_{1} b_{2} \ldots b_{n} 10^{\omega}
$$

and $\delta_{2}: \mathscr{B}_{2} \rightarrow \mathbb{N}$ is defined by

$$
\delta_{2}(\boldsymbol{b})=\mu n(n>\lambda(\boldsymbol{b}) \& \boldsymbol{b}(n)=1 \& \boldsymbol{b}(n-1)=0) .
$$

The map δ will serve as the "modulus of continuity" for the map $\pi: \mathscr{B} \rightarrow W$ introduced below.

Definition 2.5 (Selection Function) We define a selection function $\rho: \mathscr{B} \rightarrow \mathbb{N}$ and a map $\pi: \mathscr{B} \rightarrow W$ as follows: (See Figure 5.)

$$
\begin{aligned}
& \rho(\boldsymbol{b})= \begin{cases}\delta_{1}(\boldsymbol{b}) & \text { if } \boldsymbol{b} \in \mathscr{B}_{1}, \\
\lambda(\boldsymbol{b}) & \text { if } \boldsymbol{b} \in \mathscr{B}_{2} .\end{cases} \\
& \pi(\boldsymbol{b})=\boldsymbol{W}(\boldsymbol{b})(\rho(\boldsymbol{b})) .
\end{aligned}
$$

For notation simplicity we identify function $f: \mathscr{B} \rightarrow X$ with the corresponding function $B \circ f:$ $(0,1) \rightarrow X$. For example, $\rho(x)(x \in(0,1))$ should be understood as $\rho(B(x))$. In particular,

$$
\pi(x)=\boldsymbol{W}(B(x))(\rho(B(x)))
$$

Fig. 5. The selection function ρ : Case $\boldsymbol{b} \in \mathscr{B}_{1}$ (left) and Case $\boldsymbol{b} \in \mathscr{B}_{2}$ (right)

3 Proof of completeness

Lemma 3.1 If $\boldsymbol{b} \in \mathscr{B}_{1}$ with $\boldsymbol{b}(n+1)=1(n>0)$, then $\rho(\boldsymbol{b}) \geq n$.

Proof. Suppose that $\boldsymbol{b}=b_{1} \ldots b_{m} 10^{\omega}$. Since $\boldsymbol{b}(n+1)=1$ and $n>0$, we have $m>0$ and $m=\rho(\boldsymbol{b})$. It follows immediately that $n \leq m$ as \boldsymbol{b} has the prefix $b_{1} \ldots b_{n} 1$.

Lemma 3.2 If $\boldsymbol{b} \in \mathscr{B}_{2}$, then either $\rho(\boldsymbol{b})=\lambda(\boldsymbol{b})=1$ or $\boldsymbol{b}(\lambda(\boldsymbol{b}))=\boldsymbol{b}(\rho(\boldsymbol{b}))=1$.

Proof. For $\boldsymbol{b} \in \mathscr{B}_{2}$ either $\boldsymbol{W}(\boldsymbol{b})$ stabilizes at the root, or $\boldsymbol{W}(\boldsymbol{b})$ stabilizes at point n for $n>0$. In the former case, $\rho(\boldsymbol{b})=\lambda(\boldsymbol{b})=1$. In the latter case, we must have $\boldsymbol{b}(n)=1$. Otherwise $\boldsymbol{W}(\boldsymbol{b})$ stabilizes at point $n-1$ as $\mathcal{W}(\boldsymbol{b})(n-1)=\mathcal{W}(\boldsymbol{b})(n)$. So $\boldsymbol{b}(\lambda(\boldsymbol{b}))=\boldsymbol{b}(\rho(\boldsymbol{b}))=1$.

Lemma 3.3 Let $\boldsymbol{b}_{1}, \boldsymbol{b}_{2} \in \mathscr{B}$ with $\rho\left(\boldsymbol{b}_{1}\right)=n_{1}, \rho\left(\boldsymbol{b}_{2}\right)=n_{2}$. If $n_{1} \leq n_{2}$ and $\boldsymbol{b}_{1} \equiv_{n_{1}} \boldsymbol{b}_{2}$, then $R \pi\left(\boldsymbol{b}_{1}\right) \pi\left(\boldsymbol{b}_{2}\right)$.

Proof. Since $n_{1} \leq n_{2}$ and $\boldsymbol{b}_{1} \equiv{ }_{n_{1}} \boldsymbol{b}_{2}$, the node $\boldsymbol{b}_{2} \upharpoonright n_{2}$ (labeled by $\left.\boldsymbol{W}\left(\boldsymbol{b}_{2}\right)\left(n_{2}\right)\right)$ is in the subtree with root $\boldsymbol{b}_{1} \upharpoonright n_{1}$ (labeled by $\boldsymbol{W}\left(\boldsymbol{b}_{1}\right)\left(n_{1}\right)$). So $R \boldsymbol{W}\left(\boldsymbol{b}_{1}\right)\left(n_{1}\right) \boldsymbol{W}\left(\boldsymbol{b}_{2}\right)\left(n_{2}\right)$, that is, $R \pi\left(\boldsymbol{b}_{1}\right) \pi\left(\boldsymbol{b}_{2}\right)$.

Lemma 3.4 Let $\boldsymbol{b}_{1} \in \mathscr{B}$ with $\rho\left(\boldsymbol{b}_{1}\right)=n_{1}, \boldsymbol{b}_{2} \in \mathscr{B}_{2}$. If $\boldsymbol{b}_{1} \equiv{ }_{n_{1}} \boldsymbol{b}_{2}$, then $R \pi\left(\boldsymbol{b}_{1}\right) \pi\left(\boldsymbol{b}_{2}\right)$.

Proof. Let $\rho\left(\boldsymbol{b}_{2}\right)=\lambda\left(\boldsymbol{b}_{2}\right)=n_{2}$. If $n_{1} \leq n_{2}$, then $R \pi\left(\boldsymbol{b}_{1}\right) \pi\left(\boldsymbol{b}_{2}\right)$ by Lemma 3.3. Suppose that $n_{1}>n_{2}$. Since $\boldsymbol{b}_{1} \equiv{ }_{n_{1}} \boldsymbol{b}_{2}$ and n_{2} is the stabilization point of $\boldsymbol{W}\left(\boldsymbol{b}_{2}\right), \boldsymbol{W}\left(\boldsymbol{b}_{1}\right)\left(n_{1}\right)$ is in the final stabilization loop where $\boldsymbol{W}\left(\boldsymbol{b}_{2}\right)\left(n_{2}\right)$ belongs. So $R \boldsymbol{w}_{1}\left(n_{1}\right) \boldsymbol{w}_{2}\left(n_{2}\right)$, i.e., $R \pi\left(\boldsymbol{b}_{1}\right) \pi\left(\boldsymbol{b}_{2}\right)$.

Lemma 3.5 For any $x, y \in(0,1)$, if $|y-x|<2^{-(\delta(x)+2)}$, then $R \pi(x) \pi(y)$.

Proof. Consider all possible cases.

1. Case $B(x) \in \mathscr{B}_{1}$. (See Figure 6.)

If $B(x)=10^{\omega}$, then $\pi(x)=w_{0}$, the root of \boldsymbol{K}, and trivially $R \pi(x) \pi(y)$ for any $y \in(0,1)$. Suppose that $B(x)=b_{1} b_{2} \ldots b_{n} 10^{\omega}$ for $n \geq 1$. Then $\rho(x)=\delta(x)=\delta_{1}(x)=n,|y-x|<2^{-(n+2)}$ and $B(x)(n+1)=1$.
a) Case $y<x$.

By Proposition 2.2, $B(y)$ has $b_{1} b_{2} \ldots b_{n} 01$ as a prefix. So $B(x) \equiv_{n} B(y)$ and $B(y)(n+2)=1$. If $B(y) \in \mathscr{B}_{1}$, then by Lemma $3.1 \rho(y)=\delta_{1}(y) \geq n+1>n=\rho(x)$. By Lemma 3.3 $R \pi(x) \pi(y)$. If $B(y) \in \mathscr{B}_{2}$, then $\rho(y)=\lambda(y)$. Since $B(x) \equiv_{n} B(y)$, by Lemma $3.4 R \pi(x) \pi(y)$.
b) Case $y>x$.

By Proposition 2.2, $B(y)$ has $b_{1} b_{2} \ldots b_{n} 10$ as a prefix. So $B(x) \equiv_{n+2} B(y)$ and $B(y)(n+1)=1$. If $B(y) \in \mathscr{B}_{1}$, then again by Lemma $3.1 \rho(y)=\delta_{1}(y) \geq n$ and by Lemma $3.3 R \pi(x) \pi(y)$. If $B(y) \in \mathscr{B}_{2}$, then $\rho(y)=\lambda(y)$. Since $B(x) \equiv_{n} B(y)$, by Lemma $3.4 R \pi(x) \pi(y)$.

Fig. 6. Lemma 3.5 Case $B(x) \in \mathscr{B}_{1}$
2. Case $B(x) \in \mathscr{B}_{2}$. (See Figures 7, 8.)

Let $\rho(x)=\lambda(x)=m$ and $\delta(x)=n$. If $m=1$, then $\pi(x)=w_{0}$, the root of \boldsymbol{K}, and so $R \pi(x) \pi(y)$ for any $y \in(0,1)$. Suppose that $m>1$. By Lemma 3.2 $B(x)(m)=1$. By Definition $2.4 n=\delta(x)>m=\lambda(x)$, $n \geq m+2$. Assume that

$$
B(x) \upharpoonright n=b_{1} b_{2} \ldots b_{m-1} 1 b_{m+1} \ldots b_{n-2} 01
$$

Since $|y-x|<2^{-(n+2)}$, by Proposition 2.4

$$
B(y) \upharpoonright(n-2)=b_{1} b_{2} \ldots b_{m-1} 1 b_{m+1} \ldots b_{n-2} \quad \text { and } \quad B(y) \neq b_{1} b_{2} \ldots b_{n-2} 0^{\omega}
$$

a) Case $B(y) \in \mathscr{B}_{1}$. (See Figure 7.)

It immediately follows from the above condition that for any $i \leq n-2$

$$
B(y) \neq b_{1} b_{2} \ldots b_{i} 0^{\omega}
$$

Then $n-1$ is the least value k for which it is possible to have

$$
B(y)=b_{1} b_{2} \ldots b_{k} 10^{\omega}
$$

By Proposition $3.1 \rho(y) \geq n-1>m$. Since $B(y) \equiv_{m} B(x)$ and $\rho(x)=m$, by Lemma 3.3 $R \pi(x) \pi(y)$.

Fig. 7. Lemma 3.5 Case $B(x) \in \mathscr{B}_{2} \& B(y) \in \mathscr{B}_{1}$
b) Case $B(y) \in \mathscr{B}_{2}$. (See Figure 8.)

As $n-2 \geq m, B(y) \equiv_{m} B(x)$. Since $\rho(x)=m$, by Lemma $3.4 R \pi(x) \pi(y)$.

Lemma 3.6 For any $x \in(0,1), \epsilon>0, w \in W$ with $R \pi(x) w$, there exists $y \in(0,1)$ such that $|y-x|<\epsilon$ and $\pi(y)=w$.

Proof. 1. Case $B(x) \in \mathscr{B}_{2}$. (See Figure 9.)
Let $m=\lambda(x)$ and take $n>m$ such that $2^{-n}<\epsilon$. Assume that

Fig. 8. Lemma 3.5 Case $B(x) \in \mathscr{B}_{2} \& B(y) \in \mathscr{B}_{2}$

$$
B(x) \upharpoonright n=b_{1} b_{2} \ldots b_{m} \ldots b_{n}, \quad \mathcal{W}\left(b_{1} \ldots b_{m}\right)=w_{1}, \quad \mathcal{W}\left(b_{1} \ldots b_{m} \ldots b_{n}\right)=w_{2}
$$

By the assumption $\pi(x)=w_{1}$ and w_{1}, w_{2} are R-equivalent. By Proposition 2.7 for any R-successor w of w_{1} (and hence of w_{2}) there exists $i \geq 0$ such that

$$
\mathcal{W}\left(b_{1} \ldots b_{m} \ldots b_{n} 0^{i} 1\right)=w
$$

Let

$$
\boldsymbol{b}=b_{1} \ldots b_{m} \ldots b_{n} 0^{i} 110^{\omega}
$$

Then $\boldsymbol{b} \in \mathscr{B}_{1}$ and $\pi(\boldsymbol{b})=w$. By Proposition 2.3, for any $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \in \mathscr{B}$, if $\boldsymbol{b}_{1} \equiv_{n} \boldsymbol{b}_{2}$, then $\left|B^{-1}\left(\boldsymbol{b}_{1}\right)-B^{-1}\left(\boldsymbol{b}_{2}\right)\right|<2^{-n}$. Take $y=B^{-1}(\boldsymbol{b})$, then we have $|y-x|<2^{-n}<\epsilon$ and $\pi(y)=w$.
2. Case $B(x) \in \mathscr{B}_{1}$. (See Figures 10, 11.)

Suppose that

$$
B(x)=b_{1} b_{2} \ldots b_{n} 10^{\omega}, \quad \mathcal{W}\left(b_{1} b_{2} \ldots b_{n}\right)=w_{1}, \quad \mathcal{W}\left(b_{1} b_{2} \ldots b_{n} 1\right)=w_{2}
$$

We have $\rho(x)=\delta_{1}(x)=n, \pi(x)=w_{1}$.
a) Case $w_{1}=w_{2}$. (See Figure 10.)

Let $w \in W$ be an R-successor of w_{2}. By Proposition 2.7 there exists $m>n+1$ such that

$$
2^{-m}<\epsilon \quad \text { and } \quad \mathcal{W}\left(b_{1} \ldots b_{n} 10^{m-(n+1)} 1\right)=w .
$$

Let

Fig. 9. Lemma 3.6 Case $B(x) \in \mathscr{B}_{2}$

$$
\boldsymbol{b}=b_{1} \ldots b_{n} 10^{m-(n+1)} 110^{\omega}
$$

Then $\boldsymbol{b} \in \mathscr{B}_{1}$ and $\pi(\boldsymbol{b})=w$. Now let $y=B^{-1}(\boldsymbol{b})$, so $\pi(y)=w$. Since $B(x) \equiv_{m} B(y)$, by Proposition 2.3, $|y-x|<2^{-m}<\epsilon$ as desired.
b) Case $w_{1} \neq w_{2}$. (See Figure 11.)

Let $w \in W$ with $R w_{1} w$. By Proposition 2.6

$$
\mathcal{W}\left(b_{1} b_{2} \ldots b_{n} 01\right)=w_{1}
$$

By Proposition 2.8 we can take $m>n+2$ such that

$$
\mathcal{W}\left(b_{1} b_{2} \ldots b_{n} 011^{m-(n+2)}\right)=w_{1}
$$

By Proposition 2.7 there exists $k>m$ such that

$$
\mathcal{W}\left(b_{1} b_{2} \ldots b_{n} 011^{m-(n+2)} 0^{k-m} 1\right)=w
$$

Let

$$
\boldsymbol{b}=b_{1} b_{2} \ldots b_{n} 011^{m-(n+2)} 0^{k-m} 110^{\omega}
$$

Then $\boldsymbol{b} \in \mathscr{B}_{1}$ and $\pi(\boldsymbol{b})=w$. Now let $y=B^{-1}(\boldsymbol{b})$, so $\pi(y)=w$. By Proposition $2.5,|y-x|<$ $2^{-m}<\epsilon$ as desired.

Fig. 10. Lemma 3.6 Case $B(x) \in \mathscr{B}_{1} \& w_{1}=w_{2}$

Theorem 3.1 The function π is an open and continuous from \mathscr{B} onto the Kripke space \mathcal{K}.

Proof. 1. Continuity.
Let $W_{0} \subseteq W$ be an open set of the Kripke space \mathcal{K} (i.e., W_{0} is closed under R). For any $w \in W_{0}$, let $x \in \pi^{-1}(w)$, i.e., $\pi(x)=w$. Take a set $O_{x}=\left\{y| | x-y \mid<2^{-(\delta(x)+2)}\right\}$. Obviously O_{x} is an open subset of $(0,1)$. By Lemma 3.5 all worlds in $\pi\left(O_{x}\right)$ are R-successors of w. Since $w \in W_{0}$ and W_{0} is closed under R, we have $\pi\left(O_{x}\right) \subseteq W_{0}$. Hence π is continuous.
2. Openness.

Let \mathcal{O}_{x} be the collection of sets $O_{x, i}=\left\{y| | x-y \mid<2^{-(i+\delta(x)+2)}\right\}$ for $i \geq 0$. Clearly $\bigcup_{x} \mathcal{O}_{x}$ is a base of the standard topology on $(0,1)$. By Lemma 3.5 for any $w \in \pi\left(O_{x, i}\right)$ we have $R \pi(x) w$. And by Lemma 3.6 for any w with $R \pi(x) w$, there exists $y \in O_{x, i}$ such that $\pi(y)=w$, that is, $w \in \pi\left(O_{x, i}\right)$. Hence $\pi\left(O_{x, i}\right)=\{w \in W \mid R \pi(x) w\}$, which is obviously closed under R. Hence π is an open map.

Lemma 3.7 Let X_{1}, X_{2} be two topological spaces and $f: X_{1} \rightarrow X_{2}$ a continuous and open map. Let V_{2} be a valuation for topological semantics on X_{2} and define

$$
\begin{equation*}
V_{1}(p)=f^{-1}\left(V_{2}(p)\right) \tag{1}
\end{equation*}
$$

for each propositional variable p. Then

$$
V_{1}(\alpha)=f^{-1}\left(V_{2}(\alpha)\right)
$$

for any S4-formula α.

Fig. 11. Lemma 3.6 Case $B(x) \in \mathscr{B}_{1} \& w_{1} \neq w_{2}$

Proof. The proof uses induction. The base case and induction steps for connectives $\vee, \&, \neg$ are straightforward. Now suppose $\alpha=\square \beta$. By induction hypothesis,

$$
V_{1}(\beta)=f^{-1}\left(V_{2}(\beta)\right) .
$$

It follows from openness and continuity that

$$
\operatorname{Int}\left(f^{-1}\left(V_{2}(\beta)\right)\right)=f^{-1}\left(\operatorname{Int}\left(V_{2}(\beta)\right)\right) .
$$

Hence we have

$$
\begin{aligned}
V_{1}(\alpha) & =V_{1}(\square \beta)=\operatorname{Int}\left(V_{1}(\beta)\right)=\operatorname{Int}\left(f^{-1}\left(V_{2}(\beta)\right)\right) \\
& =f^{-1}\left(\operatorname{Int}\left(V_{2}(\beta)\right)\right)=f^{-1}\left(V_{2}(\square \beta)\right)=f^{-1}\left(V_{2}(\alpha)\right) .
\end{aligned}
$$

Lemma 3.8 Let X_{1}, X_{2} be two topological spaces and $f: X_{1} \rightarrow X_{2}$ a continuous and open map. Let V_{2} be a valuation for topological semantics on X_{2} and define V_{1} by the equation (1). Then for any $S 4$-formula α,

$$
\left\langle X_{2}, V_{2}\right\rangle \models \alpha \quad \text { implies } \quad\left\langle X_{1}, V_{1}\right\rangle \models \alpha .
$$

Moreover if f is onto, then

$$
\left\langle X_{2}, V_{2}\right\rangle \models \alpha \text { iff }\left\langle X_{1}, V_{1}\right\rangle \models \alpha .
$$

Proof. Suppose $\left\langle X_{2}, V_{2}\right\rangle \models \alpha$, that is, $V_{2}(\alpha)=X_{2}$. By Lemma 3.7 $V_{1}(\alpha)=f^{-1}\left(V_{2}(\alpha)\right)$, and so $V_{1}(\alpha)=X_{1}$ as required. Now suppose that f is onto and $\left\langle X_{1}, V_{1}\right\rangle \models \alpha$, but $\left\langle X_{2}, V_{2}\right\rangle \not \vDash \alpha$, i.e., $V_{2}(\alpha) \neq X_{2}$. Since f is onto and $V_{1}(\alpha)=f^{-1}\left(V_{2}(\alpha)\right)$, we have $V_{1}(\alpha) \neq X_{1}$, that is, $\left\langle X_{1}, V_{1}\right\rangle \not \vDash \alpha$, a contradiction.

Theorem 3.2 S4 is complete for the standard topology on $(0,1)$.

Proof. It suffices to show that every non-theorem of $S 4$ can be refuted on $(0,1)$. Let α be such an nontheorem. We need to find a valuation V such that $V(\alpha) \neq(0,1)$. By Theorem 1.1 there exists a finite rooted Kripke model $\boldsymbol{K}=\left\langle X, V^{\prime}\right\rangle$ such that $\boldsymbol{K} \not \vDash \alpha$. By Theorem 3.1, we have a continuous and open map π from $(0,1)$ onto \boldsymbol{K}. Let V be the valuation on $(0,1)$ such that

$$
V(p)=\pi^{-1}\left(V^{\prime}(p)\right)
$$

for every propositional variable p. By Lemma $3.8 V^{\prime}(\beta)=X$ if and only if $V(\beta)=(0,1)$ for any $S 4$ formula β. In particular since $V^{\prime}(\alpha) \neq X, V(\alpha) \neq(0,1)$. It follows that $S 4$ is complete for $(0,1)$.

References

1. J. C. C. McKinsey. A solution of the decision problem for the Lewis systems $S 2$ and $S 4$, with an application to topology. The Journal of Symbolic Logic, 6(4):117-134, 1941.
2. J. C. C. McKinsey and Alfred Tarski. The algebra of topology. The Annals of Mathematics, 45(1):141191, January 1944.
3. Helena Rasiowa and Roman Sikorski. The mathematics of metamathematics. Polish Scientific Publishers, Warsaw, 1968.
4. Grigori Mints. A completeness proof for propositional S4 in Cantor space. In Ewa Orlowska, editor, Logic at work: Essays dedicated to the memory of Helena Rasiowa, pages 79-88. Heidelberg: PhysicaVerlag, 1999.
5. Grigori Mints. A short introduction to intuitionistic logic. Kluwer Academic-Plenum Publishers, New York, 2000.
6. Marco Aiello, Johan van Benthem, and Guram Bezhanishvili. Reasoning about space: the modal way. Technical Report PP-2001-18, ILLC, Amsterdam, 2001.
7. Saul Kripke. Semantical analysis of modal logic I, normal propositional calculi. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 9:67-96, 1963.
