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Summary. The completeness of the modal logic S4 for all topological spaces as well as for the real line
R, the n-dimensional Euclidean space R

n and the segment (0, 1) etc. (with 2 interpreted as interior) was
proved by McKinsey and Tarski in 1944. Several simplified proofs contain gaps. A new proof presented
here combines the ideas published later by G. Mints and M. Aiello, J. van Benthem, G. Bezhanishvili with
a further simplification. The proof strategy is to embed a finite rooted Kripke structure K for S4 into
a subspace of the Cantor space which in turn encodes (0, 1). This provides an open and continuous map
from (0, 1) onto the topological space corresponding to K. The completeness follows as S4 is complete
with respect to the class of all finite rooted Kripke structures.

1 Introduction

The correspondence between elementary topology and the modal logic S4 was first established by McK-
insey. In [1] McKinsey introduced the topological interpretation of S4 where the necessitation connective
2 is interpreted as the topological interior. McKinsey showed that S4 is complete for the class of all
topological spaces. Later more mathematically interesting results were obtained by McKinsey and Tarski
[2], [3]. McKinsey and Tarski showed that S4 is complete for any dense-in-itself separable metric space. As
a consequence, S4 is complete for the real line R, the n-dimensional Euclidean space R

n, the Cantor set
and the real segment (0, 1) etc. Recently several attempts were made to simplify the proof by McKinsey
and Tarski. Mints gave a completeness proof of S4 for the Cantor set [4] and a completeness proof of
the intuitionistic propositional logic for the real segment (0, 1) ([5], Chapter 9). Aiello, van Benthem and
Bezhanishvili gave a completeness proof of S4 for (0, 1) ([6], Section 5). However, simplified proofs in [6],
Section 5 and [5], Chapter 9 contain gaps. We present here a new proof, which combines the ideas in [4],
[5] and [6], and provides a further simplification. It goes by (1) encoding reals in (0, 1) using a Cantor
set B, (2) unwinding a finite rooted Kripke structure K for S4 to cover B. Step 1 gives a one-to-one
correspondence between elements of B (infinite paths in the full binary tree) and real numbers in (0, 1).
Step 2 generates a labeling of the full binary tree by worlds in K and hence establishes a one-to-one
correspondence between infinite paths in B and infinite sequences of worlds in K. Hence we have a
one-to-one correspondence between reals in (0, 1) and infinite sequences of worlds in K. Since K is finite,
every infinite sequence of worlds must eventually enter a stable loop which consists of equivalent worlds
with respect to the frame relation. For each such sequence we pick the label at the stabilization point
where the sequence enters the loop. We map each real in (0, 1) to the label of its corresponding sequence.
This provides an open and continuous map from (0, 1) onto the topological space corresponding to K.
The completeness follows as S4 is complete with respect to the class of finite rooted Kripke structures.
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We assume basic topology terminology. In particular, we use Int and Cl to denote the interior and
closure operators respectively.

Definition 1.1 (Topological Model) A topological model is an ordered pair M = 〈X, V 〉, where X

is a topological space and V is a function assigning a subset of X to each propositional variable. The
valuation V is extended to all S4 formulas as follows:

V (α ∨ β) = V (α) ∪ V (β),

V (α & β) = V (α) ∩ V (β),

V (¬α) = X \ V (α),

V (2α) = Int(V (α)).

We say that α is valid in a topological model M and write M |= α if and only if V (α) = X.

Definition 1.2 (Kripke Model) A Kripke frame (for S4) is an ordered pair F = 〈W,R〉 where W is
a non-empty set and R is a reflexive and transitive relation on W . The elements in W are called worlds.
We say that a world w is an R-successor of a world w′ if Rww′, and w is R-equivalent to w′ (written
w ≡R w′) if both Rww′ and Rw′w. A Kripke frame is rooted if there exists a world w0 such that any
world w in W is an R-successor of w0.

A Kripke model is a tuple M = 〈W, R,V 〉 with 〈W,R〉 a Kripke frame and V a valuation function,
which assigns a subset of worlds in W to every propositional variable. Validity relation |= is defined
recursively in the standard way. In particular,

(M, w) |= 2α iff (M, w
′) |= α for every w

′ such that Rww
′
.

We say that a formula α is valid in M if and only if (M, w) |= α for every w ∈ W . A formula α is
valid (written |= α) if α is valid in every Kripke model.

We can think of a Kripke frame as being a topological space by imposing a topology on it.

Definition 1.3 (Kripke Space) Let K = 〈W,R〉 be a Kripke frame. A Kripke space on K is a
topological space T = 〈W,O〉 where W is the carrier and O is the collection of all subsets of W closed

under R:
M ∈ O iff (w ∈ M and Rww

′ implies w
′ ∈ M) for all w, w

′ ∈ W.

It is well-known that S4 is complete for finite rooted Kripke models [7].

Theorem 1.1 For any S4 formula α, S4 ` α if and only if α is valid in all finite rooted Kripke frames.

2 A correspondence between (0, 1) and finite Kripke structures

2.1 Binary encoding of real numbers

Let Σ = {0, 1}, and let Σω be the full infinite binary tree where each node in the tree is identified by a
finite path (a finite Σ-word) from the root Λ to it. We use b̄ and b to denote finite paths and infinite paths
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respectively. Let C be the standard Cantor set represented by Σω, where each element of C is identified
with an infinite path (an infinite Σ-word). For each b ∈ C , b �n denotes the prefix of length n, i.e., the
finite sequence b�n = b(1)b(2) . . . b(n). We write b1 ≡n b2 if b1 �n = b2 �n. One can imagine adding the
component b(0) = 0 to account for the root Λ, but we do not do that. (See Figure 1.)
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Fig. 1. The full infinite binary tree

Let
B = C \ ({0ω} ∪ Σ

∗1ω),

i.e., B is obtained by deleting from C the leftmost path which corresponds to the word 0ω, as well as
paths going right from some point on, which correspond to sequences with the infinite tail of 1’s. So for
each path b ∈ B, b either always goes left from some point on, or goes both left and right infinitely often.
In the former case b ends with 0ω and in the latter case b contains infinitely many 0’s as well as infinitely
many 1’s. Formally let

B1 = {b ∈ B | b = b1b2 . . . bi0
ω for some i > 0}, B2 = B \ B1.

We view a sequence in B as a binary encoding of a real number in (0, 1). A one-to-one correspondence
between B and (0, 1) is given by

real(b) =

∞
X

i=1

b(i)2−i
,

B(x) = the unique b ∈ B such that real(b) = x.

The sequences in B1 represent binary rational numbers in (0, 1); the sequences in B2 represent all other
real numbers in (0, 1). For example, 0.375, in binary 0.011, is represented by 0110ω . Now it should be clear
why B excludes some binary sequences; sequence 0ω represents 0, and numbers represented by sequences
of the form b1b2 . . . bn01ω can also be represented by sequences of the form b1b2 . . . bn10ω .

Proposition 2.1 Let x, y ∈ (0, 1), B(x) � (n + 1) = b1b2 . . . bn0 and B(y) � (n + 1) = b1b2 . . . bn1. Then
for any z ∈ (0, 1), if x < z < y, then B(z)�n = b1b2 . . . bn.

Proof. It follows immediately from basic properties of the binary representation. ut
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Proposition 2.2 Let x ∈ (0, 1) and B(x) = b1b2 . . . bn10ω. Then for any y ∈ (0, 1),

1. if 0 < x − y < 2−(n+2), then B(y)� (n + 2) = b1b2 . . . bn01, and
2. if 0 < y − x < 2−(n+2), then B(y)� (n + 2) = b1b2 . . . bn10.

Proof. (See Figure 2.) Let b = b1b2 . . . bn10ω , b′ = b1b2 . . . bn01ω , l = b1b2 . . . bn010ω and u =
b1b2 . . . bn101ω . We know that B(x) = real(b) = real(b′). Let l = real(l) and u = real(u). Since
l + 2−(n+2) = x, for any y such that 0 < x − y < 2−(n+2), l < y < x, and so by Proposition 2.1 B(y)
has the prefix b1b2 . . . bn01. Similarly, since x + 2−(n+2) = u, for any y such that 0 < y − x < 2−(n+2),
x < y < l, and so B(y) has the prefix b1b2 . . . bn10. ut
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Fig. 2. Proposition 2.2

Proposition 2.3 Let x, y ∈ (0, 1). If B(x) ≡n B(y), then |x − y| < 2−n.

Proof. If B(x) ≡n B(y), then obviously |x−y| ≤ 2−n. To have |x−y| = 2−n, one of B(x) and B(y) must
end with 0ω and the other must end with 1ω. Since paths ending with 1ω has been excluded from B, we
have |x − y| < 2−n. ut

Proposition 2.4 Let x ∈ (0, 1) and B(x) � (n + 2) = b1b2 . . . bn01. If y ∈ (0, 1), |y − x| < 2−(n+2), then
B(y)�n = b1 . . . bn and B(y) 6= b1b2 . . . bn0ω.

Proof. (See Figure 3.) Let u = b1b2 . . . bn01ω, l = b1b2 . . . bn010ω , u1 = b1b2 . . . bn001ω , l1 = b1b2 . . . bn0ω,
u2 = b1b2 . . . bn101ω , and l2 = b1b2 . . . bn10ω . Let u = real(u), l = real(l), u1 = real(u1), l1 =
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real(l1), u2 = real(u2) and l2 = real(l2). Obviously, we have l1+2−(n+2) = u1 = l, l+2−(n+2) = u = l2
and l2+2−(n+2) = u2. Since B(x)� (n+2) = b1b2 . . . bn01, l ≤ x < u and so l1 < y < u2 as |y−x| < 2−(n+2).
Hence by Proposition 2.1 B(y)�n = b1 . . . bn and B(y) 6= b1b2 . . . bn0ω . ut
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Fig. 3. Proposition 2.4

Proposition 2.5 For any x, y ∈ (0, 1) if B(x) = b1b2 . . . bn10ω, B(y) �m = b1b2 . . . bn011m−(n+2), then
B(y) 6= b1b2 . . . bn011m−(n+2)0ω if and only if |x − y| < 2−m.

Proof. Let u = b1b2 . . . bn01ω , l = b1b2 . . . bn011m−(n+2)0ω and u = real(u), l = real(l). Obviously,
u = x and u − l = 2−m. Since B(y) �m = b1b2 . . . bn011m−(n+2), y < u = x. If |x − y| < 2−m, then y > l

and so B(y) 6= l. On the other hand, if B(y) 6= l and B(y) �m = b1b2 . . . bn011m−(n+2), then l < y < u

and so |x − y| < 2−m. ut

2.2 Unwinding a finite rooted model into the Cantor space

Let K = 〈W,R〉 be a finite Kripke model with root w0 and K be the corresponding Kripke space. In the
following sections by Kripke model we always mean a finite rooted one.

Definition 2.1 (Unwinding and Labeling) The labeling function W : Σ∗ → W is defined recursively
as follows. (See Figure 4.)

1. W(Λ) = w0.
2. Let b̄ ∈ Σ∗ be a node in B. Suppose b̄ is already labeled by a world w (i.e., W(b̄) = w) , while none

of its children has yet been labeled. Let w, w1, . . . , wm be all R-successors of w. Then
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W(b̄0i) = w for 0 < i ≤ 2m,

W(b̄02i−11) = wi for 0 < i ≤ m,

W(b̄02i1) = w for 0 ≤ i < m.

Note that in placing R-successors of w at right branches b̄02i−11 (i > 0), we interleave w with each
of its other successors. This is the main distinction from the construction in [6]. (See Figure 4.)
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Fig. 4. Unwinding and labeling

Definition 2.2 (Monotonic Sequences) Let K = 〈W, R〉 be a Kripke model. An infinite sequence b

of worlds in W is monotonic (with respect to R) if Rb(i)b(j) holds for any i < j. We write W ∗ for the
set of all monotonic sequences in W ω.

By Definition 2.1 each path in B is labeled by a monotonic sequence in W ∗. We write W for the
induced map from B to W ∗, i.e.,

W (b) = λn : ω.W(b�n) = W(b�1)W(b�2) . . . .

Proposition 2.6 Let W(b̄) = w1, W(b̄1) = w2. If w1 6= w2, then W(b̄01) = w1.

Proof. If W(b̄) = w1, then W(b̄0) = w1. In addition, if W(b̄1) = w2, then Rw1w2. But since w1 6= w2,
and w1 is interleaved with any other proper successor of w1 during the unwinding process, b̄01 must be
labeled by w1, that is, W(b̄01) = w1. ut

Proposition 2.7 Let W(b̄) = w. Then for any w′ ∈ W with Rww′ there exist infinitely many i > 0 such
that W(b̄0i1) = w′.
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Proof. Let w, w1, . . . , wm be all R-successors of w. By Definition 2.1

W(b̄02i−11) = wi for 0 < i ≤ m and W(b̄02m0) = w.

By our definition, we have for all k ≥ 0

W(b̄02mk+(2i−1)1) = wi for 0 < i ≤ m.

ut

Proposition 2.8 Let W(b̄) = w. If W(b̄1) = w, then for any i ≥ 1, W(b̄1i) = w.

Proof. Note that b̄11 gets labeled only after b̄1 has been labeled. By Definition 2.1, W(b̄11) = w. Repeating
this argument we have W(b̄1i) = w for any i ≥ 1. ut

Definition 2.3 (Stabilization Point) We say a point i is a stabilization point for a monotonic se-
quence b if b(i) ≡R b(j) for any j > i.

If K is a finite model, each sequence in W ∗ must eventually enter a stable loop consisting of R-
equivalent worlds. (Note that the loop may consist of a single world.) We define function λ : B → N

by
λ(b) = µn[n ≥ 1 & (∀i, j ≥ n RW (b)(i)W (b)(j))].

In other words, the function λ returns the non-root “R-stabilization point” of W (b) for each b ∈ B.

Definition 2.4 We define a map δ : B → N as follows:

δ(b) =

(

δ1(b) if b ∈ B1

δ2(b) if b ∈ B2

where δ1 : B1 → N is defined by

δ1(b) = max(1, n), if b = b1b2 . . . bn10ω
,

and δ2 : B2 → N is defined by

δ2(b) = µn(n > λ(b) & b(n) = 1 & b(n − 1) = 0).

The map δ will serve as the “modulus of continuity” for the map π : B → W introduced below.

Definition 2.5 (Selection Function) We define a selection function ρ : B → N and a map π : B → W

as follows: (See Figure 5.)

ρ(b) =

(

δ1(b) if b ∈ B1,

λ(b) if b ∈ B2.

π(b) = W (b)(ρ(b)).

For notation simplicity we identify function f : B → X with the corresponding function B ◦ f :
(0, 1) → X. For example, ρ(x) (x ∈ (0, 1)) should be understood as ρ(B(x)). In particular,

π(x) = W (B(x))(ρ(B(x))).
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Fig. 5. The selection function ρ: Case b ∈ B1 (left) and Case b ∈ B2 (right)

3 Proof of completeness

Lemma 3.1 If b ∈ B1 with b(n + 1) = 1 (n > 0), then ρ(b) ≥ n.

Proof. Suppose that b = b1 . . . bm10ω . Since b(n + 1) = 1 and n > 0, we have m > 0 and m = ρ(b). It
follows immediately that n ≤ m as b has the prefix b1 . . . bn1. ut

Lemma 3.2 If b ∈ B2, then either ρ(b) = λ(b) = 1 or b(λ(b)) = b(ρ(b)) = 1.

Proof. For b ∈ B2 either W (b) stabilizes at the root, or W (b) stabilizes at point n for n > 0. In the
former case, ρ(b) = λ(b) = 1. In the latter case, we must have b(n) = 1. Otherwise W (b) stabilizes at
point n − 1 as W(b)(n − 1) = W(b)(n). So b(λ(b)) = b(ρ(b)) = 1. ut

Lemma 3.3 Let b1, b2 ∈ B with ρ(b1) = n1, ρ(b2) = n2. If n1 ≤ n2 and b1 ≡n1 b2, then Rπ(b1)π(b2).

Proof. Since n1 ≤ n2 and b1 ≡n1 b2, the node b2 �n2 (labeled by W (b2)(n2)) is in the subtree with root
b1 �n1 (labeled by W (b1)(n1)). So RW (b1)(n1)W (b2)(n2), that is, Rπ(b1)π(b2). ut

Lemma 3.4 Let b1 ∈ B with ρ(b1) = n1, b2 ∈ B2. If b1 ≡n1 b2, then Rπ(b1)π(b2).

Proof. Let ρ(b2) = λ(b2) = n2. If n1 ≤ n2, then Rπ(b1)π(b2) by Lemma 3.3. Suppose that n1 > n2.
Since b1 ≡n1 b2 and n2 is the stabilization point of W (b2), W (b1)(n1) is in the final stabilization loop
where W (b2)(n2) belongs. So Rw1(n1)w2(n2), i.e., Rπ(b1)π(b2). ut
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Lemma 3.5 For any x, y ∈ (0, 1), if |y − x| < 2−(δ(x)+2), then Rπ(x)π(y).

Proof. Consider all possible cases.

1. Case B(x) ∈ B1. (See Figure 6.)

If B(x) = 10ω, then π(x) = w0, the root of K, and trivially Rπ(x)π(y) for any y ∈ (0, 1). Suppose that
B(x) = b1b2 . . . bn10ω for n ≥ 1. Then ρ(x) = δ(x) = δ1(x) = n, |y−x| < 2−(n+2) and B(x)(n+1) = 1.

a) Case y < x.

By Proposition 2.2, B(y) has b1b2 . . . bn01 as a prefix. So B(x) ≡n B(y) and B(y)(n + 2) = 1. If
B(y) ∈ B1, then by Lemma 3.1 ρ(y) = δ1(y) ≥ n + 1 > n = ρ(x). By Lemma 3.3 Rπ(x)π(y). If
B(y) ∈ B2, then ρ(y) = λ(y). Since B(x) ≡n B(y), by Lemma 3.4 Rπ(x)π(y).

b) Case y > x.

By Proposition 2.2, B(y) has b1b2 . . . bn10 as a prefix. So B(x) ≡n+2 B(y) and B(y)(n + 1) = 1.
If B(y) ∈ B1, then again by Lemma 3.1 ρ(y) = δ1(y) ≥ n and by Lemma 3.3 Rπ(x)π(y). If
B(y) ∈ B2, then ρ(y) = λ(y). Since B(x) ≡n B(y), by Lemma 3.4 Rπ(x)π(y).
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Fig. 6. Lemma 3.5 Case B(x) ∈ B1

2. Case B(x) ∈ B2. (See Figures 7, 8.)

Let ρ(x) = λ(x) = m and δ(x) = n. If m = 1, then π(x) = w0, the root of K, and so Rπ(x)π(y) for any
y ∈ (0, 1). Suppose that m > 1. By Lemma 3.2 B(x)(m) = 1. By Definition 2.4 n = δ(x) > m = λ(x),
n ≥ m + 2. Assume that

B(x)�n = b1b2 . . . bm−11bm+1 . . . bn−201

Since |y − x| < 2−(n+2), by Proposition 2.4

B(y)� (n− 2) = b1b2 . . . bm−11bm+1 . . . bn−2 and B(y) 6= b1b2 . . . bn−20
ω
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a) Case B(y) ∈ B1. (See Figure 7.)

It immediately follows from the above condition that for any i ≤ n − 2

B(y) 6= b1b2 . . . bi0
ω

Then n − 1 is the least value k for which it is possible to have

B(y) = b1b2 . . . bk10ω

By Proposition 3.1 ρ(y) ≥ n − 1 > m. Since B(y) ≡m B(x) and ρ(x) = m, by Lemma 3.3
Rπ(x)π(y).
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Fig. 7. Lemma 3.5 Case B(x) ∈ B2 & B(y) ∈ B1

b) Case B(y) ∈ B2. (See Figure 8.)

As n − 2 ≥ m, B(y) ≡m B(x). Since ρ(x) = m, by Lemma 3.4 Rπ(x)π(y).
ut

Lemma 3.6 For any x ∈ (0, 1), ε > 0, w ∈ W with Rπ(x)w, there exists y ∈ (0, 1) such that |y − x| < ε

and π(y) = w.

Proof. 1. Case B(x) ∈ B2. (See Figure 9.)

Let m = λ(x) and take n > m such that 2−n < ε. Assume that
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Fig. 8. Lemma 3.5 Case B(x) ∈ B2 & B(y) ∈ B2

B(x)�n = b1b2 . . . bm . . . bn, W(b1 . . . bm) = w1, W(b1 . . . bm . . . bn) = w2

By the assumption π(x) = w1 and w1, w2 are R-equivalent. By Proposition 2.7 for any R-successor
w of w1 (and hence of w2) there exists i ≥ 0 such that

W(b1 . . . bm . . . bn0i1) = w

Let
b = b1 . . . bm . . . bn0i110ω

Then b ∈ B1 and π(b) = w. By Proposition 2.3, for any b1, b2,∈ B, if b1 ≡n b2, then
|B−1(b1) − B−1(b2)| < 2−n. Take y = B−1(b), then we have |y − x| < 2−n < ε and π(y) = w.

2. Case B(x) ∈ B1. (See Figures 10, 11.)

Suppose that

B(x) = b1b2 . . . bn10ω
, W(b1b2 . . . bn) = w1, W(b1b2 . . . bn1) = w2.

We have ρ(x) = δ1(x) = n, π(x) = w1.

a) Case w1 = w2. (See Figure 10.)

Let w ∈ W be an R-successor of w2. By Proposition 2.7 there exists m > n + 1 such that

2−m
< ε and W(b1 . . . bn10m−(n+1)1) = w.

Let



12 Grigori Mints and Ting Zhang

w0

��

�O

w1

��

�O

w2

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

0i

{{xx
xxx

xxx
xxx

xx
xx

x

1ω

��

w2
1

""D
DD

D

0ω

��

w
1

!!C
CC

C

w

0ω

��
0 a y x a+2−n 1

Fig. 9. Lemma 3.6 Case B(x) ∈ B2

b = b1 . . . bn10m−(n+1)110ω

Then b ∈ B1 and π(b) = w. Now let y = B−1(b), so π(y) = w. Since B(x) ≡m B(y), by Propo-
sition 2.3, |y − x| < 2−m < ε as desired.

b) Case w1 6= w2. (See Figure 11.)

Let w ∈ W with Rw1w. By Proposition 2.6

W(b1b2 . . . bn01) = w1

By Proposition 2.8 we can take m > n + 2 such that

W(b1b2 . . . bn011m−(n+2)) = w1

By Proposition 2.7 there exists k > m such that

W(b1b2 . . . bn011m−(n+2)0k−m1) = w

Let
b = b1b2 . . . bn011m−(n+2)0k−m110ω

Then b ∈ B1 and π(b) = w. Now let y = B−1(b), so π(y) = w. By Proposition 2.5, |y − x| <

2−m < ε as desired.
ut
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Fig. 10. Lemma 3.6 Case B(x) ∈ B1 & w1 = w2

Theorem 3.1 The function π is an open and continuous from B onto the Kripke space K.

Proof. 1. Continuity.

Let W0 ⊆ W be an open set of the Kripke space K (i.e., W0 is closed under R). For any w ∈ W0,
let x ∈ π−1(w), i.e., π(x) = w. Take a set Ox = {y | |x − y| < 2−(δ(x)+2)}. Obviously Ox is an open
subset of (0, 1). By Lemma 3.5 all worlds in π(Ox) are R-successors of w. Since w ∈ W0 and W0 is
closed under R, we have π(Ox) ⊆ W0. Hence π is continuous.

2. Openness.

Let Ox be the collection of sets Ox,i = {y | |x − y| < 2−(i+δ(x)+2)} for i ≥ 0. Clearly
S

x Ox is a
base of the standard topology on (0, 1). By Lemma 3.5 for any w ∈ π(Ox,i) we have Rπ(x)w. And by
Lemma 3.6 for any w with Rπ(x)w, there exists y ∈ Ox,i such that π(y) = w, that is, w ∈ π(Ox,i).
Hence π(Ox,i) = {w ∈ W | Rπ(x)w}, which is obviously closed under R. Hence π is an open map.

ut

Lemma 3.7 Let X1, X2 be two topological spaces and f : X1 → X2 a continuous and open map. Let V2

be a valuation for topological semantics on X2 and define

V1(p) = f
−1(V2(p)) (1)

for each propositional variable p. Then

V1(α) = f
−1(V2(α))

for any S4-formula α.
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Fig. 11. Lemma 3.6 Case B(x) ∈ B1 & w1 6= w2

Proof. The proof uses induction. The base case and induction steps for connectives ∨, &,¬ are straight-
forward. Now suppose α = 2β. By induction hypothesis,

V1(β) = f
−1(V2(β)).

It follows from openness and continuity that

Int(f−1(V2(β))) = f
−1(Int(V2(β))).

Hence we have

V1(α) = V1(2β) = Int(V1(β)) = Int(f−1(V2(β)))

= f
−1(Int(V2(β))) = f

−1(V2(2β)) = f
−1(V2(α)).

ut

Lemma 3.8 Let X1, X2 be two topological spaces and f : X1 → X2 a continuous and open map. Let V2

be a valuation for topological semantics on X2 and define V1 by the equation (1). Then for any S4-formula
α,

〈X2, V2〉 |= α implies 〈X1, V1〉 |= α.

Moreover if f is onto, then
〈X2, V2〉 |= α iff 〈X1, V1〉 |= α.
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Proof. Suppose 〈X2, V2〉 |= α, that is, V2(α) = X2. By Lemma 3.7 V1(α) = f−1(V2(α)), and so V1(α) = X1

as required. Now suppose that f is onto and 〈X1, V1〉 |= α, but 〈X2, V2〉 6|= α, i.e., V2(α) 6= X2. Since f is
onto and V1(α) = f−1(V2(α)), we have V1(α) 6= X1, that is, 〈X1, V1〉 6|= α, a contradiction. ut

Theorem 3.2 S4 is complete for the standard topology on (0, 1).

Proof. It suffices to show that every non-theorem of S4 can be refuted on (0, 1). Let α be such an non-
theorem. We need to find a valuation V such that V (α) 6= (0, 1). By Theorem 1.1 there exists a finite
rooted Kripke model K = 〈X, V ′〉 such that K 6|= α. By Theorem 3.1, we have a continuous and open
map π from (0, 1) onto K. Let V be the valuation on (0, 1) such that

V (p) = π
−1(V ′(p))

for every propositional variable p. By Lemma 3.8 V ′(β) = X if and only if V (β) = (0, 1) for any S4-
formula β. In particular since V ′(α) 6= X, V (α) 6= (0, 1). It follows that S4 is complete for (0, 1). ut
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