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THORN INDEPENDENCE IN THE FIELD OF REAL NUMBERS

WITH A SMALL MULTIPLICATIVE GROUP

ALEXANDER BERENSTEIN, CLIFTON EALY, AND AYHAN GÜNAYDIN

Abstra
t. We 
hara
terize þ-independen
e in a variety of stru
tures, fo
us-

ing on the �eld of real numbers expanded by predi
ate de�ning a dense multi-

pli
ative subgroup, G, satisfying the Mann property and whose pth powers are

of �nite index in G. We also show su
h stru
tures are super-rosy and eliminate

imaginaries up to 
odes for small sets.

1. Introdu
tion

We build on results of van den Dries and Günayd�n in [3℄. There the authors

investigate the model theory of pairs (K,G) where K is either an algebrai
ally


losed �eld or a real 
losed �eld, and G is a multipli
ative subgroup of K×
with the

Mann Property. While the de�nition of the Mann property is somewhat lengthy

(and we postpone the pre
ise de�nition to Se
tion 5), roughly the Mann Property

is a 
ondition insuring that linear equations have few solutions in G. Among other

things, the Mann property implies that G is small (in a te
hni
al sense de�ned

below). Moreover, su
h groups are quite natural. Any group 
ontained in the

divisible hull of a �nitely generated group, i.e. any �nite rank group, has the Mann

property.

In the 
ase whereK is real 
losed (hen
eforth we distinguish this 
ase by referring

to K as R), the additional hypothesis that G is a dense subgroup of R>0
is used.

Among other results, van den Dries and Günayd�n obtain good des
riptions

of the de�nable sets in both 
ases and a good des
ription of dimension when K is

algebrai
ally 
losed, assuming G is ω-stable. In parti
ular, the pair (K,G) is shown
to be ω-stable of Morley rank ω.

We extend the results of [3℄ by obtaining a des
ription of dimension for R real


losed and G su
h that for ea
h prime number, p, the subgroup of G 
onsisting

of pth-powers has �nite index in G. To do this, we need to re�ne slightly the

des
ription of de�nable sets, fo
using on a 
ertain 
olle
tion of de�nable sets we


all �basi
 small�, and introdu
e the notion of þ-rank. In parti
ular, we prove that

the pair (R,G) is super-rosy of þ-rank ω. We then use this fa
t to obtain some

partial results about elimination of imaginaries.

Now we state these results pre
isely.

Theorem 1.1. Let R be a real 
losed �eld and G a dense subgroup of R>0
with the

Mann property and su
h that for ea
h prime number, p, the subgroup of G 
onsisting
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of pth-powers in G has �nite index in G. Then in the language of ordered rings

augmented with a unary predi
ate for G, we have

(1) G has þ-rank 1, and
(2) (R,G) has þ-rank ω.

Hen
e, (R,G) is super-rosy.

Theorem 1.2. Let (R,G) be as in the previous theorem. Enlarge (R,G) by adding
su�
iently many sorts of (R,G)

eq

so that the resulting stru
ture has a 
ode for every

basi
 small subset of Rk
, for ea
h k. Then this stru
ture eliminates imaginaries.

While our primary interest is in subgroups of R with the Mann property, we

obtain Theorems 1.1 and 1.2 as appli
ations of a more general result:

Theorem 1.3. Suppose that (R,+, . . . ) is an o-minimal expansion of a group in

the language L . Consider the expansion R = (R,G,+, . . . ) in the language LG =
L ∪ {G} where G is a unary predi
ate. Suppose that for ea
h R

′ = (R′, . . . ) with
R

′ ≡ R:

(1) G(R′) is small, and 
ontained in some interval, (a,∞) ⊆ R′
, in whi
h it is

dense.

(2) Ea
h LG-formula ψ(x) is equivalent to a boolean 
ombination

1

of formulas

of the form ∃~y
(
G(y1) ∧ · · · ∧ G(yj) ∧ ϕ(x, ~y)

)
where ϕ is an L -formula.

(3) For ea
h tuple ~a from R′
and D ⊆ G(R′)n, de�nable over ~a, there are an

L -de�nable set E, and a de�nable S, whi
h is a dense subset of G(R′)n,
with E and S over ~a, su
h that D = E ∩ S. Furthermore, when n = 1,
D 
an be written as a �nite union of su
h E ∩ S, where S is, in addition,

∅-de�nable.

Then R is super-rosy of þ-rank less than or equal to ω and þ-rank of G(R) is 1.

Moreover, if R in
ludes a �eld stru
ture, the þ-rank of R equals ω.

For the de�nition of small, see 1.15.

The reader will note that if 
onditions (1) and (2) hold in a given model, they

hold in any elementarily equivalent model, and if 
ondition (3) holds in a su�
iently

saturated model, it holds in any elementarily equivalent model. The reader will

further note that 
ondition (3) above seems quite te
hni
al. In many 
ases, a mu
h

more natural (and stronger) 
ondition holds. Namely,

(3)′ For ea
h de�nable D ⊆ G(R)k there is an L -de�nable set E su
h that D =
E ∩ G(R)k.

However, in 
ases that are of parti
ular interest to us, su
h as R = (R,G,+, ·)
and G(R) = 2Z3Z, (3)′ fails. To understand why (3) is not as unnatural as it may

�rst appear, the reader may skip ahead to Se
tion 5.

Theorem 1.4. Let R be as in the previous theorem. Enlarge R by adding su�-


iently many sorts of R
eq

so that the resulting stru
ture has a 
ode for every basi


small subset of Rk
. Assume in addition, given any set of parameters A, and any

interval I de�ned over A, that scl(A)∩I is not 
ontained in any small set (see 1.15

and 2.12 for the appropriate de�nitions). Then this stru
ture eliminates imaginar-

ies.

1

Throughout the paper, we use �boolean 
ombination of . . .� to mean �an element of the

ambient boolean algebra generated by . . .�.
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In addition to applying to stru
tures satisfying the 
onditions of Theorem 1.1,

Theorems 1.3 and 1.4 also apply to the stru
tures studied in [2℄, namely dense pairs

of o-minimal expansions of ordered abelian groups. Also we note that we answer

the question of Miller and Speissegger from [7℄ of whether (R, 2Z3Z) has o-minimal

open 
ore. (See the end of Se
tion 3 for de�nitions and the main part of the proof,

and Se
tion 5 for its appli
ation to expansions of the reals by groups with the Mann

Property.)

Conventions and Notation. An L -stru
ture, e.g. R = (R,+R, ·R, <R, 0R, 1R),

onsists of an underlying set, e.g. R, together with an interpretation of ea
h sym-

bol from the language, e.g +R, ·R, <R, 0R, 1R. We drop the supers
ripts when no


onfusion results. Capital letters in the Fraktur font, e.g. M and R, indi
ate stru
-

tures. The universes of these stru
tures are denoted by the 
orresponding 
apital

letters in the normal font. For instan
e, M and R are the respe
tive universes of

the stru
tures above.

We use the letters x, y, z, w as variables, and the letters, a, b, c, et
., to indi
ate

elements of the universe of a stru
ture. We distinguish between elements from M

and tuples from Mn
by using ve
tor notation for tuples. For example, ~x, ~y and ~a,~b

as opposed to x, y and a, b.
We use ϕ, ψ, and θ to indi
ate formulas. When no 
onfusion results, we suppress

the parameters, writing, for instan
e, ϕ(~x) even when the formula is not over the

empty set. Likewise, when we say de�nable, we mean de�nable with parameters.

To save ourselves from 
onstantly worrying about the length of our tuples, when

~x is an n-tuple, we write Mn
as M~x. The set de�ned by a formula ϕ(~x) is denoted

by ϕ(M~x).
We use 
apital letters in bla
kboard bold to indi
ate de�nable sets, e.g. D,E,

with the ex
eptions of N, Q, and R, whi
h are the sets of natural numbers, rational

numbers, and real numbers, respe
tively. We denote the 
omplement of D as Dc
.

We use f , possibly with subs
ripts, for de�nable fun
tions. Also α, β will always

indi
ate ordinals, m,n will always indi
ate natural numbers, and p will always

indi
ate a prime number.

If we wish to emphasize that a de�nable set is de�ned with parameters, we write

the parameters as a subs
ript. For example, suppose ψ(~y) de�nes E and ϕ(~x)
de�nes D, where we have suppressed the parameters in both ψ and ϕ. If we then

wish to emphasize that ϕ uses a parameter ~e ∈M~y, we write D~e. For instan
e, we

write

∃~y(ψ(~y) ∧ ϕ(M~x, ~y))

as ⋃

~e∈E

D~e.

For a set C, we denote by P(C) the power set of C.

De�nitions and Preliminaries. Now we introdu
e some de�nitions that we use

in the remainder of the paper, together with some propositions from other papers

whi
h we also use.

De�nition 1.5. Fix a theory, T , and a su�
iently saturated model M |= T . We

work in M
eq

. Let ϕ(~x, ~y) be a formula without parameters, let

~b ∈M
eq

~y , and let C
be a set of size less than the degree of saturation of M.

3



For k ∈ N, the formula ϕ(~x,~b) is said to k-þ-divide over C if there is D ⊇ C su
h

that tp(~b/D) is not algebrai
 and the set of formulas {ϕ(~x,~b′) : ~b′ |= tp(~b/D)} is

k-in
onsistent. The formula is said to þ-divide over C if it k-þ-divides for some k.

The partial type π(~x,~b) is said to þ-fork over C if it implies a disjun
tion of

formulas (with arbitrary parameters), ea
h of whi
h þ-divides over C.

We have de�ned what it means for a formula to þ-divide over a set C. Sometimes,

when the parti
ulars of C are not important, we will simply say that a formula þ-

divides.

Remark 1.6. By 
ompa
tness, if ϕ k-þ-divides, there is always a single formula

θ(~y, ~d) ∈ tp(~b/D) su
h that the set of formulas {ϕ(~x,~b′) : M |= θ(~b′, ~d)} is k-
in
onsistent.

Also by 
ompa
tness, if π(~x,~b) implies a disjun
tion of formulas that þ-divide,

π implies a �nite disjun
tion of su
h formulas.

De�nition 1.7. Let A,B,C ⊂ M be smaller than the degree of saturation of

M. Then |⌣
þ

is de�ned as follows: A |⌣
þ

C
B if and only if tp(~a/BC) does not

þ-fork over C for any tuple ~a from A. If A |⌣
þ

C
B we say that A is þ-independent

from B over C. If it is 
lear from 
ontext, we will often just say independent for

þ-independent.

De�nition 1.8. A theory T su
h that |⌣
þ

is symmetri
 for T is 
alled rosy.

Alternatively, rosiness 
ould be de�ned in terms of lo
al þ-ranks being �nite.

However, we will not have need of any lo
al ranks as the situation in whi
h we �nd

ourselves allows for a global þ-rank, as de�ned below.

When working with an independen
e relation, we 
an de�ne its foundation rank.

For þ-independen
e we have:

De�nition 1.9. Let p(x) ∈ S(A). For α an ordinal, we de�ne U

þ(p) ≥ α indu
-

tively on α.

(1) U

þ(p(x)) ≥ 0.

(2) If α = β+1, we de�ne Uþ(p(x)) ≥ α if there is a tuple a and a type q(x, y)

over A su
h that q(x, a) ⊃ p(x), Uþ(q(x, a)) ≥ β and q(x, a) þ-forks over A.

(3) If α is a limit ordinal, then U

þ(p(x)) ≥ α if U

þ(p(x)) ≥ β for all β < α.

Remark 1.10. It is perhaps worth noting that in a theory that is not rosy, þ-

forking may still be symmetri
 if one restri
ts the sorts that one 
onsiders. If

thorn independen
e satis�es symmetry when restri
ted to the real sorts, one 
alls

the theory real-rosy. For instan
e, the theory of algebrai
ally 
losed valued �elds

is not a rosy theory, but þ-forking, restri
ted to the �eld, residue �eld, and value

group sorts, is an independen
e relation. Thus ACVF is real-rosy [4℄.

De�nition 1.11. þ-rank is the least fun
tion taking values in On∪{∞} satisfying
the following:

(1) þ-rank

(
ϕ(~x,~b)

)
≥ 0 if ϕ(~x,~b) is 
onsistent.

(2) þ-rank

(
ϕ(~x,~b)

)
≥ α + 1 if there is ψ(~x,~c) that þ-divides over ~b, su
h that

ψ(~x,~c) ⊢ ϕ(~x,~b) and þ-rank

(
ψ(~x,~c)

)
≥ α.

(3) For λ a limit ordinal, þ-rank

(
ϕ(~x,~b)

)
≥ λ if þ-rank

(
ϕ(~x,~b)

)
≥ α for all

α < λ.
4



The relation between þ-rank and U

þ

-rank is given by the following ([4℄):

Fa
t 1.12. For any type, p, Uþ(p) ≤ min{þ-rank
(
ϕ
)
: ϕ ∈ p}.

In analogy with simple and stable theories, we make the following de�nition

(whi
h 
ould be equivalently stated in terms of U

þ

-rank, see [4℄):

De�nition 1.13. A 
omplete theory is super-rosy if every formula has ordinal

þ-rank.

The 
orollary of the Coordinatization Theorem of [8℄ stated below will simplify

our proof of super-rosiness:

Corollary 1.14. Given a 
omplete theory T , if every formula in one free variable

ϕ(x,~b) has ordinal þ-rank, then T is super-rosy.

De�nition 1.15. Let M := (M, . . .) be an ordered stru
ture. A de�nable set

D ⊂Mk
is large i� there is some m, an interval I ⊆M and a fun
tion f : Dm

։ I.
A de�nable set S is small i� it is not large.

Note that this de�nition of small di�ers from the 
onventions of [3℄. There the

adje
tive �small� also applies to sets that are not de�nable, but does not apply to

subsets of Mn
for n > 1. In addition, in [3℄, the notion of small set is de�ned

for arbitrary, possibly unordered, stru
tures. One of the 
ases we wish to 
onsider,

however, is dense pairs of ordered abelian groups. In this setting, a bounded interval

would be small under the de�nition of [3℄. Our de�nition for small, when restri
ted

to de�nable subsets of a model (R,G) satisfying the hypotheses of Theorem 1.3 will

turn out to be G-small, as de�ned in [2℄. When R in addition has a �eld stru
ture

all three de�nitions will 
oin
ide (for de�nable subsets of R).

Fa
t 1.16. Let M be an o-minimal stru
ture. Let {ϕ(M,~a)}~a∈A be a de�nable

family of subsets of M , ea
h of whi
h by o-minimality may be de
omposed into

a �nite union of points and open intervals. Then the minimal number of points

and the minimal number of open intervals in any su
h de
omposition are de�nable

properties of ~a.

Unless stated otherwise, L denotes a language extending the language of ordered

abelian groups, G a unary predi
ate not in L , R = (R,G) denotes a stru
ture

satisfying the 
onditions of Theorem 1.3, although one may think ofR as a stru
ture

satisfying the 
onditions of Theorem 1.1. Following our normal 
onventions, we

should refer to the set de�ned by G(x) as G, but we simply write it as G. We use

R|L to denote the redu
t of R to L .

2. Small Sets

We �rst make a de�nition and a te
hni
al observation.

De�nition 2.1. A k-valued fun
tion, F : A
k

−→ B is a fun
tion from A to {S ∈
P(B) : |S| ≤ k}. The graph of su
h an F is {(a, b) ∈ A × B : b ∈ F (a)}, and its

image is {b ∈ B : b ∈ F (a) for some a ∈ A}. If F : D → E where D ⊆ Rm,E ⊆ Rn
,

then we say F is de�nable in R, if its graph is.

We de�ne the 
omposition of su
h fun
tions as follows:

De�nition 2.2. Consider F1 : A
k1−→ B and F2 : B

k2−→ C. We de�ne F2 ◦ F1 :

A
k3−→ C by setting F2◦F1(a) := {c : ∃b ∈ F1(a) and c ∈ F2(b)}, where k3 := k1 ·k2.

5



Lemma 2.3. LetM = (M,<, . . .) be any ordered stru
ture, E,F be de�nable subsets

of Mm
, Mn

respe
tively, and F : E
k

−→ F be a k-valued fun
tion. Then there is a

fun
tion f : Ek → F with the same image as F . If there are two de�nable elements

of E then f has the same parameters as F .

Proof. Pi
k distin
t a1, a2 de�nable elements 
ontained in E (adding parameters

if ne
essary). Suppose that e ∈ E is not equal to a1. Set f((e, a1, . . . , a1)) to be

the least element of F (e), set f((a1, e, a1, . . . , a1)) to be the se
ond least element of

F (e), et
. Now suppose that e = a1. Set f((e, a2, . . . , a2)) to be the least element

of F (e), et
. Finally, for any ~e ∈ Ek
on whi
h f is not yet de�ned, set f(~e) equal

to the least element of F (a1). �

Let us make a 
ouple of observations about the notion of small as it applies in the

setting of groups. Let (M,+, . . . ) be an expansion of a group. Then the 
omplement

of any small set, S, is large. This 
an be seen, for instan
e, by 
onsidering the map

f : M2 → M given by (m1,m2) 7→ m1 +m2. Suppose some element, m0 ∈ M , is

not in the image of (Sc)2 under f . Then

m0 ∈
⋂

m/∈S

S+m.

Thus, m0 − S 
ontains Sc. Now the 2-valued fun
tion S
2

−→ M, s 7→ {s,m0 − s}
witnesses that S is large, whi
h is a 
ontradi
tion. A
tually we need a stronger

statement:

Lemma 2.4. Let (M,+, <, . . . ) be an expansion of an ordered group, and I =
(a, b) ⊆M be a nonempty interval, and S ⊆M a small set. Then I \ S is large.

Proof. Let f :M2 →M be de�ned as in the previous paragraph. Let J = (a+b, 2b).
We show that f

(
(I \ S)2

)
⊇ J . For a 
ontradi
tion, let m0 ∈ J \ f

(
(I \ S)2

)
. Then,

reasoning as above, −(S ∪ Ic) +m0 ⊇ I \ S. Noting that

Ic +m0 = (−∞,−b+m0) ∪ (−a+m0,∞),

we see that this yields −S+m0 ⊇ (−b+m0, b), 
ontradi
ting the smallness of S. �

De�nition 2.5. We say a de�nable set D is small in an interval I if D∩ I is small.

We say a de�nable set D is 
osmall in an interval I if Dc ∩ I is small.

Here we return from 
onsidering arbitrary ordered groups to the setting of Theorem

1.3.

De�nition 2.6. A de�nable set X is basi
 if it is de�ned by a formula of the form

∃~y(G(~y) ∧ ϕ(~x, ~y)) where ϕ(~x, ~y) is a formula in L , and by G(~y), we mean G(y1) ∧
· · · ∧ G(yn). Furthermore, we will refer to formulas of the form ∃~y(G(~y) ∧ ϕ(~x, ~y))
as basi
 formulas.

Remark 2.7. Note that a set is basi
 if and only if it 
an be written as

⋃

~g∈Gn

ϕ(R~x, ~g).

where ϕ is an L -formula. Note also that �nite unions and interse
tions of basi


sets are again basi
. In parti
ular, an interval interse
t a basi
 set is again a basi


set.

6



For our purposes the above 
hara
terization of de�nable sets is not quite su�-


ient; we obtain a more detailed des
ription in the 
ase of de�nable subsets of R
(as opposed to Rn

).

First we need to prove that if f1 and f2 are fun
tions Rn → R de�nable in L

then

⋃
~g∈Gn(f1(~g), f2(~g)) is a �nite union of intervals. This is 
lear when f1 and

f2 are fun
tions in one variable. In general, it is slightly less 
lear. However, it is

a 
onsequen
e of the 
ell de
omposition theorem for o-minimal stru
tures and the

following two lemmas.

The �rst of the two lemmas shows that subsets of Gk
are in a sense well approx-

imated by L -de�nable sets. We already know that for any su
h set, D, there is an

L -de�nable set E su
h that D is dense in E ∩ Gk
. It is not the 
ase that D will

ne
essarily be dense in E. For instan
e, let (R,G) := (R, 2Q). Consider the plane,

P ⊂ R3
de�ned by z− 3y = 0. Let D := P∩G3

. Then D is just the 
opy of G lying

on the x-axis, and not dense in P. Clearly, in this example, had we 
hosen E as the

x-axis, rather than the plane P we would have obtained the density we desired. We

prove that in general, 
hoosing E 
arefully, we 
an in fa
t obtain density in E.

Lemma 2.8. For any D ⊆ Gn
, there is L -de�nable B su
h that D is a dense subset

of B. Moreover B is de�ned over the same parameters as D.

Proof. Let D be de�nable over ~a. By the hypotheses of Theorem 1.3, we know that

there are an ~a-de�nable E and S su
h that E is L -de�nable, S is a dense subset of

Gn
, and D = E ∩ S. We pro
eed by indu
tion on the dimension, k, of E to �nd an

B ⊆ E, L -de�nable over ~a with D a dense subset of B. There is nothing to prove

for k = 0.
Now suppose we have proven the 
laim for j < k. We may assume that E is a


ell: write E as E1∪· · ·∪El, with ea
h Ei a 
ell de�ned over ~a. If Ei is of dimension

less than k, then we may apply the indu
tive hypothesis to Ei ∩ S. Thus we may

assume E is a 
ell of dimension k.
As E is a 
ell, we may 
hoose a proje
tion π : E → π(E) ⊆ Rk

so that π is a

homeomorphism. Now 
hoose an ~a-de�nable E′
and S′ su
h that E′

is L -de�nable,

S′ is a dense subset of Gk
, and π(D) = E′ ∩ S′. Again, we may divide E′

into 
ells,

say E′
1 ∪ · · · ∪ E′

m. For ea
h i, either E′
i has dimension k, in whi
h 
ase it is open

and π(D)∩E′
i = E′

i ∩ S′ is dense in E′
i or E

′
i has dimension less than k and we may

apply indu
tion to assume π(D) ∩ E′
i is a dense subset of E′

i. Thus π(D) is a dense

subset of E′
.

Now let B := π−1(E′). As π is a homeomorphism, D is a dense subset of B and

sin
e π is L -de�nable, so is B. We observe that B is de�nable over ~a. �

The se
ond of the two lemmas presents a 
ondition under whi
h a set de�nable

in (R,G) is a
tually an interval.

Lemma 2.9. Let B ⊆ Rn
be a 
ell su
h that f1 and f2 are 
ontinuous on B, B∩Gn

is dense in B, and f1(~x) < f2(~x). Then
⋃

~g∈B∩Gn(f1(~g), f2(~g)) is an interval.

Proof. Let a = inf f1(B) and b = sup f2(B). Let d ∈ (a, b); we wish to show that

d ∈
⋃

~g∈B∩Gn

(
f1(~g), f2(~g)

)
. For some c1 ∈ B, f1(c1) < d. Clearly if f2(c1) > d,

we are done, so we may assume that f2(c1) < d. Likewise we may assume that

there is some c2 su
h that d < f1(c2) < f2(c2). Note that (f1 + f2)(c1) < 2d while

(f1 + f2)(c2) > 2d. Thus, by the 
ontinuity of f1 and f2, and by the 
onne
tedness

of B, there is c3 su
h that (f1 + f2)(c3) = 2d. Sin
e f1 < f2, we 
on
lude that

7



d ∈ (f1(c3), f2(c3)). By the density of Gn ∩ B in B we may �nd ~g ∈ B ∩ Gn
su
h

that d ∈ (f1(~g), f2(~g)). �

Corollary 2.10. If f1 and f2 are fun
tions Rn → R whi
h are de�nable in L ,

then

⋃
~g∈Gn(f1(~g), f2(~g)) is a �nite union of intervals.

Proof. Re
all that R restri
ted to L is an o-minimal stru
ture. Given f1 and f2,
L -de�nable n-ary fun
tions, we 
an de
ompose Rn

as a �nite union of disjoint 
ells,

Ci, where on ea
h Ci, f1, f2 are 
ontinuous, and either the fun
tions 
oin
ide on

every point of Ci or else one of the fun
tions is stri
tly larger on every point of Ci.

By Lemma 2.8, we may shrink ea
h Ci until we obtain a 
ell, Bi, su
h that Bi ∩Gn

is a dense subset of Bi. By Lemma 2.9, on ea
h su
h 
ell,

⋃
~g∈Bi∩Gn(f1(~g), f2(~g))

is an interval. �

Proposition 2.11. Let D ⊆ R be de�nable in R. Then there is a �nite partition

−∞ = a0 < a1 < · · · < am = ∞ of R su
h that D is either small or 
osmall in

(ai−1, ai) for i = 1, . . . ,m. Furthermore, if D is de�nable from

~d, so is the partition

−∞ = a0 < a1 < · · · < am = ∞.

Proof. We �rst assume that D is basi
. So D =
⋃

~g∈Gn ϕ(R,~g), where ϕ(x, ~y) is

an L -formula. By the o-minimality of R|L , ea
h ϕ(x,~g) de�nes a �nite union of

points and intervals, and there is a uniform bound on the number of these points

and intervals. By Fa
t 1.16, we may assume without loss of generality that ea
h

ϕ(x,~g) de�nes either a single point or a single interval.

First let us 
onsider the 
ase where ϕ(x,~g) is a single point. As there is a

de�nable surje
tion from Gn
onto D, we see that D is small.

Now we 
onsider the 
ase where ea
h ϕ(x,~g) is an interval. There areL -de�nable

f1, f2 : R
n → R su
h that ϕ(R,~g) = (f1(~g), f2(~g)). By Corollary 2.10,

⋃

~g∈Gn

(f1(~g), f2(~g))

is a �nite union of intervals. By o-minimality, the endpoints of these intervals

are de�nable over any parameters from whi
h the �nite union of intervals may be

de�ned.

Thus, we have our result if D =
⋃

~g∈Gn ϕ(R,~g).
Now assume D and E satisfy the 
on
lusion. To 
omplete the proof, we must

show that Dc
and D ∪ E also have the desired property. But this is 
lear. �

De�nition 2.12. We say that ~e is in the small 
losure of A i� ~e is 
ontained in

a small set de�ned with parameters from A. We denote the small 
losure of A by

scl(A).

De�nition 2.13. We say that a set, S ⊂ Rk
, is G-bound i� there is an L -de�nable

f : Rn → Rk
su
h that S ⊆ f(Gn).

It is 
lear that G-bound implies small. We pro
eed to prove the 
onverse.

Lemma 2.14. Any basi
 small set S is G-bound. Furthermore, assuming that

there are two de�nable elements of R, the fun
tion f witnessing that S is G-bound
is de�nable over the same parameters as S.
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Proof. Note that if S ⊂ Rk
is a basi
 small set, so is ea
h proje
tion of S to R; and

that 
artesian produ
ts of G-bound sets are G-bound. Thus it su�
es to 
onsider

small subsets of R.
Suppose that S is de�ned with parameters ~a. Let S be

⋃

~g∈Gn

ϕ(R,~g,~a)

where ϕ(x, ~y, ~z) is a parameter-free L -formula. Sin
e R|L is o-minimal, ea
h set

ϕ(R,~g,~a) is a �nite 
olle
tion of points and intervals. It is easy to see that any

set 
ontaining an open interval is large, so ea
h ϕ(R,~g,~a) is a �nite set. By o-

minimality, there is a uniform bound k to the size of ϕ(R,~g,~a) for ea
h ~g ∈ Gn
.

Thus mapping ~g to ϕ(R,~g,~a) gives us a k-valued (and ~a-de�nable) fun
tion, F ,
in the language L su
h that F (Gn) = S. By 2.3, we may repla
e this with an

a
tual fun
tion, f . (Although if 0 is the only de�nable element of R, we may have

to add an additional parameter in R.) �

Remark 2.15. Note that even when 0 is the only de�nable element, S is still the

image G under a k-valued fun
tion whi
h is de�nable with the same parameters as

S.

Lemma 2.16. Let ϕ(x, ~d) de�ne D. Then there are a partition −∞ = a0 < · · · <
an = ∞ and basi
 small sets S1, . . . , Sn su
h that D∩ [ai−1, ai] either is 
ontained in
Si, or 
ontains S

c
i ∩ [ai−1, ai]. Furthermore, the partition and ea
h Si are de�nable

over

~d.

Proof. Note that ϕ(x, ~d) is equivalent to a boolean 
ombination of basi
 formulas.

We pro
eed by indu
tion, using repeatedly that the interse
tion of a basi
 set with

an interval is again a basi
 set.

Suppose that ϕ(x, ~d) is a basi
 formula. By Proposition 2.11, there is a

~d-
de�nable partition −∞ = a0 < · · · < an = ∞ su
h that D ∩ [ai−1, ai] either is

small or 
osmall. If D ∩ [ai−1, ai] is small, let Si := D ∩ [ai−1, ai]. If D ∩ [ai−1, ai]
is 
osmall in [ai−1, ai], then D ∩ [ai−1, ai] is a �nite union of intervals, by Lemma

2.10. Thus, sin
e it is small, [ai−1, ai] \ D is a �nite 
olle
tion of points. Let Si be

this �nite 
olle
tion of points. Note that in either 
ase, by Proposition 2.11, Si 
an

be de�ned over

~d.
Now suppose that ϕ = ϕ1 ∧ ϕ2. Let E1 := ϕ1(R, ~d) and let E2 := ϕ2(R, ~d).

By indu
tion, there are a partition −∞ = b0 < · · · < bm = ∞ and basi
 small

sets S̃1, . . . , S̃m with the desired property with respe
t to E1. Likewise there are a

partition −∞ = c0 < · · · < cn = ∞ and basi
 small sets S̃m+1, . . . , S̃m+n with the

desired property with respe
t to E2. Let −∞ = a0 < · · · < al = ∞ be the union of

these two partitions. Then D ∩ [ai−1, ai] is either small or 
osmall.

If D∩[ai−1, ai] is small, then either E1 or E2 is small in [ai−1, ai]. Without loss of

generality, we may assume it is E1. Note that [ai−1, ai] is 
ontained in [bk−1, bk] for

some k. Let Si := S̃k ∩ [ai−1, ai]. As S̃k is

~d-de�nable and 
ontains E1 ∩ [bk−1, bk],
we see that Si satis�es the desired properties.

If D∩[ai−1, ai] is 
osmall, then both E1 and E2 are 
osmall in [ai−1, ai]. There are
j, k, su
h that [ai−1, ai] ⊆ [bj−1, bj] and [ai−1, ai] ⊆ [ck−1, ck]. Thus, E1 ∩ [ai−1, ai]


ontains S̃cj ∩ [ai−1, ai], and E2 ∩ [ai−1, ai] 
ontains S̃cm+k ∩ [ai−1, ai]. Thus, D


ontains (S̃j ∪ S̃m+k)
c ∩ [ai−1, ai]. We let Si := (S̃j ∪ S̃m+k)

c ∩ [ai−1, ai]
9



Now suppose that ϕ = ¬ϕ0. Let E be de�ned by ϕ0. By indu
tion there is

a partition −∞ = a0 < · · · < an = ∞ and basi
 small sets S1, . . . , Sn su
h that

E ∩ [ai−1, ai] either is 
ontained in Si, or 
ontains Sci ∩ [ai−1, ai], and the Si are

de�ned from

~d. But this partition and these small sets work for D as well.

�

From the previous two lemmas (as well as Lemma 2.4), we obtain the following

two 
orollaries:

Corollary 2.17. If S is a small set, then it is 
ontained in a basi
 small set and,

hen
e, S is G-bound.

Proof. Let S ⊂ Rk
. Let πi be the proje
tion onto the ith 
oordinate. Let Si :=

πi(S). By Lemma 2.16, take S̃i, a basi
 small set 
ontaining Si. Then S̃1 × · · · × S̃k
is a basi
 small set 
ontaining S. As S is 
ontained in a G-bound set, it is itself

G-bound. �

Corollary 2.18. A tuple, ~e, is in the small 
losure of A if and only if there is an

LA-de�nable k-valued fun
tion, F (~x) and some ~g ∈ Gn
su
h that ~e ∈ F (~g). Thus,

if ~a ∈ scl(~b) and ~b ∈ scl(~c) then ~a ∈ scl(~c).

Proof. If ~e ∈ scl(A) then there is a small set S~a de�ned with parameters ~a from A
that 
ontains ~e. The set S~a is 
ontained in a basi
 small set, also de�ned over A,
and this basi
 small set is the image of a k-valued fun
tion on Gn

. Conversely, su
h

a set is G-bound, and hen
e small. Moveover, if ~a ∈ scl(~b) and ~b ∈ scl(~c) then this is

witnessed by k1 and k2-valued fun
tions, F1 and F2 respe
tively, with F1 = F1(~x,~b)
and F2 = F2(~y,~c). Thus F3 := F1(~x, F2(~y,~c)) witnesses that ~a ∈ scl(~c). �

In addition, we have the following 
orollary:

Corollary 2.19. A �nite union of small sets is again a small set.

Proof. Finite unions of G-bound sets are again G-bound, by Lemma 2.2 of [3℄. �

While we rely on [3℄ for the above proof, we note that the 
orollary also follows

as a spe
ial 
ase of Proposition 2.22 below.

Remark 2.20. Sin
e scl is transitive, and scl(∅) is in�nite, (and in parti
ular,


ontains at least one non-zero element) we may add an element of scl(∅) to the

language without a�e
ting small 
losure. Thus we may assume that R 
ontains at

least two de�nable elements, and hen
eforth, we will assume that we may repla
e

ea
h k-valued fun
tion with an a
tual fun
tion.

Remark 2.21. Note that, unlike the algebrai
 
losure of A, scl(A) depends on the

model 
ontaining A.

Although the following proposition is not used in the proofs of this arti
le's main

theorems, it is interesting to note that a small de�nable union of small sets is again

a small set.

Proposition 2.22. If D is small, and E~d is small for ea
h

~d ∈ D, then
⋃

~d∈D
E~d is

also small.
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Proof. First note that by Corollary 2.17, for ea
h

~d ∈ D there is a basi
 small set


ontaining E~d . By 
ompa
tness, the formula de�ning the basi
 small set may be


hosen uniformly in

~d. Thus, we may redu
e to the 
ase where D and ea
h E~d are

basi
 small.

Assume that the formula θ(~x, ~d) de�nes E~d for every

~d ∈ D. Then, sin
e E~d is a

basi
 small set, there are ψ(~y) ∈ tp(~d) and f(~x, ~y) su
h that whenever

~d′ |= ψ(~y),

we have f(~x, ~d′) : Gk
։ E~d′ . Note that k, ψ, and f may depend on

~d. However by

ompa
tness, there is a �nite 
overing of D with sets de�ned by ψ1(~y), . . . , ψn(~y),
together with asso
iated k1, . . . , kn and f1, . . . , fn. By taking k = max{k1, . . . , kn},
we see that there is a de�nable fun
tion

f(~x, ~y) : Gk × D →
⋃

~d∈D

E~d

su
h that for any

~d ∈ D, f(~x, ~d) : Gk
։ E~d.

Now suppose that g : Gn
։ D witnesses that D is small. Then let h : Gk+n

։⋃
~d∈D

E~d be de�ned as follows:

h(~a1,~a2) := f(~a1, g(~a2)).

So

⋃
~d∈D

E~d is G-bound, and hen
e small. �

De�nition 2.23. For a set C, a fun
tion from P(C) to P(C) is a 
losure operator
i� for any A,B ⊆ C

(1) A ⊆
l(A),
(2) A ⊆ B implies 
l(A) ⊆
l(B),
(3) 
l(
l(A))=
l(A).

Furthermore, we say that a 
losure operator is �nitary when (2) is strengthened to

(2

′
) b ∈
l(A) i� b ∈
l(A0) for some �nite A0 ⊆ A.

If the 
losure also satis�es the Steinitz ex
hange property, then we say that the


losure operator gives rise to a pregeometry.

It is 
lear that the small 
losure satis�es (1), is �nitary, and, by Corollary 2.18,

satis�es (3). Thus we have proven:

Proposition 2.24. The small 
losure, scl is a �nitary 
losure operator on subsets

of R.

3. Super-rosiness of (R,G)

In this se
tion we prove Theorem 1.3. To do this, we will need to use the

following propositions from [4℄. Throughout this se
tion, we assume that (R,G) is
κ-saturated, for κ > 2|LG|

Proposition 3.1. If D has þ-rank α and f : D ։ E, then E has þ-rank less than

or equal to α. Furthermore, if the �bers of f are �nite, we have equality.

Proposition 3.2. If D has þ-rank α and E has þ-rank less than α, then þ-rank(D\
E) is α.

Proposition 3.3. If D has þ-rank α then Dn
has þ-rank at least αn, and equality

holds if α = 1.

Now we begin to analyze þ-dividing in (R,G). In what follows, L
eq

G refers to

the language of (R,G)
eq

.
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Lemma 3.4. Let ϕ(x,~b0) be a formula in L
eq

G with x a variable in the real sort. If

ϕ(R,~b0) is an in�nite set de�nable in L , then ϕ(x,~b0) does not þ-divide over the

empty set.

Proof. It may be worth pointing out that merely be
ause the set ϕ(R,~b0) is de�n-

able in L , we may not assume that ϕ is an L -formula. For instan
e,

~b0 may 
ome

from a sort that does not even exist in (R|L )
eq

.

Assume, for a 
ontradi
tion, that ϕ(x,~b0) does þ-divide over the empty set.

That is, tp(~b0) is non-algebrai
, and there is some θ(~y,~c) and some k ∈ N su
h

that whenever

~b1, . . . ,~bk are distin
t elements of θ(R
eq

~y ,~c), we have that ϕ(x,
~b1) ∧

· · · ∧ ϕ(x,~bk) is in
onsistent. Sin
e ϕ de�nes an in�nite L -de�nable set, by the

o-minimality of R|L , it de�nes a �nite 
olle
tion of points and open intervals.

First note that we may assume that for ea
h

~b |= θ(~y,~c), it is the 
ase that ϕ(x,~b)
de�nes a single interval, modifying ϕ and θ if ne
essary. (It is possible that for some

~b |= θ(~y,~c), ϕ(x,~b) de�nes a �nite 
olle
tion of points. First we modify θ to rule

out this possibility. Then we repla
e ϕ(x,~b) with a formula de�ning the least of the

intervals in the �nite 
olle
tion of points and intervals 
omposing ϕ(R,~b).)
Now we wish to redu
e to the 
ase where k = 2. We may assume that ϕ(x, ~y)

does not (k − 1)-þ-divide. Repla
e ϕ(x, ~y) with

ϕ̃(x, ~y1, . . . , ~yk−1) :=
∧

i<k

ϕ(x, ~yi)

and repla
e θ with

θ̃(~y1, . . . , ~yk−1) := θ(y1) ∧ · · · ∧ θ(yk−1) ∧
∧

i<j<k

~yi < ~yk.

Now ϕ̃ 
learly 2-þ-divides.
Now we would like to �nd a 
ontradi
tion by 
onsidering the union of the sets

de�ned by ϕ(x,~b) for ~b |= θ, interse
ting with G, and noting that it violates (3) of

our assumptions on R from Theorem 1.3. First note that sin
e G is a dense subset

of (a,∞), we 
an assume that ϕ(R, b) is 
ontained in the 
losure of G for ea
h b |= θ
(possibly after re�e
ting the whole family over a and modifying θ. However, there is

still no immediate 
ontradi
tion sin
e

⋃
~b|=θ ϕ(R,

~b)∩G might still be a �nite union

of intervals in G. We 
an modify ϕ(x,~b) on
e again to de�ne the interval with

half the length but the same 
enter as ϕ(x,~b). Now, the union of these interse
t G

annot be written as a �nite union of intervals interse
t a dense subset of G.

�

Now we have all the tools in pla
e to begin our proof of Theorem 1.3.

Theorem 1.3. R = (R,G) is super-rosy of þ-rank less than or equal to ω and

þ-rank of G is 1, Moreover, if R in
ludes a �eld stru
ture, þ-rank of R equals ω.

Proof. First we wish to show that the þ-rank of G is 1. For a 
ontradi
tion, suppose

that some formula ϕ(x,~b) whi
h de�nes an in�nite subset of G þ-divides over the

empty set. Say that k, θ(~y,~c) are su
h that

∧
i≤k ϕ(x,

~bi) is in
onsistent for any k

distin
t elements

~b1, . . . ,~bk satisfying θ(~y,~c).
12



Then, by (3) of the hypotheses of Theorem 1.3, ϕ(R,~b) is a �nite union of sets,

ea
h of whi
h is either a point or an interval interse
t an ∅-de�nable dense subset

of G. Without loss of generality, we may assume that for ea
h

~b′ |= θ(~y,~c), it is

the 
ase that ϕ(x,~b′) de�nes a single interval, ψ1(R,~b
′), interse
t an ∅-de�nable

dense subset of G. Whi
h ∅-de�nable set may depend on the type of

~b′, but one

su
h set, ψ2(R), must o

ur for in�nitely many

~b′. Modifying θ if ne
essary, we

may assume that for all

~b′ |= θ(~y,~c), we have that ϕ(x,~b′) de�nes the same set as

ψ1(x,~b
′) ∧ ψ2(x).

Thus we have that {ψ1(x,~b
′) ∧ ψ2(x) : ~b′ |= θ(~y,~c)} is k-in
onsistent. But by

Lemma 3.4, ψ1(x,~b
′) does not þ-divide, and so we may �nd an in�nite B = {bi :

bi |= tp(~b/~c), i < α} su
h that

⋂
~bi∈B ψ1(R,~bi) is nonempty and, hen
e, 
ontains an

open interval (d1, d2). But sin
e ψ2(x) is a dense subset of G,
⋂

~bi∈B

ϕ(R,~bi) ⊇ (d1, d2) ∩ ψ2(R) 6= ∅,

whi
h is a 
ontradi
tion.

Se
ond, we wish to show that the þ-rank of x = x is no larger than ω. Suppose

that ϕ(x,~b) k-þ-divides over the empty set, where, again,

~b may 
ome from any

sort in R
eq

. We observe that it su�
es to show that D~b := ϕ(R,~b) must be a small

set, sin
e any small set is G-bound, and thus we may apply Proposition 3.1 and

Proposition 3.3 to 
on
lude that any G-bound set has �nite þ-rank. Then we will

have shown that any formula, ϕ(x,~b), whi
h þ-divides has �nite þ-rank, and, thus,

þ-rank

(
x = x

)
≤ ω.

Now assume for a 
ontradi
tion that ϕ(x,~b) is not a small set. By 2.16 there is

some open interval I~b su
h that D~b is 
osmall in I~b, that is, D~b ∩ I~b = I~b \ S~b where

S~b is a small set. Suppose that θ(~y,~c) is su
h that for any

~b1, . . . ,~bk, ea
h realizing

θ(~y,~c), one has

D~b1
∩ · · · ∩ D~bk

= ∅.

Thus we have

∅ =
⋂

1≤i≤k

(D~bi
∩ I~bi

) =
⋂

1≤i≤k

I~bi
\

⋃

1≤i≤k

S~bi

Then it is not hard to see that

J := I~b1
∩ · · · ∩ I~bk

= ∅.

For if this were not the 
ase, J would be an open interval 
ontained in the small

set S~b1 ∪ · · · ∪ S~bk
, whi
h is impossible, by Corollary 2.19.

Thus, if ψ(x,~b) de�nes I~b, we see that ψ(x,~b) also þ-divides. But sin
e inter-

vals are L -de�nable, this 
ontradi
ts the previous lemma. Thus we 
on
lude that

þ-rank

(
x = x

)
is no greater than ω.

It remains to show that if R has a �eld stru
ture, then þ-rank

(
x = x

)
is pre
isely

ω. Note that as G is small, R is an in�nite dimensional dcl(G)-ve
tor spa
e. Choose
(ci)i∈N independent ve
tors. Considering

c1G+ · · ·+ cn−1G+ cng,

and noting that one gets 2-in
onsisten
y as one varies g though G, it is 
lear that

Vn
~c := c1G+ · · ·+ cn−1G+ cnG
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has þ-rank n. As ea
h Vn
~c is a subset of R, þ-rank

(
R
)
≥ ω. �

Note that we have not only shown that R is super-rosy, but the following:

Corollary 3.5. Any formula ϕ(x,~b) that þ-divides de�nes a small subset of R.

This will allow us to show that, in 
ertain 
ases, small 
losure gives rise to a

pregeometry in Se
tion 7.

Finally, we should point out the following two 
orollaries:

Corollary 3.6. Dense pairs of o-minimal stru
tures (with at least a group stru
-

ture) are superrosy. If the o-minimal stru
ture is an expansion of a real 
losed �eld,

the þ-rank of the pair is ω.

Proof. See [2℄ to see a proof that dense pairs satisfy the hypotheses of Theorem

1.3. �

For the next 
orollary, we need a de�ntion and a fa
t from [7℄:

De�nition 3.7. An expansion of (R, <) is said to have o-minimal open 
ore if the

redu
t generated by the de�nable open sets is o-minimal.

Fa
t 3.8. An expansion of (R,+, ·) has o-minimal open 
ore if and only if ea
h

de�nable open subset of R has �nitely many 
onne
ted 
omponents.

Corollary 3.9. An expansion of (R,+, ·) whi
h satis�es the hypotheses of Theorem

1.3 has o-minimal open 
ore.

Proof. For a 
ontradi
tion, let D be de�nable, open, and with in�nitely many 
on-

ne
ted 
omponents. We may assume that D ⊂ (a,∞). We note that that given

d ∈ D, the 
onne
ted 
omponent of D 
ontaining d is de�nable, say by ϕ(x, d).
Being in the same 
onne
ted 
omponent is a de�nable equivalen
e relation, 
all it

E. Thus the 
onne
ted 
omponent of d may just as easily be de�ned by ϕ̃(x, d/E).
As d/E varies through the sort D/E, ϕ̃(x, d/E) þ-divides. But ϕ̃(x, d/E) is an

interval, and hen
e L -de�nable. This 
ontradi
ts Lemma 3.4. �

4. Imaginaries

Pillay, building on ideas of Las
ar, showed that a strongly minimal theory where

the algebrai
 
losure of the empty set is in�nite eliminates imaginaries down to

�nite sets (see e.g. [6℄). What follows is the same argument, with small repla
ing

�nite, and it shows that R eliminates imaginaries down to small sets.

In this se
tion, we assume that (R,G) satis�es all the hypotheses of Theorem

1.4. That is, we add to the assumptions of the last se
tion, the assumption that

given any set A, and I any interval de�ned over A, that scl(A)∩ I is not 
ontained
in any small set.

Proposition 4.1. Let ϕ(~x, ~y) de�ne an equivalen
e relation, E, and let e be an

element of the sort R~x/E. Then there is an element,

~d, of R~x su
h that e = ~d/E

and

~d ∈ scl(e).

Proof. Let π : Rn → Rn/E be the quotient map, and 
onsider D1 de�ned by

∃x2, . . . , xnπ(x1, x2, . . . , xn) = e.

In the 
ase that D1 is small, any element of D1 is in scl(e); let d1 be any su
h

element. Otherwise, there is some interval su
h that D1 is 
osmall in that interval.
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By our assumption on the small 
losure, it is not possible that scl(e) is 
ontained
in Dc

1. Let d1 be some element of scl(e) ∩ D1.

Pro
eed indu
tively and de�ne Di as

∃xi+1, . . . , xnπ(d1, . . . , di−1, xi, xi+1, . . . , xn) = e

and 
onsider the 
ases of Di small, or not, as above, to get

~d := (d1, . . . , dn).
Then di ∈ scl(~e, d1, . . . , di−1). By 
hoi
e of d1, . . . , di−1, together with the fa
t that

scl : P(R) → P(R) is a 
losure operator, this implies that di ∈ scl(e).
�

Now we may prove our elimination of imaginaries result:

Theorem 1.4. Enlarge R to R̃ by adding su�
iently many sorts of R
eq

so that R̃

has a 
ode for every basi
 small subset of Rk
. Then R̃ eliminates imaginaries.

Proof. Take e ∈ R
eq

. We want to �nd c ∈ R̃ su
h that c is interde�nable with e.

Take

~d su
h that π(~d) = e and ~d ∈ scl(e). Thus ~d is in a basi
 small set, D, de�ned

over e; let c be the 
ode for D∩π−1(e). Clearly, c is de�ned over e. But e is de�ned
over any element of D ∩ π−1(e), and thus over c as well.

�

5. Groups with the Mann Property

We start by de�ning the Mann property for multipli
ative subgroups of �elds.

Let K be a �eld, and G a subgroup of K×
. For a1, . . . , an ∈ K, a solution

(g1, . . . , gn) of a1x1+· · ·+anxn = 1 in G is said to be nondegenerate if

∑
i∈I aigi 6= 0

for every non-empty subset I of {1, . . . , n}. We say G has the Mann property if

for every a1, . . . , an from K, the equation a1x1 + · · ·+ anxn = 1 has �nitely many

nondegenerate solutions in G.

Prior to this se
tion, we have assumed that (R,G) was as in Theorem 1.3. In

this se
tion we instead prove that (R,G) as in Theorem 1.1 satisfy the hypotheses

of Theorem 1.3. That is, we assume that R is a real 
losed �eld and G is a dense

subgroup of R>0
with the Mann property and su
h that for ea
h p, the pth powers

in G have �nite index in G.
As noted in the introdu
tion, most of the results about groups with the Mann

property that we need are found in [3℄. For instan
e, we have the following:

Fa
t 5.1. By of Lemma 6.1 of [3℄, if (R,G) satis�es the 
onditions of Theorem

1.1, then G is small.

Fa
t 5.2. By Theorem 7.5 of [3℄, if (R,G) satis�es the 
onditions of Theorem 1.1,

then any de�nable subset of R is a boolean 
ombination of basi
 sets.

However, we will need to strengthen the quanti�er elimination results obtained

there.

In the rest of this se
tion q is of the form pm, where p is a prime number and

m ∈ N.

For ea
h q and ~k = (k1, . . . , kn) ∈ Zn
let Dq,~k(~x) be the formula

G(x1) ∧ · · · ∧ G(xn) ∧ ∃y(G(y) ∧ xk1

1 · · ·xkn

n = yq).

Note that Dq,(0,...,0)(R~x) is all of G
n
, and for any g ∈ G, there is ~h ∈ Gn

su
h that

Dq,1~k(g,R~x) equals ~hDq,~k(R~x).
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We will write G[n]
to denote the elements of G that have nth roots in G.

Proposition 5.3. Let D ⊆ Gn
be de�nable in (R,G), then D is a boolean 
ombi-

nation of sets of the form F ∩ ~gDq,~k(R~x), where F is a semialgebrai
 set, ~g ∈ Gn
,

q is as above, and ~k ∈ Zn
.

Before proving this proposition, we re
all some results from [3℄ that are used in

the proof of it.

Let (R1, G1) and (R2, G2) be two |R|+-saturated elementary extensions of (R,G).
Then in the proof of Theorem 7.1 of [3℄, the authors 
onstru
t a ba
k and forth

system I, between (R1, G1) and (R2, G2), 
onsisting of isomorphisms ι : (R′
1, G

′
1) →

(R′
2, G

′
2) where R

′
i is a real 
losed ordered sub�eld of Ri of 
ardinality < |R|, G′

i ⊆
R′>0

i is a pure subgroup of Gi 
ontaining G, and R
′
i and Q(Gi) are algebrai
ally

free over Q(G′
i) for i = 1, 2.

We also need the following lemma from [3℄.

Lemma 5.4. Let R be a real 
losed �eld with a sub�eld E and let H ⊆ R>0
be a

subgroup satisfying the Mann property. Suppose that H ′
is a subgroup of H su
h

that for all a1, . . . , an ∈ E×
the equation a1x1 + · · · + anxn = 1 has the same

nondegenerate solutions in H ′
as in H. Then for any h ∈ H, if h is algebrai
 over

E(H ′) of degree d, then hd ∈ H ′
.

Now we prove Proposition 5.3.

Proof. By standard model theoreti
 arguments (see for instan
e 8.4.1 of [5℄), it is

enough to prove the following:

Claim. Let (R1, G1) and (R2, G2) be two |R|+-saturated elementary extensions of

(R,G). Take ~g1 ∈ Gn
1 and ~g2 ∈ Gn

2 su
h that for any formula ϕ(~x) in the language

of ordered rings with parameters in R, for any g ∈ G, and for any q, ~k as above,

we have

(R1, G1) |= ϕ(~g1) ∧Dq,1~k(g,~g1) i� (R2, G2) |= ϕ(~g2) ∧Dq,1~k(g,~g2).

Then (R1, G1, ~g1) ≡R (R2, G2, ~g2).

Proof of the 
laim. By the remarks made before the proof, there is a ba
k and

forth system I between (R1, G1) and (R2, G2). It su�
es to prove that there is an

element ι of I taking ~g1 to ~g2.
Sin
e ~g1 and ~g2 satisfy the same ordered �eld type over R, there is a ordered

�eld isomorphism ι : R′
1 → R′

2, mapping ~g1 to ~g2 equal to the identity on R, where
R′

i is the real 
losure of R(~gi) for i = 1, 2.

Consider G′
i := R′

i ∩ Gi. We wish to show that G′
i = G〈~gi〉 := {(g~g

~k
i )

1/m : g ∈

G,~k ∈ Zn,m ∈ N, g~g
~k
i ∈ G

[m]
i }. It is 
lear that G′

i ⊇ G〈~gi〉.
We use Lemma 5.4 to show G′

i ⊆ G〈~gi〉. To do this we need to 
he
k that for all

a1, . . . an ∈ R, if a1x1 + · · · + akxn = 1 has a nondegenerate solution in Gi, then

this solution lies in G〈~gi〉. But sin
e (R,G) � (Ri, Gi), su
h a solution lies even in

G. Now applying Lemma 5.4, we see that if g ∈ Gi is algebrai
 of degree d over

R(G〈~gi〉), then gd is in G〈~gi〉 and thus g itself is in G〈~gi〉.

Now we wish to show that ι(G′
1) = G′

2. An element of G′
1 is of the form (g~g

~k
1 )

1/m

for some g ∈ G,~k ∈ Zn,m ∈ N. Note ι((g~g
~k
1 )

1/m) = (g~g
~k
2 )

1/m
, and by our
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assumption on ~gi, (g~g
~k
1 ) is in G

[m]
1 if and only if (g~g

~k
2 ) is in G

[m]
2 . Thus ι is an

isomorphism between (R′
1, G

′
1) and (R′

2, G
′
2).

It remains to show that R′
i and Q(Gi) are algebrai
ally free over Q(G′

i) and G
′
i

is a pure subgroup of Gi. The �rst follows from the assumption that (Ri, Gi) is an
elementary extension of (R,G), and G′

i is a pure subgroup of Gi, sin
e it equals

G〈~gi〉. �

Remark 5.5. Note that the proof of Proposition 5.3 does not require that the

subgroup of pth powers has �nite index. With this assumption, we see that in

addition, the subgroup of qth powers is of �nite index in G and therefore Dq,~k(R~x)

is of �nite index in Gn
. So Gn \Dq,~k(R~x) is a �nite union of 
osets of Dq,~k(R~x).

We also have the following lemma.

Lemma 5.6. For any q, and ~k ∈ Zn
, Dq,~k(R~x) is dense in Gn

.

Proof. We show that for any q, and ~k ∈ Zn
, Dq,~k(R~x) ⊇ (G[q])n, whi
h is enough

to prove the lemma, as (G[q])n is dense in Gn
. So let (gq1, . . . , g

q
n) ∈ (G[q])n. Then

(gq1)
k1 · · · (gqn)

kn = (gk1

1 )q · · · (gkn

n )q = (gk1

1 · · · gkn

n )q ∈ G[q].

Thus (gq1, . . . , g
q
n) ∈ Dq,~k(R~x). �

Corollary 5.7. Ea
h Dq,~k(R~x) is a �nite union of 
osets of (G[q])n. Moreover,

for any D ⊂ Gn
there is d ∈ N su
h that D is a �nite union of sets of the form

F ∩ ~g(G[d])n where F is semialgebrai
.

2

Proof. By the proof of Lemma 5.6, we have that (G[q])n is a subgroup of Dq,~k(R~x).

Sin
e (G[q])n is �nite index in Gn
, it is also �nite index in Dq,~k(R~x).

Next note that if d is the least 
ommon multiple of d1, d2, thenG
[d1]∩G[d2] = G[d]

.

Thus, given any �nite number of 
osets of (G[di])n for various di, one may repla
e

them by a �nite number of 
osets of (G[d])n, where d is the least 
ommon multiple

of the di. Using this observation, the reader may easily 
he
k that for ea
h D ⊂ Gn

there is d ∈ N su
h that D is a �nite union of sets of the form F ∩ ~g(G[d])n where

F is semialgebrai
. �

Now we are in a position to prove the �rst of our main results.

Theorem 1.1. R = (R,G) is super-rosy of þ-rank equal to ω and þ-rank of G is

1.

Proof. Sin
e super-rosiness and þ-rank are properties of the theory, we may assume

that (R,G) is su�
iently saturated. Conditions (1) and (2) of Theorem 1.3 are


lear; we will show (3) for (R,G) in a language expanded by naming ea
h element

of some model. Consider D ⊆ Gn
. First, we wish to show that D = E ∩ S, where E

is semialgebrai
 and S is a dense subset of Gn
. For the purposes of this proof, we

refer to su
h sets as ni
e.

We have established, in the previous 
orollary, that D =
⋃m

i=1 Ei∩Si, where ea
h

Ei is semialgebrai
, and ea
h Si is of the form ~g(G[d])n, and, in parti
ular, ea
h Si
is dense in Gn

. Thus D is a �nite union of ni
e sets. We wish to show that a �nite

union of ni
e sets is ni
e. Consider (E1 ∩ S1) ∪ (E2 ∩ S2). Let Ẽ1 := E1 \ E2 and

2

The authors thank Lou van den Dries for pointing out this Corollary.
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Ẽ2 := E2 \ E1. Let S̃1 := S1 \ S2 and S̃2 := S2 \ S1. Let E := (E1 ∪ E2) and let

S = (S1 ∪ S2) \ ((Ẽ2 ∩ S̃1) ∪ (Ẽ1 ∩ S̃2)). Note that

(E1 ∩ S1) ∪ (E2 ∩ S2) = E ∩ S.

Thus we want to show that S is dense in Gn
.

Suppose that S is not dense in Gn
. Then there is an semialgebrai
 open U ⊆

(R>0)n su
h that S∩U = ∅. Thus S1∩U ⊆ Ẽ2∩ S̃1 and S2∩U ⊆ Ẽ1∩ S̃2. Sin
e S2 is

dense, the 
losure of S2∩U equals the 
losure of U, and is 
ontained in the 
losure of

Ẽ1. Thus, Ẽ1 must 
ontain all of U ex
ept for a semialgebrai
 set, D1, of dimension

less than n. Likewise there is D2 su
h that U \ D2 ⊆ Ẽ2. Thus U \ (D1 ∪ D2) is


ontained in Ẽ1 ∩ Ẽ2 = ∅, a 
ontradi
tion.

Finally we note that by Corollary 5.7, if D ⊆ Gn
, then D =

⋃
i<k(Ei ∩ Si)

with ea
h Ei a semialgebrai
 set and ea
h Si a 
oset of (G[d])n. Sin
e (G[d])n is

a subgroup of �nite index, any model has representatives of ea
h 
oset, and thus,

after naming the elements any model, ea
h Si be
omes ∅-de�nable, and we may

apply Theorem 1.3 to get that (R,G) in this expanded language is super-rosy of

þ-rank equal to ω and þ-rank of G is 1. Sin
e þ-rank is invariant under expansions

of the language by 
onstants, we are done. �

In [7℄, the question is raised whether (R, 2Z3Z) has o-minimal open 
ore. We are

now in a position to give an a�rmative answer to this question.

Corollary 5.8. If (R, G) is an expansion of the real �eld by a predi
ate for a dense

multipli
ative subgroup of R>0
with the Mann property, then (R, G) has o-minimal

open 
ore.

Proof. By Corollary 3.9. �

To prove the se
ond main result, that adding 
odes for the small sets de�nable

in R is su�
ient to eliminate imaginaries, we must verify our assumptions at the

beginning of Se
tion 4: that given any set of parameters A, and any interval I
de�ned over A, the small 
losure of A interse
t I is not 
ontained in any small set.

To do this, we must �rst perform some þ-rank 
al
ulations within R.

De�nition 5.9. For n > 0 we de�ne G+n
indu
tively as

G+1 := G ∪ {0},

and G+(n+1) := (G ∪ {0}) +G+n.

Proposition 5.10. The þ-rank of G+n
is n.

Proof. Consider the map f : Gn → G+n
given by f(~g) = g1 + · · · + gn. We have

þ-rank of G+n
is less than or equal to n, sin
e f is surje
tive.

For the 
onverse, de�ne Gn
I := {~g ∈ Gn :

∑
i∈I gi = 0} for any nonempty subset

I of {1, . . . , n}. Note that Gn
I is the image of Gn−1

under a de�nable map, thus is

of þ-rank at most n− 1. Now de�ne

Gn
nd

:= Gn \
⋃

∅6=I⊆{1,...,n}

Gn
I .

Note that þ-rank of Gn
nd

is n, and by the Mann property, the restri
tion of f to

Gn
nd

has �nite �bers. Therefore, by 3.1, þ-rank of G+n
is n. �
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Proposition 5.11. Let A be any set, and I any interval de�ned over A. Then

scl(A) ∩ I is not 
ontained in any small set.

Proof. Note that scl(A) 
ontains scl(∅) whi
h in turn 
ontains G+n
. First we show

that ⋃

n>0

G+n

is not 
ontained in any small set. Assume it is 
ontained in a small set S. Sin
e

S is G-bound, there is a map f : Rk → R su
h that S ⊆ f(Gk). Therefore by

Propositions 3.1 and 3.3, we have þ-rank of S is at most k, and thus, for ea
h n,
G+n

has þ-rank at most k 
ontradi
ting Proposition 5.10.

Let I = (b, c). Now let f : R → (b, c) be a de�nable bije
tion. Note that

f(
⋃

n>0G
+n) is 
ontained in scl(A) ∩ I. If f(

⋃
n>0G

+n) were 
ontained in some

small set, say S, then f−1(S) would be a small set 
ontaining

⋃
n>0G

+n
, a 
ontra-

di
tion. �

Now we have proven the se
ond of main results:

Theorem 1.2 If one enlarges (R,G) by adding su�
iently many sorts of (R,G)
eq

so that the resulting stru
ture has a 
ode for every basi
 small subset of Rk
, then

this stru
ture eliminates imaginaries.

6. The stru
ture R>0/G

In this se
tion we assume that R has a �eld stru
ture.

Proposition 6.1. Let C ⊂ R and let a, b ∈ R be su
h that a, b 6∈ scl(C). Then

for every formula ϕ(x,~c) in tp(a/C) there is b′ ∈ R su
h that b′/G = b/G and

b′ ∈ ϕ(R,~c).

Proof. We may assume that C = dcl(C). Let ϕ(x,~c) ∈ tp(a/C). By Lemma 2.16

there is a partition {c0, . . . , cn} of R, where ci ∈ C for i ≤ n su
h that ϕ(x,~c) is
small or 
osmall when restri
ted to (ci, ci+1). Say a ∈ (ci, ci+1). Sin
e a 6∈ scl(C),
ϕ(R,~c) is 
osmall in (ci, ci+1). Sin
e b 6= 0, there is t ∈ R su
h that tb = a.
Furthermore, sin
e multipli
ation by b is a 
ontinuous fun
tion, and sin
e G is

dense in R, we 
an �nd g ∈ G su
h that b′ = gb ∈ (ci, ci+1). We may 
hoose g
þ-independent from b over C. Sin
e b 6∈ scl(C ∪ {g}) and multipli
ation by g is a

de�nable bije
tion of R, we have that b′ 6∈ scl(C ∪{g}) and thus ϕ(x,~c) ∈ tp(b′/C).
�

Corollary 6.2. Let a, b ∈ R be su
h that a, b 6∈ scl(A). Let aG = a/G, bG = b/G.
Then for any set A su
h that aG and bG are þ-independent from A, tp(aG/A) =
tp(bG/A).

Proof. We may assume that a and b are independent from A. By the previous

proposition for every formula ϕ(x,~c) in tp(a/A) we 
an �nd b′ ∈ R su
h that

b′/G = bG and b′ ∈ ϕ(R,~c). This implies that tp(aG/A) = tp(bG/A). �

Given any subset C ⊂ R, there is a unique type in R>0/G over C that 
ontains

only large sets. Thus the group R>0/G is de�nably 
onne
ted (in the sense of

having no proper de�nable subgroups of �nite index) and all de�nable subsets of

R>0/G are small or 
osmall.

Assume now that R is un
ountable and G is 
ountable. Then the de�nable small

sets are 
ountable. This raises the following question:

19



Question 6.3. Is R>0/G quasi-minimal?

In [11℄, Zilber de�nes a quasi-minimal ex
ellent 
lass, as a 
lass of stru
tures


losed under isomorphism, where ea
h de�nable set is 
ountable or 
o-
ountable,

and with a 
losure operator satisfying three assumptions. When, in addition, the


losure operator satis�es the ex
hange property, he obtains that the 
lass is 
ategor-

i
al in every un
ountable 
ardinal. We have that ea
h de�nable set is 
ountable or


o-
ountable, and small 
losure satis�es ex
hange and 
an easily be seen to satisfy

the �rst of Zilber's three assumptions. However, we have been unable to verify that

the other two assumptions hold.

Even without the assumption that G is 
ountable, we may ask the following, less

ambitious, question:

Question 6.4. Is R>0/G superstable?

There is no obvious order de�nable within R>0/G, and if R>0/G does not have

the order property, it must be superstable, as þ-forking agrees with forking in stable

theories.

7. The U

þ

-rank

Throughout this se
tion, R denotes a stru
ture satisfying the hypotheses of

Theorem 1.3.

In [1℄ Bue
hler used in�nite dimensional pairs to study the geometri
 properties

of a strongly minimal sets. He showed the pair has Morley rank one i� the strongly

minimal set is trivial, Morley rank two i� the strongly minimal set is lo
ally modular

non trivial and ω otherwise. These results were generalized by Vassiliev in [10℄ to the

setting of simple theories using lovely pairs to analyze SU rank one pregeometries.

Dense pairs of o-minimal stru
tures were studied by van den Dries in [2℄, where

he showed they satisfy the hypothesies of Theorem 1.3. In what follows below, we

show that the same relationship exists between the pregeometry of a o-minimal

stru
ture, and that of the 
orresponding dense pair (though, of 
ourse, here the

information yielded by the dense pair is already known).

Peterzil and Star
henko [9℄ showed that lo
ally every o-minimal stru
ture be-

haves as an expansion of a �eld, an ordered ve
tor spa
e, or is trivial. In the

analysis that follows below, we will deal with two 
ases: when R in
ludes a �eld

stru
ture and when R|L is an ordered abelian group with no additional stru
ture.

Re
all that the U

þ

-rank �
ounts� the number of times the type 
an þ-fork and

that 1-types in o-minimal stru
tures have U

þ

-rank at most one.

Lemma 7.1. Let g ∈ G and let C ⊂ R. Then U

þ(tp(g/C)) ≤ 1 and equality holds

i� g 6∈ dcl(C).

Proof. It follows from Theorem 1.3. �

7.1. Field 
ase. Now assume that R|L has a de�nable �eld stru
ture. Then, as

G is small, R is an in�nite dimensional dcl(G)-ve
tor spa
e and we �x a 
ountable

family (ci)i∈ω of linearly independent ve
tors.

De�nition 7.2. Let g1, . . . , gn ∈ G and let A ⊂ R. We say that {g1, . . . , gn} is an

A-independent set if Uþ(tp(g1, . . . , gn/A)) = n.

20



Lemma 7.3. Let g1, . . . , gn ∈ G and let C = {c1, . . . , cn}. Then

U

þ(tp(c1g1 + · · ·+ cngn/C)) ≤ n

and equality holds i� {g1, . . . , gn} is a C-independent set.

Proof. Clearly c1g1 + · · · + cngn ∈ dcl({g1, . . . , gn, c1, . . . , cn}), so by additivity of

the rank and the previous lemma,

U

þ(tp(c1g1 + · · ·+ cngn/C)) ≤ U

þ(tp(g1, . . . , gn/C)) ≤ n.

Furthermore sin
e C = {c1, . . . , cn} is a set of linearly independent ve
tors, there

is only one solution in Gn
for the equation c1x1 + · · · + cnxn = c1g1 + · · ·+ cngn,

so g1, . . . , gn ∈ dcl(g1c1 + · · ·+ gncn, C). If {g1, . . . , gn} is a C-independent set, we

get U

þ(tp(c1g1 + · · ·+ cngn/C)) = n. �

Proposition 7.4. Let a 6∈ scl(∅), then U

þ(tp(a)) = ω.

Proof. By Theorem 1.3 (and Fa
t 1.12), U

þ(tp(a)) ≤ ω.

Now we will show that tp(a/∅) has forking extensions of U

þ

-rank n for every n.
Let C = {c1, . . . , cn} and without loss of generality assume that C is þ-independent

from a. Let g1, . . . , gn ∈ G and assume that {g1, . . . , gn} is a C ∪ {a}-independent
set. Let b = a+ c1g1+ · · ·+ cngn. Then a, b 6∈ scl({c1, . . . , cn}). Thus U

þ(tp(c1g1+
· · ·+ cngn/C ∪ {b})) = n and sin
e a and c1g1 + · · ·+ cngn are interde�nable over

b, Uþ(tp(a/C ∪ {b})) = n. Thus Uþ(tp(a)) = ω. �

Corollary 7.5. If R|L has a de�nable �eld stru
ture and a ∈ scl(B)\ scl(C), then

a 6 |⌣
þ

C
B.

Proof. We may assume C = ∅, as our hypotheses remain true after adding parame-

ters to the language. Sin
e a ∈ scl(B), some formula in tp(a/B) de�nes a G-bound

set, and Lemma 7.3 implies that U

þ(a/B) is �nite. On the other hand, U

þ(a) = ω
by Lemma 7.4. �

7.2. Pairs of groups with no additional stru
ture. Assume now that L =
{+, 0, <}. Thus R|L is a divisible ordered abelian group. Furthermore suppose

that G a subgroup of R.

De�nition 7.6. Let n > 0 and let G/n = {r ∈ R : nr ∈ G}.

Lemma 7.7. The group G/n has þ-rank one.

Proof. Re
all that G has þ-rank one. As R is divisible and torsion-free, multipli
a-

tion by n is a de�nable bije
tion between G/n and G, and thus the þ-rank of G/n
is one.

�

Proposition 7.8. a ∈ scl(B) if and only if there is b ∈ dcl(B) and n ∈ N>0
su
h

that a ∈ b+G/n.

Proof. Right to left is 
lear.

Now assume that a ∈ scl(B). By Proposition 2.16, a is 
ontained in S, a basi


small set de�ned over B. Let ∃~y(G(~y) ∧ ϕ(x, ~y)) be a formula de�ning S. For ea
h

~g, ϕ(R,~g) is a �nite union of points and intervals. However, if for any ~g in Gk
,
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ϕ(R,~g) 
ontains a non-empty open interval, then S is not small. Thus, we may

redu
e to the 
ase where ϕ(x, ~y) is x = f(~y), where

f(~y) = b +

k∑

i=1

mi

ni
yi

for some b ∈ dcl(B), mi ∈ Z and ni ∈ N. Let n be the least 
ommon multiple of

the ni. Thus f(G
k) is 
ontained in b+G/n, and a ∈ f(Gk). �

Proposition 7.9. Let a ∈ R be su
h that a 6∈ scl(∅). Then U

þ(tp(a)) = 2.

Proof. By Proposition 7.8, every small subset of R has þ-rank at most one, and by

Corollary 3.5, a þ-forking extension of tp(a) must in
lude a formula de�ning a small

set. Thus U

þ(tp(a)) ≤ 2. It is easy to see that for g ∈ G, with tp(g) non-algebrai
,

and g |⌣
þ a, we get U

þ(tp(a)) = U

þ(tp(a/g)) = U

þ(tp(a + g/g)). Now we 
laim

that a+ g |⌣
þ

g. If not, by Corollary 3.5 we would have a+ g ∈ scl(g) = scl(∅), and
thus a+ g ∈ c+G/n for some c ∈ dcl(∅), by Proposition 7.8. But then a+ g, and

hen
e a, would be in scl(∅), a 
ontradi
tion. Thus Uþ(a) = U

þ(a+g/g) = U

þ(a+g),

and it su�
es to show that U

þ(a+ g) = 2.
Consider the 
hain tp(a+ g/∅) ⊂ tp(a+ g/a) ⊂ tp(a+ g/a, g). If we show that

this is a þ-forking 
hain we will have shown that U

þ(a+ g) ≥ 2, and thus equal to

2. First note that tp(a + g/a) 
ontains a formula saying x ∈ G + a. This formula

is true of a+ g and þ-divides over the empty set. Thus, tp(a+ g/a) is a þ-forking

extension of tp(a+ g).
Se
ond, note that tp(a + g/a, g) is algebrai
, and hen
e to show that it is a

þ-forking extension of tp(a + g/a), it su�
es to show that the latter type is not

algebrai
. But we 
hose g |⌣
þ a. Thus tp(g/a) is not algebrai
, and neither is

tp(a+ g/a).
�

Now we get a 
orollary analogous to Corollary 7.5:

Corollary 7.10. If R|L is an ordered group with no additional stru
ture, and

a ∈ scl(B) \ scl(C), then a 6 |⌣
þ

C
B.

Proof. By the previous proposition (after adding C to the language), we see that

U

þ(a/C) = 2. On the other hand, by Proposition 7.8, we see that a belongs to a

set of þ-rank one de�ned over B, namely a 
oset of G/n for some n. Thus Uþ(a/B)
is either zero or one. �

Remark 7.11. Note that we have shown that þ-forking in one variable is 
aused

by falling into some 
oset of G/n for some n. This may be seen as an analogue of

the fa
t from stable theories that the beautiful pair asso
iated to a one-based theory

is again one-based.

7.3. Small 
losure is a pregeometry.

Corollary 7.12. If R|L either is an ordered group with no additional stru
ture

or has a de�nable �eld stru
ture, then the 
losure operator scl : P(R) → P(R)
de�nes a pregeometry.
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Proof. Let C ⊂ R and let a, b ∈ R be su
h that a ∈ scl(C ∪ {b}) \ scl(C). Then

tp(a/C∪{b}) þ-forks over C by either Corollary 7.5 or 7.10. By symmetry, tp(b/C∪
{a}) also þ-forks over C, so by Corollary 3.5, b ∈ scl(Ca). �
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