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THORN INDEPENDENCE IN THE FIELD OF REAL NUMBERS
WITH A SMALL MULTIPLICATIVE GROUP

ALEXANDER BERENSTEIN, CLIFTON EALY, AND AYHAN GUNAYDIN

ABsTRACT. We characterize p-independence in a variety of structures, focus-
ing on the field of real numbers expanded by predicate defining a dense multi-
plicative subgroup, G, satisfying the Mann property and whose pth powers are
of finite index in G. We also show such structures are super-rosy and eliminate
imaginaries up to codes for small sets.

1. INTRODUCTION

We build on results of van den Dries and Giinaydmn in [3]. There the authors
investigate the model theory of pairs (K,G) where K is either an algebraically
closed field or a real closed field, and G is a multiplicative subgroup of K* with the
Mann Property. While the definition of the Mann property is somewhat lengthy
(and we postpone the precise definition to Section 5), roughly the Mann Property
is a condition insuring that linear equations have few solutions in G. Among other
things, the Mann property implies that G is small (in a technical sense defined
below). Moreover, such groups are quite natural. Any group contained in the
divisible hull of a finitely generated group, i.e. any finite rank group, has the Mann
property.

In the case where K is real closed (henceforth we distinguish this case by referring
to K as R), the additional hypothesis that G is a dense subgroup of R>° is used.

Among other results, van den Dries and Giinaydin obtain good descriptions
of the definable sets in both cases and a good description of dimension when K is
algebraically closed, assuming G is w-stable. In particular, the pair (K, G) is shown
to be w-stable of Morley rank w.

We extend the results of [3] by obtaining a description of dimension for R real
closed and G such that for each prime number, p, the subgroup of G consisting
of pth-powers has finite index in G. To do this, we need to refine slightly the
description of definable sets, focusing on a certain collection of definable sets we
call “basic small”’, and introduce the notion of p-rank. In particular, we prove that
the pair (R, G) is super-rosy of p-rank w. We then use this fact to obtain some
partial results about elimination of imaginaries.

Now we state these results precisely.

Theorem 1.1. Let R be a real closed field and G a dense subgroup of R>® with the
Mann property and such that for each prime number, p, the subgroup of G consisting

Date: June 1st, 2007.

1991 Mathematics Subject Classification. Primary 03C10, 03C45, 03C64.

Key words and phrases. rosy theories, Mann property, dense pairs, o-minimal theories.

The authors would like to thank Lou van den Dries for his close reading and helpful comments.

1


http://arxiv.org/abs/0706.3950v1

of pth-powers in G has finite index in G. Then in the language of ordered rings
augmented with a unary predicate for G, we have

(1) G has p-rank 1, and

(2) (R,G) has p-rank w.
Hence, (R,G) is super-rosy.

Theorem 1.2. Let (R, G) be as in the previous theorem. Enlarge (R,G) by adding
sufficiently many sorts of (R,G)™ so that the resulting structure has a code for every
basic small subset of R*, for each k. Then this structure eliminates imaginaries.

While our primary interest is in subgroups of R with the Mann property, we
obtain Theorems [I.1] and as applications of a more general result:

Theorem 1.3. Suppose that (R,+,...) is an o-minimal expansion of a group in
the language Z. Consider the expansion R = (R,G,+,...) in the language Lg =
L U{G} where G is a unary predicate. Suppose that for each R = (R’,...) with
R =R
(1) G(R') is small, and contained in some interval, (a,00) C R, in which it is
dense.
(2) Each Lg-formula (x) is equivalent to a boolean combination of formulas
of the form 35(G(y1) A--- AG(y;) A @(x,§)) where ¢ is an Z-formula.
(3) For each tuple @ from R and D C G(R')™, definable over a, there are an
Z-definable set E, and a definable S, which is a dense subset of G(R')™,
with E and S over d, such that D = ENS. Furthermore, when n = 1,
D can be written as a finite union of such ENS, where S is, in addition,
(-definable.

Then R is super-rosy of b-rank less than or equal to w and p-rank of G(R) is 1.
Moreover, if R includes a field structure, the p-rank of R equals w.

For the definition of small, see [L. I3l

The reader will note that if conditions (1) and (2) hold in a given model, they
hold in any elementarily equivalent model, and if condition (3) holds in a sufficiently
saturated model, it holds in any elementarily equivalent model. The reader will
further note that condition (3) above seems quite technical. In many cases, a much
more natural (and stronger) condition holds. Namely,

(3)" For each definable D C G(R)* there is an £ -definable set B such that D =
ENG(R)".

However, in cases that are of particular interest to us, such as R = (R, G, +,)
and G(R) = 223% (3)’ fails. To understand why (3) is not as unnatural as it may
first appear, the reader may skip ahead to Section

Theorem 1.4. Let R be as in the previous theorem. Enlarge R by adding suffi-
ciently many sorts of R so that the resulting structure has a code for every basic
small subset of R*. Assume in addition, given any set of parameters A, and any
interval I defined over A, that scl(A) NI is not contained in any small set (see 18
and[Z12 for the appropriate definitions). Then this structure eliminates imaginar-
ies.

1Throughout the paper, we use “boolean combination of . . .” to mean “an element of the
ambient boolean algebra generated by . . .”.
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In addition to applying to structures satisfying the conditions of Theorem [T}
Theorems [[.3 and [[:4] also apply to the structures studied in [2], namely dense pairs
of o-minimal expansions of ordered abelian groups. Also we note that we answer
the question of Miller and Speissegger from [7] of whether (R,273%) has o-minimal
open core. (See the end of Section 3 for definitions and the main part of the proof,
and Section 5 for its application to expansions of the reals by groups with the Mann
Property.)

Conventions and Notation. An .Z-structure, e.g. R = (R, +7,- %, <% 0% 1%,
consists of an underlying set, e.g. R, together with an interpretation of each sym-
bol from the language, e.g +%,-%, <% 0%, 1%, We drop the superscripts when no
confusion results. Capital letters in the Fraktur font, e.g. 91 and R, indicate struc-
tures. The universes of these structures are denoted by the corresponding capital
letters in the normal font. For instance, M and R are the respective universes of
the structures above.

We use the letters x,y, z, w as variables, and the letters, a, b, ¢, etc., to indicate
elements of the universe of a structure. We distinguish between elements from M
and tuples from M™ by using vector notation for tuples. For example, &, i/ and @, b
as opposed to x,y and a, b.

We use @, 1, and 6 to indicate formulas. When no confusion results, we suppress
the parameters, writing, for instance, ¢(Z) even when the formula is not over the
empty set. Likewise, when we say definable, we mean definable with parameters.

To save ourselves from constantly worrying about the length of our tuples, when
Z is an n-tuple, we write M™ as Mz. The set defined by a formula ¢(Z) is denoted
by (Mz).

We use capital letters in blackboard bold to indicate definable sets, e.g. D, E,
with the exceptions of N, Q, and R, which are the sets of natural numbers, rational
numbers, and real numbers, respectively. We denote the complement of D as D°.
We use f, possibly with subscripts, for definable functions. Also «a, 8 will always
indicate ordinals, m,n will always indicate natural numbers, and p will always
indicate a prime number.

If we wish to emphasize that a definable set is defined with parameters, we write
the parameters as a subscript. For example, suppose ¥ (y) defines E and ¢(Z)
defines D, where we have suppressed the parameters in both ¢ and ¢. If we then
wish to emphasize that ¢ uses a parameter € € My, we write Dg. For instance, we
write

(W (Y) N p(Mz, 7))

| pe.
eck
For a set C, we denote by Z(C) the power set of C.

as

Definitions and Preliminaries. Now we introduce some definitions that we use
in the remainder of the paper, together with some propositions from other papers
which we also use.

Definition 1.5. Fix a theory, T, and a sufficiently saturated model 0t = T. We
work in M. Let ¢(Z, %) be a formula without parameters, let b € M;q, and let C
be a set of size less than the degree of saturation of 91.
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For k € N, the formula (&, b) is said to k-p-divide over C' if there is D O C such
that tp(b/D) is not algebraic and the set of formulas {@(Z,V) : V' |= tp(b/D)} is
k-inconsistent. The formula is said to p-divide over C if it k-p-divides for some k.

The partial type (&, 5) is said to p-fork over C if it implies a disjunction of
formulas (with arbitrary parameters), each of which b-divides over C.

We have defined what it means for a formula to p-divide over a set C. Sometimes,
when the particulars of C' are not important, we will simply say that a formula p-
divides.

Remark 1.6. By compactness, if p k-p-divides, there is always a single formula
0(7,d) € tp(b/D) such that the set of formulas {o(Z,V/) : M = O, d)} is k-
inconsistent.

Also by compactness, if (&, 5) implies a disjunction of formulas that p-divide,
w implies a finite disjunction of such formulas.

Definition 1.7. Let A,B,C C M be smaller than the degree of saturation of
M. Then | P is defined as follows: A\LgB if and only if tp(d/BC) does not

b-fork over C for any tuple @ from A. If A J/lé B we say that A is p-independent
from B over C. If it is clear from context, we will often just say independent for
b-independent.

Definition 1.8. A theory 7T such that J/b is symmetric for T is called rosy.

Alternatively, rosiness could be defined in terms of local p-ranks being finite.
However, we will not have need of any local ranks as the situation in which we find
ourselves allows for a global b-rank, as defined below.

When working with an independence relation, we can define its foundation rank.
For p-independence we have:

Definition 1.9. Let p(z) € S(A). For a an ordinal, we define UP(p) > o induc-
tively on a.
(1) UP(p(x)) = 0.
(2) If « = B+ 1, we define UP(p(z)) > a if there is a tuple a and a type ¢(z,v)
over A such that ¢(z,a) D p(x), UP(q(z,a)) > B and q(z,a) b-forks over A.
(3) If o is a limit ordinal, then UP(p(z)) > a if UP(p(z)) > B for all 8 < a.

Remark 1.10. It is perhaps worth noting that in a theory that is not rosy, p-
forking may still be symmetric if one restricts the sorts that one considers. If
thorn independence satisfies symmetry when restricted to the real sorts, one calls
the theory real-rosy. For instance, the theory of algebraically closed valued fields
is not a rosy theory, but p-forking, restricted to the field, residue field, and value
group sorts, is an independence relation. Thus ACVF is real-rosy [4].

Definition 1.11. p-rank is the least function taking values in OnU {oo} satisfying
the following;: . .
(1) b-rank(p(Z, b)) > 0 if (7, b) is consistent.
(2) p-rank(p(Z, g)) > a + 1 if there is ¢(&,) that b-divides over b, such that
x,
(3

W(Z,8) F o(Z,b) and b-rank(v(Z,0)) > a.
) For A a limit ordinal, p-rank(p(#,b)) > A if b-rank(p(&,b)) > a for all
a < A
4



The relation between p-rank and UP-rank is given by the following ([4]):
Fact 1.12. For any type, p, UF(p) < min{])—mnk(ga) D €p}.

In analogy with simple and stable theories, we make the following definition
(which could be equivalently stated in terms of UP-rank, see [4]):

Definition 1.13. A complete theory is super-rosy if every formula has ordinal
b-rank.

The corollary of the Coordinatization Theorem of [§] stated below will simplify
our proof of super-rosiness:

Corollary 1.14. Given a complete theory T, if every formula in one free variable

—

o(x,b) has ordinal p-rank, then T is super-rosy.

Definition 1.15. Let 9 := (M,...) be an ordered structure. A definable set
D c M* is large iff there is some m, an interval I C M and a function f : D™ —» I.
A definable set S is small iff it is not large.

Note that this definition of small differs from the conventions of [3]. There the
adjective “small” also applies to sets that are not definable, but does not apply to
subsets of M™ for n > 1. In addition, in [3], the notion of small set is defined
for arbitrary, possibly unordered, structures. One of the cases we wish to consider,
however, is dense pairs of ordered abelian groups. In this setting, a bounded interval
would be small under the definition of [3]. Our definition for small, when restricted
to definable subsets of a model (R, G) satisfying the hypotheses of Theorem [.3] will
turn out to be G-small, as defined in [2]. When R in addition has a field structure
all three definitions will coincide (for definable subsets of R).

Fact 1.16. Let 9 be an o-minimal structure. Let {o(M,a@)}zea be a definable
family of subsets of M, each of which by o-minimality may be decomposed into
a finite union of points and open intervals. Then the minimal number of points
and the minimal number of open intervals in any such decomposition are definable
properties of a.

Unless stated otherwise, .Z denotes a language extending the language of ordered
abelian groups, G a unary predicate not in %, 8 = (R,G) denotes a structure
satisfying the conditions of Theorem[I.3] although one may think of 2R as a structure
satisfying the conditions of Theorem [l Following our normal conventions, we
should refer to the set defined by G(x) as G, but we simply write it as G. We use
R| to denote the reduct of R to £.

2. SMALL SETS
We first make a definition and a technical observation.

Definition 2.1. A k-valued function, F : A £, B is a function from A to {S €
P(B) : |S| < k}. The graph of such an F is {(a,b) € Ax B:b € F(a)}, and its
image is {b€ B:b € F(a) for some a € A}. If F: D — E where D C R™ E C R",
then we say F' is definable in R, if its graph is.

We define the composition of such functions as follows:

Definition 2.2. Consider F : A ™ B and F, : B 22 €. We define Fy 0 F} :

Al o by setting Fro Fi(a) := {c: 3b € Fi(a) and ¢ € Fz(b)}, where k3 := k; - ks.
5



Lemma 2.3. Let M = (M, <, ...) be any ordered structure, E,F be definable subsets

of M™, M™ respectively, and F : E X5 F be a k-valued function. Then there is a
function f : EF — F with the same image as F. If there are two definable elements
of E then f has the same parameters as F'.

Proof. Pick distinct a1, a2 definable elements contained in E (adding parameters
if necessary). Suppose that e € E is not equal to a;. Set f((e,a1,...,a1)) to be
the least element of F'(e), set f((a1,e,a1,...,a1)) to be the second least element of
F(e), etc. Now suppose that e = a;. Set f((e,aq,...,a2)) to be the least element
of F(e), etc. Finally, for any € € E¥ on which f is not yet defined, set f(&) equal
to the least element of F'(aq). O

Let us make a couple of observations about the notion of small as it applies in the
setting of groups. Let (M, +,...) be an expansion of a group. Then the complement
of any small set, S, is large. This can be seen, for instance, by considering the map
f: M? — M given by (my, mz2) — m1 + ma. Suppose some element, mg € M, is
not in the image of (S¢)? under f. Then

mo € ﬂ S + m.
m¢gS

Thus, mo — S contains S¢. Now the 2-valued function S —» M, s+ {s,mo — s}
witnesses that S is large, which is a contradiction. Actually we need a stronger
statement:

Lemma 2.4. Let (M,+,<,...) be an expansion of an ordered group, and I =
(a,b) C M be a nonempty interval, and S C M a small set. Then I'\'S is large.

Proof. Let f : M? — M be defined as in the previous paragraph. Let J = (a-+b, 2b).
We show that f((I\S)?) 2 J. For a contradiction, let mg € J\ f((I\S)?). Then,
reasoning as above, —(SUI¢) 4+ mg 2 I \ S. Noting that

I¢ 4+ mg = (=00, —b + mp) U (—a + myg, 00),
we see that this yields —S+mgy 2 (—b+my, b), contradicting the smallness of S. O

Definition 2.5. We say a definable set D is small in an interval I if DN T is small.
We say a definable set D is cosmall in an interval I if D°N T is small.

Here we return from considering arbitrary ordered groups to the setting of Theorem

3

Definition 2.6. A definable set X is basic if it is defined by a formula of the form
(G (§) N o(Z, 7)) where o(Z,¥) is a formula in £, and by G(¢), we mean G(y1) A
-+ A G(yn). Furthermore, we will refer to formulas of the form 3F(G(¥) A ¢(Z, 7))
as basic formulas.

Remark 2.7. Note that a set is basic if and only if it can be written as
geGgn
where ¢ is an L -formula. Note also that finite unions and intersections of basic

sets are again basic. In particular, an interval intersect a basic set is again a basic
set.



For our purposes the above characterization of definable sets is not quite suffi-
cient; we obtain a more detailed description in the case of definable subsets of R
(as opposed to R™).

First we need to prove that if f; and fo are functions R™ — R definable in .
then Ugcgn (f1(9), f2(9)) is a finite union of intervals. This is clear when fi and
fo are functions in one variable. In general, it is slightly less clear. However, it is
a consequence of the cell decomposition theorem for o-minimal structures and the
following two lemmas.

The first of the two lemmas shows that subsets of G* are in a sense well approx-
imated by .Z-definable sets. We already know that for any such set, D, there is an
Z-definable set E such that D is dense in E N G*. It is not the case that D will
necessarily be dense in E. For instance, let (R, G) := (R,2%). Consider the plane,
P C R3 defined by z — 3y = 0. Let D := PN G®. Then D is just the copy of G lying
on the z-axis, and not dense in P. Clearly, in this example, had we chosen E as the
z-axis, rather than the plane P we would have obtained the density we desired. We
prove that in general, choosing E carefully, we can in fact obtain density in E.

Lemma 2.8. For any D C G", there is £ -definable B such that D is a dense subset
of B. Moreover B is defined over the same parameters as D.

Proof. Let D be definable over d@. By the hypotheses of Theorem [[.3] we know that
there are an d-definable E and S such that E is .Z-definable, S is a dense subset of
G",and D =ENS. We proceed by induction on the dimension, &k, of E to find an
B C E, Z-definable over @ with D a dense subset of B. There is nothing to prove
for k = 0.

Now suppose we have proven the claim for j < k. We may assume that E is a
cell: write E as E; U- - -UE,;, with each E; a cell defined over d@. If E; is of dimension
less than &, then we may apply the inductive hypothesis to E; N'S. Thus we may
assume E is a cell of dimension k.

As E is a cell, we may choose a projection 7 : E — 7(E) C R* so that 7 is a
homeomorphism. Now choose an d-definable E' and S’ such that E’ is .#-definable,
S’ is a dense subset of G*, and 7(D) = E' N'S’. Again, we may divide E’ into cells,
say E{ U---UE! . For each i, either E, has dimension k, in which case it is open
and 7(D) NE, = E; NS is dense in E} or E; has dimension less than k and we may
apply induction to assume 7(D) NE; is a dense subset of E;. Thus 7(D) is a dense
subset of E’.

Now let B := 7~ 1(E’). As 7 is a homeomorphism, D is a dense subset of B and
since 7 is .Z-definable, so is B. We observe that B is definable over a. |

The second of the two lemmas presents a condition under which a set definable
in (R, G) is actually an interval.

Lemma 2.9. Let B C R” be a cell such that f1 and fo are continuous on B, BNG™
is dense in B, and f1(Z) < f2(Z). Then Uzepngn(f1(9), f2(9)) is an interval.

Proof. Let a = inf f1(B) and b = sup fo(B). Let d € (a,b); we wish to show that

d € Uzepngn (1(9), f2(g)). For some ¢; € B, fi(e1) < d. Clearly if fao(c1) > d,

we are done, so we may assume that fa(c1) < d. Likewise we may assume that

there is some co such that d < f1(c2) < fa(c2). Note that (f1 + f2)(c1) < 2d while

(f1 + f2)(c2) > 2d. Thus, by the continuity of f; and f2, and by the connectedness

of B, there is c3 such that (f1 + f2)(cs) = 2d. Since f; < fa, we conclude that
7



d € (fi(c3), fo(c3)). By the density of G® N B in B we may find § € BN G™ such
that d € (1(9). /2()) -

Corollary 2.10. If f1 and fo are functions R™ — R which are definable in £,
then Uzegn (11(9), 2(9)) is a finite union of intervals.

Proof. Recall that R restricted to £ is an o-minimal structure. Given f; and fo,
£-definable n-ary functions, we can decompose R™ as a finite union of disjoint cells,
C;, where on each C;, fi, fo are continuous, and either the functions coincide on
every point of C; or else one of the functions is strictly larger on every point of C,.
By Lemma [2Z.8 we may shrink each C; until we obtain a cell, B;, such that B; NG™
is a dense subset of B;. By Lemma 29} on each such cell, Uzcp,ngn (f1(9), f2(9))
is an interval. (]

Proposition 2.11. Let D C R be definable in R. Then there is a finite partition
—0 =ap < a1 < -+ < apy =00 of R such that D is either small or cosmall in
(ai—1,a;) fori=1,...,m. Furthermore, if D is definable from cf, so is the partition
—o0=ap<a; <-:--<Qpn = 0.

Proof. We first assume that D is basic. So D = Uzcgn 9(R, §), where ¢(z,7) is
an Z-formula. By the o-minimality of R| g, each ¢(z, ) defines a finite union of
points and intervals, and there is a uniform bound on the number of these points
and intervals. By Fact [[.I6] we may assume without loss of generality that each
o(z, §) defines either a single point or a single interval.

First let us consider the case where o(x,g) is a single point. As there is a
definable surjection from G™ onto D, we see that D is small.

Now we consider the case where each p(z, §) is an interval. There are Z-definable

f1, fa: R™ — R such that p(R,q) = (f1(g), f2(g)). By Corollary 210
U (A1), £2(9))

geagn

is a finite union of intervals. By o-minimality, the endpoints of these intervals
are definable over any parameters from which the finite union of intervals may be
defined.

Thus, we have our result if D = Jzcgn 9(R, §).

Now assume D and E satisfy the conclusion. To complete the proof, we must
show that D¢ and D U E also have the desired property. But this is clear. O

Definition 2.12. We say that € is in the small closure of A iff €' is contained in
a small set defined with parameters from A. We denote the small closure of A by
scl(A).

Definition 2.13. We say that a set, S C R¥, is G-bound iff there is an .#-definable
f: R"™ — RF such that S C f(G™).

It is clear that G-bound implies small. We proceed to prove the converse.

Lemma 2.14. Any basic small set S is G-bound. Furthermore, assuming that
there are two definable elements of R, the function f witnessing that S is G-bound
is definable over the same parameters as S.
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Proof. Note that if S C RF is a basic small set, so is each projection of S to R; and
that cartesian products of G-bound sets are G-bound. Thus it suffices to consider
small subsets of R.

Suppose that S is defined with parameters d@. Let S be

U #(R.g.

geGgn

where ¢(z, 7, Z) is a parameter-free .Z-formula. Since R|g is o-minimal, each set
»(R, §,d) is a finite collection of points and intervals. It is easy to see that any
set containing an open interval is large, so each ¢(R,d,@) is a finite set. By o-
minimality, there is a uniform bound k to the size of ¢(R, g, @) for each § € G™.
Thus mapping g to ¢(R, 7, d) gives us a k-valued (and @-definable) function, F,
in the language £ such that F(G™) = S. By 23 we may replace this with an
actual function, f. (Although if 0 is the only definable element of R, we may have
to add an additional parameter in R.) O

Remark 2.15. Note that even when 0 is the only definable element, S is still the
image G under a k-valued function which is definable with the same parameters as

S.

—

Lemma 2.16. Let o(z,d) define D. Then there are a partition —oo = ag < -+ <
an = oo and basic small sets Sy, ..., S, such that DN[a;—1,a;] either is contained in
Si, or contains S§ N [a;—1,a;]. Furthermore, the partition and each S; are definable
over d.

—

Proof. Note that ¢(z,d) is equivalent to a boolean combination of basic formulas.
We proceed by induction, using repeatedly that the intersection of a basic set with
an interval is again a basic set.

Suppose that gp(;v,d_} is a basic formula. By Proposition 2.I1] there is a d-
definable partition —co = a9 < -+ < a, = oo such that D N [a;—1,a;] either is
small or cosmall. If DN [a;-1,a;] is small, let S; := DN [a;—1,a;]. DN Ja;—1,a]
is cosmall in [a;—1,a;], then D N [a;-1,a;] is a finite union of intervals, by Lemma
Thus, since it is small, [a;—1,a;] \ D is a finite collection of points. Let S; be
this finite collection of points. Note that in either case, by Proposition 211l S; can
be defined over d. . B

Now suppose that ¢ = o1 A pa. Let Eq := ¢1(R,d) and let Ey := po(R,d).

By induction, there are a partition —co = by < --- < by, = oo and basic small
sets S1,...,S, with the desired property with respect to E;. Likewise there are a
partition —oo = ¢y < -+ < ¢, = 0o and basic small sets S;,11,...,S;4+n with the

desired property with respect to Es. Let —oco = ag < --+ < a; = oo be the union of
these two partitions. Then D N [a;_1,a;] is either small or cosmall.

If DN[a;—1,a;] is small, then either E; or Es is small in [a;_1, a;]. Without loss of
generality, we may assume it is E;. Note that [a;—1, a;] is contained in [bg_1, bx] for
some k. Let S; := gk Nlai—1,a;]. As gk is d-definable and contains E; N [br—1, bk],
we see that S; satisfies the desired properties.

If DNla;—1, a;] is cosmall, then both E; and E, are cosmall in [a;—1, a;]. There are
Jj, k, such that [a;—1, a;] C [bj_1,b;] and [a;—1, a;] C [ck—1, ck]. Thus, Ey N[a;—1,a]
contains g; N [ai—1,a;], and Ey N [a;—1,a;] contains gfn+k N [ai—1,a;]. Thus, D
contains (gj U §m+k)c n [aifl, ai]. We let Sl = (gj U §m+k)c n [aifl, ai]

9



Now suppose that ¢ = —¢g. Let E be defined by ¢g. By induction there is

a partition —oco = ag < --- < a, = oo and basic small sets Sq,...,S,, such that

E N [ai—1,a;] either is contained in S;, or contains S§ N [a;—1, a;], and the S; are
defined from d. But this partition and these small sets work for D as well.

O

From the previous two lemmas (as well as Lemma [2.4]), we obtain the following
two corollaries:

Corollary 2.17. If S is a small set, then it is contained in a basic small set and,
hence, S is G-bound.

Proof. Let S € R*. Let m; be the projection onto the ith coordinate. Let S; :=
7;(S). By Lemma 216 take S;, a basic small set containing S;. Then S; x --- x Sg

is a basic small set containing S. As S is contained in a G-bound set, it is itself
G-bound. O

Corollary 2.18. A tuple, €, is in the small closure of A if and only if there is an
Za-definable k-valued function, F(Z) and some § € G™ such that € € F(g). Thus,
if @ € scl(b) and b € scl(¢) then @ € scl(€).

Proof. If & € scl(A) then there is a small set Sz defined with parameters @ from A
that contains €. The set Sz is contained in a basic small set, also defined over A,
and this basic small set is the image of a k-valued function on G™. Conversely, such
a set is G-bound, and hence small. Moveover, if @ € scl(g) and b € scl(€) then this is

witnessed by k1 and ko-valued functions, Fy and F; respectively, with Fy = Fy (Z, b)
and Fy = Fy(¢, €). Thus Fs := Fy (&, F5(¥, ¢)) witnesses that @ € scl(¢). O

In addition, we have the following corollary:
Corollary 2.19. A finite union of small sets is again a small set.

Proof. Finite unions of G-bound sets are again G-bound, by Lemma 2.2 of [3]. O

While we rely on [3] for the above proof, we note that the corollary also follows
as a special case of Proposition 2.22] below.

Remark 2.20. Since scl is transitive, and scl(Q) is infinite, (and in particular,
contains at least one non-zero element) we may add an element of scl() to the
language without affecting small closure. Thus we may assume that R contains at
least two definable elements, and henceforth, we will assume that we may replace
each k-valued function with an actual function.

Remark 2.21. Note that, unlike the algebraic closure of A, scl(A) depends on the
model containing A.

Although the following proposition is not used in the proofs of this article’s main
theorems, it is interesting to note that a small definable union of small sets is again
a small set.

Proposition 2.22. IfID is small, and E; is small for each de D, then Ugep Eg is
also small.
10



Proof. First note that by Corollary ZI7 for each d € D there is a basic small set
containing E; . By compactness, the formula defining the basic small set may be
chosen uniformly in d. Thus, we may reduce to the case where D and each E ; are
basic small.

Assume that the formula 6(Z, cf) defines E ; for every d € D. Then, since E;is a
basic small set, there are ¢(§) € tp(d) and f(Z,§) such that whenever d’ = ¥(),
we have f(Z, c?) GF - Ej. Note that k, 1, and f may depend on d. However by
compactness, there is a finite covering of D with sets defined by ¥1 (%), . .., ¥n(¥),
together with associated k1,...,k, and fi,..., fn. By taking k = max{ky,...,k,},
we see that there is a definable function

f@&): G xD— | JE;
deD
such that for any d € D, f(Z,d): GF — E;.

Now suppose that g : G® — D witnesses that D is small. Then let h : GF*" —

Ugep Eg be defined as follows:

h(dy, dz) == f(dy, g(az))-
So Ugjep Ej is G-bound, and hence small. O

Definition 2.23. For a set C, a function from Z(C) to Z(C) is a closure operator
iff for any A, B C C
(1) A Cal(4),
(2) A C B implies cl(A) Ccl(B),
(3) cl(cl(A))=cl(A).
Furthermore, we say that a closure operator is finitary when (2) is strengthened to
(2") b ecl(A) iff b ecl(Ap) for some finite Ay C A.
If the closure also satisfies the Steinitz exchange property, then we say that the
closure operator gives rise to a pregeometry.

It is clear that the small closure satisfies (1), is finitary, and, by Corollary 218
satisfies (3). Thus we have proven:

Proposition 2.24. The small closure, scl is a finitary closure operator on subsets
of R.

3. SUPER-ROSINESS OF (R, &)

In this section we prove Theorem [[.3l To do this, we will need to use the
following propositions from [4]. Throughout this section, we assume that (R, G) is
k-saturated, for x > 219l

Proposition 3.1. If D has p-rank o and f : D — E, then E has p-rank less than
or equal to . Furthermore, if the fibers of f are finite, we have equality.

Proposition 3.2. If D has p-rank o and E has p-rank less than o, then p-rank(D\
E) is .

Proposition 3.3. If D has p-rank « then D™ has p-rank at least an, and equality
holds if o = 1.

Now we begin to analyze b-dividing in (R, G). In what follows, .deq refers to
the language of (R, G)™.
11



Lemma 3.4. Let o(z, l;o) be a formula in deq with © a variable in the real sort. If

w(R,go) is an infinite set definable in £, then w(x,go) does not p-divide over the
empty set.

Proof. It may be worth pointing out that merely because the set ¢(R, I;o) is defin-
able in .Z, we may not assume that ¢ is an Z-formula. For instance, 50 may come
from a sort that does not even exist in (:])™".

Assume, for a contradiction, that go(:t,go) does p-divide over the empty set.
That is, tp(go) is non-algebraic, and there is some 6(%,¢) and some k € N such
that whenever by, ..., by are distinct elements of G(R;q, @), we have that o(x,b1) A

A cp(x,l;k) is inconsistent. Since ¢ defines an infinite Z-definable set, by the
o-minimality of R| g, it defines a finite collection of points and open intervals.
First note that we may assume that for each b = 0(%, @), it is the case that o(z, b)
defines a single interval, modifying ¢ and 6 if necessary. (It is possible that for some
b = 6(7,0), o(x,b) defines a finite collection of points. First we modify 6 to rule

-,

out this possibility. Then we replace ¢(x,b) with a formula defining the least of the
intervals in the finite collection of points and intervals composing ¢ (R, b).)
Now we wish to reduce to the case where k = 2. We may assume that ¢(z, %)

does not (k — 1)-p-divide. Replace p(x,¥) with

&(Ia glv s 7g‘k*1) = /\ <P($7g‘1)
i<k
and replace 6 with

01, G) =0y A AOy—) A N G < G
i<j<k
Now ¢ clearly 2-b-divides.

Now we would like to find a contradiction by considering the union of the sets
defined by ¢(z,b) for b |= 0, intersecting with G, and noting that it violates (3) of
our assumptions on R from Theorem [[.3l First note that since G is a dense subset
of (a, 00), we can assume that ¢(R, b) is contained in the closure of G for each b |= 6
(possibly after reflecting the whole family over a and modifying 6. However, there is
still no immediate contradiction since UE\:@ ©(R,b) NG might still be a finite union

of intervals in G. We can modify go(:b,g) once again to define the interval with
half the length but the same center as ¢(z,b). Now, the union of these intersect G

cannot be written as a finite union of intervals intersect a dense subset of G.
O

Now we have all the tools in place to begin our proof of Theorem [I.3

Theorem [L.3l R = (R,G) is super-rosy of p-rank less than or equal to w and
p-rank of G is 1, Moreover, if R includes a field structure, p-rank of R equals w.

Proof. First we wish to show that the b-rank of GG is 1. For a contradiction, suppose
that some formula ¢(z,b) which defines an infinite subset of G b-divides over the
empty set. Say that k, 6(y/,c) are such that A,., ¢(z, l;z) is inconsistent for any k
distinct elements by, . .., by, satisfying 0(y, ).

12



Then, by (3) of the hypotheses of Theorem I3}, (R, b) is a finite union of sets,
each of which is either a point or an interval intersect an (-definable dense subset
of G. Without loss of generality, we may assume that for each o/ E 0(7,0), it is
the case that ga(x,l;’ ) defines a single interval, wl(R,l;’ ), intersect an (-definable
dense subset of G. Which (-definable set may depend on the type of v , but one
such set, 12(R), must occur for infinitely many V. Modifying 0 if necessary, we
may assume that for all b’ |= 6(i, ¢), we have that o(z, ') defines the same set as
i (2, 5') Ao (). . .

Thus we have that {11 (z,b") A a(z) : ' = 0(7,6)} is k-inconsistent. But by
Lemma B4 ¢ (x, I;’) does not p-divide, and so we may find an infinite B = {b; :
b = tp(b/d),i < o} such that Nie5 1 (R, b;) is nonempty and, hence, contains an
open interval (di,ds). But since ¢9(x) is a dense subset of G,

ﬂ @(R,b;) 2 (dv,d2) N1pa(R) # 0,
b,€B
which is a contradiction.

Second, we wish to show that the b-rank of x = x is no larger than w. Suppose
that gp(:z:,l;) k-b-divides over the empty set, where, again, b may come from any
sort in 4. We observe that it suffices to show that Dy := (R, 5) must be a small
set, since any small set is G-bound, and thus we may apply Proposition [3.1] and
Proposition B3] to conclude that any G-bound set has finite p-rank. Then we will
have shown that any formula, ¢(z, I;), which p-divides has finite p-rank, and, thus,
b—rank(;v = x) < w.

Now assume for a contradiction that ¢(z, g) is not a small set. By there is
some open interval I such that Dj is cosmall in I, that is, Dy N I; = I \ S; where
S; is a small set. Suppose that 6(i/, €) is such that for any 51, cee gk, each realizing
0(g, ¢), one has

Dglﬂ---ﬁngZQ).

0= @ ;)= ) L\ U S

1<i<k 1<i<k 1<i<k
Then it is not hard to see that
JI:]IEI ﬁ--~ﬂ]lgk = (.

Thus we have

For if this were not the case, J would be an open interval contained in the small
set S; U---US; , which is impossible, by Corollary 219

Thus, if gb(x,l;) defines I, we see that w(;v,g) also p-divides. But since inter-
vals are .Z-definable, this contradicts the previous lemma. Thus we conclude that
b—rank(;v = x) is no greater than w.

It remains to show that if R has a field structure, then b—rank(x = x) is precisely
w. Note that as G is small, R is an infinite dimensional dcl(G)-vector space. Choose
(¢i)ien independent vectors. Considering

G+ +cn1G +cpg,
and noting that one gets 2-inconsistency as one varies g though G, it is clear that

VZi=c1G+- -+ cn1G+cnG
13



has p-rank n. As each VZ is a subset of R, p-rank(R) > w. O

Note that we have not only shown that R is super-rosy, but the following:

Corollary 3.5. Any formula ¢(x, 5) that p-divides defines a small subset of R.
This will allow us to show that, in certain cases, small closure gives rise to a
pregeometry in Section [7}
Finally, we should point out the following two corollaries:

Corollary 3.6. Dense pairs of o-minimal structures (with at least a group struc-
ture) are superrosy. If the o-minimal structure is an expansion of a real closed field,
the p-rank of the pair is w.

Proof. See [2] to see a proof that dense pairs satisfy the hypotheses of Theorem
L3l O

For the next corollary, we need a defintion and a fact from [7]:

Definition 3.7. An expansion of (R, <) is said to have o-minimal open core if the
reduct generated by the definable open sets is o-minimal.

Fact 3.8. An expansion of (R,+,-) has o-minimal open core if and only if each
definable open subset of R has finitely many connected components.

Corollary 3.9. An expansion of (R,+,-) which satisfies the hypotheses of Theorem
has o-minimal open core.

Proof. For a contradiction, let D be definable, open, and with infinitely many con-
nected components. We may assume that D C (a,00). We note that that given
d € D, the connected component of D containing d is definable, say by ¢(z,d).
Being in the same connected component is a definable equivalence relation, call it
E. Thus the connected component of d may just as easily be defined by @(z,d/E).
As d/F varies through the sort D/E, §(z,d/E) b-divides. But @(z,d/E) is an
interval, and hence .Z-definable. This contradicts Lemma [3.4] O

4. IMAGINARIES

Pillay, building on ideas of Lascar, showed that a strongly minimal theory where
the algebraic closure of the empty set is infinite eliminates imaginaries down to
finite sets (see e.g. [6]). What follows is the same argument, with small replacing
finite, and it shows that R eliminates imaginaries down to small sets.

In this section, we assume that (R,G) satisfies all the hypotheses of Theorem
4 That is, we add to the assumptions of the last section, the assumption that
given any set A, and I any interval defined over A, that scl(A) NI is not contained
in any small set.

Proposition 4.1. Let p(Z,y) define an equivalence relation, E, and let e be an
element of the sort Rz/E. Then there is an element, d, of Rz such that e = d/E
and d € scl(e).

Proof. Let m: R — R™/E be the quotient map, and consider D defined by
Azo, ..., xpm(T1, T2y ..., Tpn) = €.

In the case that D; is small, any element of D; is in scl(e); let di be any such
element. Otherwise, there is some interval such that D is cosmall in that interval.
14



By our assumption on the small closure, it is not possible that scl(e) is contained
in D§. Let d; be some element of scl(e) N Dy.
Proceed inductively and define D; as

E|$i+1,...,{Enﬂ(dl,...,di,1,$i,$i+1,...,$n) =€

and consider the cases of I; small, or not, as above, to get d = (dy,...,dp).
Then d; € scl(€,dy,...,di—1). By choice of dy,...,d;_1, together with the fact that
scl: Z(R) — Z(R) is a closure operator, this implies that d; € scl(e).

O

Now we may prove our elimination of imaginaries result:
Theorem M4l Enlarge R to R by adding sufficiently many sorts of R so that R
has a code for every basic small subset of R*. Then R eliminates imaginaries.

Proof. Take e € R™. We want to find ¢ € R such that c is interdefinable with e.
Take d such that 7(d) = e and d € scl(e). Thus d is in a basic small set, D, defined
over e; let ¢ be the code for DNw~!(e). Clearly, cis defined over e. But e is defined

over any element of D N7~ 1(e), and thus over ¢ as well.
O

5. GROUPS WITH THE MANN PROPERTY

We start by defining the Mann property for multiplicative subgroups of fields.
Let K be a field, and G a subgroup of K*. For aj,...,a, € K, a solution
(g1,---,9n) of a1z1+- - -+a,x, = 1in G is said to be nondegenerate if Ziel a;g; 0
for every non-empty subset I of {1,...,n}. We say G has the Mann property if
for every aq,...,a, from K, the equation ayxy + - - - + anx, = 1 has finitely many
nondegenerate solutions in G.

Prior to this section, we have assumed that (R,G) was as in Theorem [[3l In
this section we instead prove that (R, G) as in Theorem [L1] satisfy the hypotheses
of Theorem [[.3l That is, we assume that R is a real closed field and G is a dense
subgroup of R~>? with the Mann property and such that for each p, the pth powers
in G have finite index in G.

As noted in the introduction, most of the results about groups with the Mann
property that we need are found in [3]. For instance, we have the following:

Fact 5.1. By of Lemma 6.1 of [3], if (R,G) satisfies the conditions of Theorem
[[1, then G is small.

Fact 5.2. By Theorem 7.5 of [3], if (R, G) satisfies the conditions of Theorem [I],
then any definable subset of R is a boolean combination of basic sets.

However, we will need to strengthen the quantifier elimination results obtained
there.

In the rest of this section ¢ is of the form p™, where p is a prime number and
m € N. .
For each ¢ and k = (k1,...,k,) € Z" let D, (%) be the formula

G(x1) A AG(xn) AIy(Gly) Akt -k = y9).
Note that Dy o,...,0)(Rz) is all of G", and for any g € G, there is h € G" such that
D, 179, Rz) equals hD_ r(Rz).
15



We will write GI™ to denote the elements of G that have nth roots in G.

Proposition 5.3. Let D C G™ be definable in (R,G), then D is a boolean combi-
nation of sets of the form F N §Dq i(Rz), where F is a semialgebraic set, j € G,

q s as above, and kezr.

Before proving this proposition, we recall some results from [3] that are used in
the proof of it.

Let (R1,G4) and (R2, G2) be two |R|T-saturated elementary extensions of (R, G).
Then in the proof of Theorem 7.1 of [3], the authors construct a back and forth
system Z, between (Ry, G1) and (R, G2), consisting of isomorphisms ¢ : (R}, G}) —
(Rh, G%) where R is a real closed ordered subfield of R; of cardinality < |R|, G} C
R/”" is a pure subgroup of G; containing G, and R, and Q(G;) are algebraically
free over Q(GY) for i =1,2.

We also need the following lemma from [3].

Lemma 5.4. Let R be a real closed field with a subfield E and let H C R>° be a
subgroup satisfying the Mann property. Suppose that H' is a subgroup of H such
that for all ay,...,a, € E* the equation aix1 + --- + a,x, = 1 has the same

nondegenerate solutions in H' as in H. Then for any h € H, if h is algebraic over
E(H') of degree d, then h € H'.

Now we prove Proposition (.31

Proof. By standard model theoretic arguments (see for instance 8.4.1 of [3]), it is
enough to prove the following:

Claim. Let (R, G1) and (R2,G2) be two |R|T-saturated elementary extensions of
(R,G). Take g1 € G} and g» € G such that for any formula ¢(Z) in the language
of ordered rings with parameters in R, for any g € G, and for any g, k as above,
we have

(R1,G1) = o(d1) A D, 17(g, G1) if (B2, G2) = (G2) AD, 159, 52)-
Then (Ry,G1, G1) =r (R2, G2, G2).
Proof of the claim. By the remarks made before the proof, there is a back and
forth system Z between (R1,G1) and (Rg, G2). It suffices to prove that there is an
element ¢ of Z taking g to ga.

Since g3 and g, satisfy the same ordered field type over R, there is a ordered
field isomorphism ¢ : R} — R}, mapping i to g2 equal to the identity on R, where
R} is the real closure of R(g;) for i =1,2.

Consider G’ := R, N G;. We wish to show that G} = G(7:) := {(9GF)"/™ : g €
G, keZ"meN, g[]’f € Ggm]}. It is clear that G D G(g;).

We use Lemma [5.4] to show G, C G(g;). To do this we need to check that for all
ai,...an € R, if a1x1 + --- + axz, = 1 has a nondegenerate solution in G;, then
this solution lies in G(g;). But since (R,G) = (R;, G;), such a solution lies even in
G. Now applying Lemma [5.4] we see that if ¢ € G; is algebraic of degree d over
R(G(g:)), then g is in G(g;) and thus g itself is in G{g;).

Now we wish to show that (G)) = G%. An element of G/, is of the form (ggF)*/™
for some g € G,k € Z",m € N. Note «((¢3F)"/™) = (¢93F)/™, and by our
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assumption on gj, (gjlg) is in G[lm] if and only if (gg}’g) is in G[Qm]. Thus ¢ is an
isomorphism between (R, G}) and (R}, GY).

It remains to show that R} and Q(G;) are algebraically free over Q(G}) and G,
is a pure subgroup of G;. The first follows from the assumption that (R;, G;) is an
elementary extension of (R,G), and G} is a pure subgroup of G;, since it equals
G(gi)- O
Remark 5.5. Note that the proof of Proposition does not require that the
subgroup of pth powers has finite index. With this assumption, we see that in

addition, the subgroup of qth powers is of finite index in G and therefore Dq 7 (Rz)
is of finite index in G". So G"\ D, r(Rz) is a finite union of cosets of D, r(Rz).

We also have the following lemma.

Lemma 5.6. For any q, and k € Z", D, 7(Rz) is dense in G".

Proof. We show that for any ¢, and k € Z", D, 7(Rz) 2 (Gla™ which is enough
to prove the lemma, as (GI9)" is dense in G™. So let (¢, ...,92) € (Gl4)". Then

gDk (g8)F = (gf")? - (gh)? = (g)" - - gk )7 € Gl

Thus (g7,...,9%) € D, z(Rz). O

Corollary 5.7. Each D (Rz) is a finite union of cosets of (G, Moreover,
for any D C G there is d € N such that D is a finite union of sets of the form

F N GGl where F is semialgebraic?

Proof. By the proof of Lemma [5.6) we have that (G19)" is a subgroup of D, #(Rz).
Since (Gl4)™ is finite index in G™, it is also finite index in D, #(Rz).

Next note that if d is the least common multiple of d , da, then Gl#INGl! = Gldl,
Thus, given any finite number of cosets of (G[%1)" for various d;, one may replace
them by a finite number of cosets of (G1%)", where d is the least common multiple
of the d;. Using this observation, the reader may easily check that for each D C G™
there is d € N such that D is a finite union of sets of the form F N g(GI4)" where
F is semialgebraic. (]

Now we are in a position to prove the first of our main results.

Theorem [I.Tl R = (R, G) is super-rosy of p-rank equal to w and p-rank of G is
1.

Proof. Since super-rosiness and b-rank are properties of the theory, we may assume
that (R, G) is sufficiently saturated. Conditions (1) and (2) of Theorem [I.3] are
clear; we will show (3) for (R, G) in a language expanded by naming each element
of some model. Consider D C G™. First, we wish to show that D =ENS, where E
is semialgebraic and S is a dense subset of G™. For the purposes of this proof, we
refer to such sets as nice.

We have established, in the previous corollary, that D = [J;~, E;NS;, where each
I, is semialgebraic, and each S; is of the form §(G[4)", and, in particular, each S;
is dense in G™. Thus D is a finite union of nice sets. We wish to show that a finite
union of nice sets is nice. Consider (E; N'S;) U (E2 N'S3). Let E; := E; \ E; and

2The authors thank Lou van den Dries for pointing out this Corollary.
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IEQ = EQ \El Lst §1~I: Sl~\ SQNand gg = SQ \Sl Let E := (El U Eg) and let
S = (Sl U Sz) \ ((Eg N Sl) U (El n Sg)) Note that

(El ﬁSl)U(EgﬂSQ)ZEﬂS.

Thus we want to show that S is dense in G™.

Suppose that S is not dense in G". Then there is an semialgebraic open U C
(R>%)™ such that SNU = (. Thus S;NU C E2NS; and S;NU C E;NS,. Since Sy is
dense, the closure of SoNU equals the closure of U, and is contained in the closure of
E;. Thus, E; must contain all of U except for a semialgebraic set, Dy, of dimension
less than n. Likewise there is Dy such that U\ Dy C Ey. Thus U\ (D U Ds) is
contained in El N EQ = (), a contradiction.

Finally we note that by Corollary 5.7, if D € G", then D = J,_,(E; N'S;)
with each E; a semialgebraic set and each S; a coset of (G4, Since (Gl is
a subgroup of finite index, any model has representatives of each coset, and thus,
after naming the elements any model, each S; becomes (-definable, and we may
apply Theorem [[.3 to get that (R, G) in this expanded language is super-rosy of
b-rank equal to w and p-rank of G is 1. Since p-rank is invariant under expansions
of the language by constants, we are done. O

In [7], the question is raised whether (R, 223%) has o-minimal open core. We are
now in a position to give an affirmative answer to this question.

Corollary 5.8. If (R, G) is an ezxpansion of the real field by a predicate for a dense
multiplicative subgroup of R>C with the Mann property, then (R, G) has o-minimal
open core.

Proof. By Corollary B9 O

To prove the second main result, that adding codes for the small sets definable
in R is sufficient to eliminate imaginaries, we must verify our assumptions at the
beginning of Section [ that given any set of parameters A, and any interval [
defined over A, the small closure of A intersect I is not contained in any small set.
To do this, we must first perform some p-rank calculations within R.

Definition 5.9. For n > 0 we define G inductively as
G .= Gu{0},
and GTHY .= (G U {0}) + GT™.
Proposition 5.10. The p-rank of GT™ is n.

Proof. Consider the map f : G — G™™ given by f(§) = g1 + -+ + gn. We have
p-rank of G*™ is less than or equal to n, since f is surjective.

For the converse, define G} := {g € G" : }_,_; gi = 0} for any nonempty subset
I of {1,...,n}. Note that G7 is the image of G"~! under a definable map, thus is
of p-rank at most n — 1. Now define

=6t J 6
0AIC{1,...,n}

Note that b-rank of G}, is n, and by the Mann property, the restriction of f to
G?, has finite fibers. Therefore, by Bl b-rank of G is n. O
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Proposition 5.11. Let A be any set, and I any interval defined over A. Then
scl(A) N T is not contained in any small set.

Proof. Note that scl(A) contains scl(()) which in turn contains G™". First we show

that

Uaer

n>0
is not contained in any small set. Assume it is contained in a small set S. Since
S is G-bound, there is a map f : R¥ — R such that S C f(G¥). Therefore by
Propositions Bl and B3] we have p-rank of S is at most k, and thus, for each n,
G™" has p-rank at most k contradicting Proposition 5.10l

Let I = (b,¢). Now let f : R — (b,c) be a definable bijection. Note that

f(Upso G™) is contained in scl(A) N 1. If f({J,-,GT") were contained in some
small set, say S, then f~*(S) would be a small set containing J,,., G*", a contra-
diction. (]

Now we have proven the second of main results:

Theorem [1.2] If one enlarges (R, G) by adding sufficiently many sorts of (R,G)™
so that the resulting structure has a code for every basic small subset of R*, then
this structure eliminates imaginaries.

6. THE STRUCTURE R”°/G

In this section we assume that R has a field structure.

Proposition 6.1. Let C C R and let a, b € R be such that a,b & scl(C). Then
for every formula ¢(x,c) in tp(a/C) there is b’ € R such that V'/G = b/G and
v € ¢(R,0).

Proof. We may assume that C' = dcl(C). Let ¢(z,¢) € tp(a/C). By Lemma
there is a partition {co,...,c,} of R, where ¢; € C for i < n such that ¢(z,?) is
small or cosmall when restricted to (¢;,¢;+1). Say a € (¢, ¢i+1)- Since a & scl(C),
¢(R,€) is cosmall in (c¢;,c¢i+1). Since b # 0, there is ¢ € R such that tb = a.
Furthermore, since multiplication by b is a continuous function, and since G is
dense in R, we can find g € G such that b’ = gb € (¢;,¢i+1). We may choose g
b-independent from b over C. Since b & scl(C U {g}) and multiplication by g is a
definable bijection of R, we have that b’ & scl(CU{g}) and thus ¢(z, ¢) € tp(b'/C).

([

Corollary 6.2. Let a, b € R be such that a,b & scl(A). Let ag = a/G, bg = b/G.
Then for any set A such that ag and bg are p-independent from A, tp(ag/A) =
tp(bc/A).

Proof. We may assume that a and b are independent from A. By the previous
proposition for every formula ¢(z,¢) in tp(a/A) we can find ¥ € R such that
b /G =bg and b € p(R, ). This implies that tp(ag/A) = tp(bg/A). O

Given any subset C' C R, there is a unique type in R>°/G over C that contains
only large sets. Thus the group R”°/G is definably connected (in the sense of
having no proper definable subgroups of finite index) and all definable subsets of
R>°/G are small or cosmall.

Assume now that R is uncountable and G is countable. Then the definable small
sets are countable. This raises the following question:
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Question 6.3. Is R”°/G quasi-minimal?

In [11], Zilber defines a quasi-minimal excellent class, as a class of structures
closed under isomorphism, where each definable set is countable or co-countable,
and with a closure operator satisfying three assumptions. When, in addition, the
closure operator satisfies the exchange property, he obtains that the class is categor-
ical in every uncountable cardinal. We have that each definable set is countable or
co-countable, and small closure satisfies exchange and can easily be seen to satisfy
the first of Zilber’s three assumptions. However, we have been unable to verify that
the other two assumptions hold.

Even without the assumption that G is countable, we may ask the following, less
ambitious, question:

Question 6.4. Is R”°/G superstable?

There is no obvious order definable within R>°/G, and if R>°/G does not have
the order property, it must be superstable, as b-forking agrees with forking in stable
theories.

7. THE U°-RANK

Throughout this section, $R denotes a structure satisfying the hypotheses of
Theorem [I.3]

In [I] Buechler used infinite dimensional pairs to study the geometric properties
of a strongly minimal sets. He showed the pair has Morley rank one iff the strongly
minimal set is trivial, Morley rank two iff the strongly minimal set is locally modular
non trivial and w otherwise. These results were generalized by Vassiliev in [10] to the
setting of simple theories using lovely pairs to analyze SU rank one pregeometries.
Dense pairs of o-minimal structures were studied by van den Dries in [2], where
he showed they satisfy the hypothesies of Theorem [[L3l In what follows below, we
show that the same relationship exists between the pregeometry of a o-minimal
structure, and that of the corresponding dense pair (though, of course, here the
information yielded by the dense pair is already known).

Peterzil and Starchenko [9] showed that locally every o-minimal structure be-
haves as an expansion of a field, an ordered vector space, or is trivial. In the
analysis that follows below, we will deal with two cases: when R includes a field
structure and when fR|« is an ordered abelian group with no additional structure.

Recall that the UP-rank “counts” the number of times the type can p-fork and
that 1-types in o-minimal structures have UP-rank at most one.

Lemma 7.1. Let g € G and let C C R. Then UP(tp(g/C)) < 1 and equality holds
iff g € del(C).

Proof. 1t follows from Theorem [I.3 O
7.1. Field case. Now assume that fR| ¢ has a definable field structure. Then, as

G is small, R is an infinite dimensional dcl(G)-vector space and we fix a countable
family (¢;)icw of linearly independent vectors.

Definition 7.2. Let g1,...,9, € G and let A C R. We say that {g1,...,9,} is an
A-independent set if UP(tp(g1, ..., gn/A)) = n.
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Lemma 7.3. Let g1,...,9n, € G and let C = {c1,...,¢cn}. Then
Ub(tp(clgl +---+ Cngn/C)) S n
and equality holds iff {g1,...,gn} is a C-independent set.

Proof. Clearly c1g1 + -+ + ¢ngn € dcl({g1,- -, 9n,C1,-..,¢n}), so by additivity of
the rank and the previous lemma,

UP(tp(ergr + -+ + engn/C)) < UP(tp(g1, ..., 9n/C)) < n.

Furthermore since C' = {c1,...,c,} is a set of linearly independent vectors, there
is only one solution in G™ for the equation ciz1 + -+ + ¢, = €191 + -+ + CnGn,
SO g1,-.-,9n €dcl(gic1 + -+ + gnen, C). It {g1,...,gn} is a C-independent set, we
get UP(tp(cigr + -+ - + cngn/C)) = n. O

Proposition 7.4. Let a ¢ scl(0), then UP(tp(a)) = w.

Proof. By Theorem [[3 (and Fact [I2), UP(tp(a)) < w.

Now we will show that tp(a/0) has forking extensions of UP-rank n for every n.
Let C = {c1,...,c,} and without loss of generality assume that C' is b-independent
from a. Let g1,...,g, € G and assume that {g1,...,gn} is a C' U {a}-independent
set. Let b=a+c191+ -+ cngn. Then a, b & scl({c1,...,cn}). Thus Ub(tp(clgl +
<o+ ¢pgn/CU{b})) = n and since a and c¢1g1 + - - - + ¢, g, are interdefinable over
b, UP(tp(a/C U {b})) = n. Thus UP(tp(a)) = w. O

Corollary 7.5. If R| ¥ has a definable field structure and a € scl(B)\ scl(C), then
a J//g B.

Proof. We may assume C' = (), as our hypotheses remain true after adding parame-
ters to the language. Since a € scl(B), some formula in tp(a/B) defines a G-bound

set, and Lemma [7.3] implies that UP(a/B) is finite. On the other hand, UP(a) = w
by Lemma [T.4l O

7.2. Pairs of groups with no additional structure. Assume now that £ =
{+.,0,<}. Thus R|g is a divisible ordered abelian group. Furthermore suppose
that G a subgroup of R.

Definition 7.6. Let n > 0 and let G/n = {r € R:nr € G}.
Lemma 7.7. The group G/n has p-rank one.

Proof. Recall that G has p-rank one. As R is divisible and torsion-free, multiplica-
tion by n is a definable bijection between G/n and G, and thus the b-rank of G/n
is one.

O

Proposition 7.8. a € scl(B) if and only if there is b € dcl(B) and n € N>° such
that a € b+ G/n.

Proof. Right to left is clear.

Now assume that a € scl(B). By Proposition 2.T6] a is contained in S, a basic
small set defined over B. Let 37(G(%) A ¢(z,¥)) be a formula defining S. For each
d, (R, §) is a finite union of points and intervals. However, if for any g in G*,
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©(R, §) contains a non-empty open interval, then S is not small. Thus, we may
reduce to the case where ¢(z,¥) is * = f(¥), where

k
@ =b+Y Ty
=1

g

for some b € dcl(B), m; € Z and n; € N. Let n be the least common multiple of
the n;. Thus f(G¥) is contained in b+ G/n, and a € f(G*). O

Proposition 7.9. Let a € R be such that a ¢ scl(§). Then Uf(tp(a)) = 2.

Proof. By Proposition [[.8 every small subset of R has p-rank at most one, and by
Corollary B3] a b-forking extension of tp(a) must include a formula defining a small
set. Thus UP(tp(a)) < 2. It is easy to see that for g € G, with tp(g) non-algebraic,
and g | Pa, we get UP(tp(a)) = UP(tp(a/g)) = UP(tp(a + g/g)). Now we claim
that a+g J/b g. If not, by Corollary [ we would have a+ g € scl(g) = scl((}), and
thus a + g € ¢+ G/n for some ¢ € del((}), by Proposition [[.8 But then a + ¢, and
hence a, would be in scl(f), a contradiction. Thus UP(a) = UP(a+g/g) = UP(a+g),
and it suffices to show that UP(a + g) = 2.

Consider the chain tp(a + g/0) C tp(a + g/a) C tp(a + g/a, g). If we show that
this is a p-forking chain we will have shown that UP(a + ¢) > 2, and thus equal to
2. First note that tp(a 4+ g/a) contains a formula saying € G + a. This formula
is true of a + g and b-divides over the empty set. Thus, tp(a + g/a) is a b-forking
extension of tp(a + g).

Second, note that tp(a + g/a,g) is algebraic, and hence to show that it is a
b-forking extension of tp(a 4+ g/a), it suffices to show that the latter type is not
algebraic. But we chose g | Pa. Thus tp(g/a) is not algebraic, and neither is
tp(a +g/a).

(I

Now we get a corollary analogous to Corollary [T.5t

Corollary 7.10. If R|» is an ordered group with no additional structure, and
a € scl(B) \ scl(C), then a j/g B.

Proof. By the previous proposition (after adding C' to the language), we see that
Ub(a/C) = 2. On the other hand, by Proposition [[.8 we see that a belongs to a
set of b-rank one defined over B, namely a coset of G /n for some n. Thus UP(a/B)
is either zero or one. ]

Remark 7.11. Note that we have shown that p-forking in one variable is caused
by falling into some coset of G/n for some n. This may be seen as an analogue of
the fact from stable theories that the beautiful pair associated to a one-based theory
s again one-based.

7.3. Small closure is a pregeometry.

Corollary 7.12. If R|y either is an ordered group with no additional structure
or has a definable field structure, then the closure operator scl : Z(R) — Z(R)
defines a pregeometry.
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Proof. Let C C R and let a,b € R be such that a € scl(C U {b}) \ scl(C). Then

tp(a/CU{b}) b-forks over C by either Corollary[Z.5or[Z.I0 By symmetry, tp(b/CU
{a}) also p-forks over C, so by Corollary 3.5} b € scl(Ca). O
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