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Abstract

Locality notions in logic say that the truth value of a formula can be determined locally, by
looking at the isomorphism type of a small neighborhood of its free variables. Such notions have
proved to be useful in many applications. They all, however, refer to isomorphism of neighborhoods,
which most local logics cannot test. A stronger notion of locality says that the truth value of a
formula is determined by what the logic itself can say about that small neighborhood. Since
expressiveness of many logics can be characterized by games, one can also say that the truth value
of a formula is determined by the type, with respect to a game, of that small neighborhood. Such
game-based notions of locality can often be applied when traditional isomorphism-based locality
cannot.

Our goal is to study game-based notions of locality. We work with an abstract view of games
that subsumes games for many logics. We look at three, progressively more complicated locality
notions. The easiest requires only very mild conditions on the game and works for most logics of
interest. The other notions, based on Hanf’s and Gaifman’s theorems, require more restrictions. We
state those restrictions and give examples of logics that satisfy and fail the respective game-based
notions of locality.

1 Introduction

Locality is a property of logics that finds its origins in the work by Hanf [13] and Gaifman [10], and
that was shown to be very useful in the context of finite model theory. Locality is primarily used
in two ways: for proving inexpressibility results over finite structures, where most traditional model-
theoretic tools fail, and for establishing normal forms for logical formulae. The former has led to new
easy winning strategies in logical games [6, 8, 21], with applications in descriptive complexity (e.g.,
the study of monadic NP and its relatives [8], or circuit complexity classes [22]), in databases (e.g.,
establishing bounds on the expressiveness of aggregate queries [16], or on query rewriting in data
integration and exchange [7, 1]), and in formal languages (e.g., in characterizing subclasses of star-free
languages [28]). Local normal forms like those in [10, 26] have found many applications as well, for
example, in design of low-complexity model-checking algorithms [9, 12, 27], in automata theory [26]
and in computing weakest preconditions for database transactions [3].

∗This is the full version of two extended abstracts presented at the Computer Science Logic Conference in 2004, and
Workshop on Logic, Language, Information, and Computation in 2005.
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There are two closely related ways of stating the locality of logical formulae. One, originating in Hanf’s
work [13], says that if two structures A and B realize the same multiset of types of neighborhoods of
radius d, then they agree on a given sentence Φ. Here d depends only on Φ, and not on the structure.
The other, inspired by Gaifman’s theorem [10], says that if the d-neighborhoods of two tuples ā1 and
ā2 in a structure A are isomorphic, then A |= ϕ(ā1) ↔ ϕ(ā2). Again, d depends on ϕ, and not on A.

If all formulae in a logic are local, it is easy to prove bounds on its expressive power. For example,
connectivity violates the Hanf notion of locality, as one cycle of length 2m and two disjoint cycles
of length m realize the same multiset of types of neighborhoods of radius d as long as m > 2d + 1.
Likewise, the transitive closure of a graph violates the Gaifman notion of locality. For instance, in
the directed graph with edges (ai, ai+1) for 0 ≤ i ≤ n − 1, radius-d neighborhoods of (ad, an−d) and
(an−d, ad) are isomorphic as long as n > 4d+1, and yet these pairs are distinguished by the transitive
closure query.

These notions of locality, while very useful in many applications, have one deficiency: they all refer to
isomorphism of neighborhoods, which is a very strong property (typically not expressible in a logic that
satisfies one of the locality properties). There are situations when these notions are not applicable
simply because structures do not have enough isomorphic neighborhoods. One example was given
in [22] which discussed applicability of locality techniques to the study of small parallel complexity
classes: consider a directed tree in which all non-leaf nodes have different out-degrees. Then locality
techniques cannot be used to derive any results about logics over such trees.

Intuitively, though, it seems that requiring isomorphism of neighborhoods is too much. Suppose we
are dealing with first-order logic FO, which is local in the sense of Gaifman. For a structure A, it
appears that if FO itself cannot see the difference between two large enough neighborhoods of points
a and b in A, then it should not be able to see the difference between elements a and b in A. That is,
for a given formula ϕ(x), if radius-d neighborhoods of a and b cannot be distinguished by sufficiently
many FO formulae, then A |= ϕ(a) ↔ ϕ(b). Gaifman’s theorem [10] actually implies that this is the
case: if ϕ is of quantifier rank k, then there exist numbers d and �, dependent on k only, such that
if radius-d neighborhoods of a and b cannot be distinguished by formulae of quantifier rank �, then
A |= ϕ(a) ↔ ϕ(b).

In general, it seems that if a logic is local (say, in the sense of Gaifman), then for each formula ϕ
there is a number d such that if the logic cannot distinguish radius-d neighborhoods of ā and b̄, then
ϕ(ā) ↔ ϕ(b̄).

The goal of this paper is to introduce such notions of locality based on logical indistinguishability of
neighborhoods, and see if they apply to logics that are known to possess isomorphism-based locality
properties. Since logical equivalence is often captured by Ehrenfeucht-Fräıssé-type of games, we shall
refer to such new notions of locality as game-based. We shall discover that the situation is more
complex than one may have expected, and passing from isomorphism-based locality to game-based is
by no means guaranteed for logics known to possess the former.

These new game-based notions of locality can be applied when the traditional isomorphism-based
notions cannot (which, in particular, makes it possible to show more bounds on the expressiveness of
logics). This is demonstrated by the following example.

Example 1.1 Let σ be the vocabulary of a unary relation symbol U and a binary relation symbol E.
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· · · �
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a ∈ U b ∈ U

· · · � + 1

Figure 1: Structure A of Example 1.1.

Given a finite structure A, let Q(A) be the set of elements a in the universe of A such that a is in U ,
and the number of elements c such that (a, c) ∈ E, is even.

It can be shown (e.g., by a direct game argument) that Q is not FO-definable. However, we cannot
use any of the classical locality notions to prove this: even if neighborhoods of a and b of radius 1 are
isomorphic, it means that a and b cannot be distinguished by Q.

Nonetheless, with game-based locality, the proof of inexpressibility of Q can be obtained easily. Such a
notion (and we shall see later in the paper that it applies to FO) states that if Q were FO-definable,
then there would be constants r, � ≥ 0 such that for every structure A and elements a, b ∈ A, if radius-r
neighborhoods of a and b cannot be distinguished by an �-round Ehrenfeucht-Fräıssé game, then a and
b cannot be distinguished by Q. But now look at A in Figure 1, where the E-relation is shown, and
U is interpreted as {a, b}, and the number of c’s connected to a and b is � and � + 1, respectively.
It is immediate then that r-neighborhoods of a and b (which are radius-1 neighborhoods) cannot be
distinguished by an �-round Ehrenfeucht-Fräıssé game, and yet a and b are distinguished by Q.

Organization of the paper First, we present a unifying framework for talking about logical games. Our
framework subsumes games for FO, and many of its counting and generalized quantifier extensions.
We then see what conditions on games need to be imposed in order to recover game-based notions of
locality. We look at three progressively more complex notions: weak locality, Gaifman-locality, and
Hanf-locality, and state conditions on games under which they can be guaranteed. While weak locality
requires very little, even that notion can fail in some unary-quantifier extensions of FO. Hanf-locality
under games fails even for FO, but holds for a number of counting logics. Gaifman-locality under
games holds for many logics, although the proofs are harder for weaker forms of counting.

2 Notation

We work with finite structures, whose universes are subsets of some countable infinite set U . All
vocabularies will be finite sequences of relation symbols σ = 〈R1, . . . , Rn〉; a σ-structure A consists of
a finite universe A ⊂ U and an interpretation of each m-ary relation symbol Ri in σ as a subset of
Am. We adopt the convention that the universe of a structure is denoted by the corresponding Roman
letter, that is, the universe of A is A, the universe of B is B, etc. Isomorphism of structures will be
denoted by ∼=.
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An m-ary query Q on σ-structures, m ≥ 0, is a map, closed under isomorphism, that associates with
each σ-structure A a subset of Am. We assume that 0-ary queries are maps from σ-structures to the
Boolean values true and false. A logical formula ϕ(x1, . . . , xm) defines an m-ary query Qϕ(A) =
{(a1, . . . , am) | A |= ϕ(a1, . . . , am)}.
We shall denote first-order logic by FO. For each S ⊆ N we let QS denote a simple unary generalized
quantifier [20, 29] that gives rise to the extension FO(QS) of FO with the following formation rule: if
ψ(x, ȳ) is a formula, then ϕ(ȳ) = QSx ψ(x, ȳ) is a formula. The semantics is as follows: A |= ϕ(ā)
if |{b | A |= ψ(b, ā)| ∈ S. One could also define FO(QS1, . . . ,QS�

) as FO extended with a collection
QS1 , . . . ,QS�

of simple unary generalized quantifiers.

A well-known special case is that of modulo quantifiers Q{np|n∈N} (cf. [24, 25, 29]), which we shall
denote by Qp. We shall also consider Q{p|p is prime}, denoted by QPrime.

Finally, we define a powerful counting logic that subsumes most counting extensions of FO, in par-
ticular FO extended with arbitrary collections of unary generalized quantifiers. The structures for
this logic are two-sorted, and the second sort is N. There is a constant symbol for each k ∈ N. The
logic has infinitary connectives

∨
and

∧
, and counting terms: if ϕ is a formula and x̄ a tuple of free

first-sort variables in ϕ, then #x̄.ϕ is a term of the second sort, whose free variables are those in ϕ
except x̄. Its value is the number of tuples ā that make ϕ(ā, ·) true. This logic, denoted by L∞ω(Cnt),
is too powerful as it defines all properties of finite structures, but we restrict it using the notion of
quantifier rank qr(·) (which is the maximum depth of quantifier nesting excluding quantification over
the numerical universe for two-sorted logics). For L∞ω(Cnt), we also define qr(#x̄.ϕ) as qr(ϕ) + |x̄|.
We now let L∗∞ω(Cnt) be L∞ω(Cnt) restricted to formulae and terms that have finite quantifier rank.
This logic subsumes known counting extensions of FO, but cannot express many properties definable,
say, in fixed-point logics or fragments of second-order logic [21]. Notice also that L∗∞ω(Cnt) can
express all numerical properties by means of infinitary disjunction.

3 Games and logics

We shall be dealing with the locality of logics where indistinguishability of neighborhoods is described
in terms of winning strategies of games. Thus, our first goal is to present an abstract view of games
that characterize expressiveness of logics which are known to be local under the standard isomorphism-
based notion.

All such games are played by two players, the spoiler and the duplicator, on two σ-structures A and B.
The goal of the spoiler is to show that the structures are different while the duplicator is trying to show
that they are the same. More precisely, in each round i the players play two elements of the structures,
ai ∈ A and bi ∈ B. The duplicator wins after k rounds if the function f : {a1, . . . , ak} → {b1, . . . , bk}
given by f(ai) = bi is a partial isomorphism.

As our first example, we consider the bijective game of [14]. This game (which captures expressiveness
of sentences of L∗∞ω(Cnt)) is played as follows. In round i, the duplicator selects a bijection fi : A→ B
(if |A| 
= |B|, the duplicator loses the game). The spoiler then picks ai ∈ A, and the duplicator is
forced to respond with fi(ai) ∈ B.
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We now look at the standard k-round Ehrenfeucht-Fräıssé game on A and B. Recall that in this game
in each round i ≤ k, the spoiler chooses one of the two structures, let us say A, and an element in
that structure, ai ∈ A. The duplicator then responds with an element bi ∈ B. We now notice that
this standard description can be presented in a way that resembles the definition of bijective games.
Namely, if the duplicator has a winning strategy in the k-round Ehrenfeucht-Fräıssé game, it means
that in each round i, depending on the current position of the game, he has a way to respond to any
move by the spoiler. That is, he has a function f : A → B, not necessarily a bijection, that is total,
and defines his responses to all the moves by the spoiler. Thus, our reformulation is as follows: in
each round i, the spoiler chooses a structure in which to play, say A. Then the duplicator chooses a
total function fi : A → B. The spoiler then picks an element ai ∈ A, and the duplicator responds
with fi(ai) ∈ B.

This presentation of Ehrenfeucht-Fräıssé and bijective games leads to our abstract view of games. The
key notion is that in each round the duplicator has a set of functions (which we call tactics) that will
determine his responses to possible moves by the spoiler. As we shall see, this abstract view suffices
to capture many games that apply to local logics (but not games for fixed-point or finite-variable
logics that are capable of expressing non-local queries). We shall also look at the more general case
of structures with parameters (A, ā0) to capture expressibility by formulae with free variables.

Definition 3.1 An agreement F assigns to each pair A,B of finite subsets of U a collection

F(A,B) = {F1(A,B), . . . ,Fm(A,B)} ,

where each Fi(A,B) is a nonempty collection of partial functions f : A→ B. We call the sets Fi(A,B)
tactics.

The F-game on (A, ā0) and (B, b̄0) is played as follows. Suppose after i rounds the position is (ā0ā, b̄0b̄)
(before the game starts, the tuples ā, b̄ are empty). Then, in round i+ 1:

1. The spoiler chooses a structure, A or B. Below we present the moves assuming he chose A, the
case of B is symmetric.

2. The duplicator chooses a tactic F(A,B) ∈ F(A,B).

3. The spoiler chooses a partial function f ∈ F(A,B) and an element a ∈ dom(f); the game
continues from the position (ā0āa, b̄0b̄f(a)).

The duplicator wins after k-rounds if both F(A,B) and F(B,A) are non-empty, and the final position
defines a partial isomorphism between (A, ā0) and (B, b̄0). If the duplicator has a winning strategy for
the k-round game, we write (A, ā0) ≡F

k (B, b̄0).

We now show how some known games can be defined in this setting. In particular, we define four
agreements: F(FO), F(L∗∞ω(Cnt)), F(FO(Qp)), and F(FO(Q)) for an arbitrary unary quantifier Q.

• F(FO): as explained above, a tactic is a singleton set {f}, where f : A→ B is a total function,
and F(A,B) contains all possible tactics.
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• F(L∗∞ω(Cnt)): same as above, except that each tactic is {f} where f : A → B is a bijection
(there are no tactics if |A| 
= |B|). This is the setting of bijective games.

• F(FO(Qp)): given A,B ⊂ U , a tactic F(A,B) is a set of maps such that for every D ⊆ B, there
exists f ∈ F(A,B) such that dom(f) = A and |f−1(D)| ≡ |D| (mod p). Again, F(A,B) contains
all possible tactics. This corresponds to the game for modulo quantifiers Qp [25].

• F(FO(QS)): given A,B ⊂ U , a tactic F(A,B) is the union of two sets: {f}, with f a total
function, and a set of maps such that for every D ⊆ B with |D| ∈ S, there exists a function g
in this set with dom(g) = A and |g−1(D)| ∈ S. This corresponds to the game for FO(QS) [20].

For multiple unary quantifiers QS1, . . . ,QSm , tactics in the agreements F(FO(QS1, . . . ,QSm))
are defined as component-wise unions of tactics from F(FO(QSi)), for i ≤ m.

Definition 3.2 Given an agreement F, we say that the F-game is a game for a logic L, if there exists
a partition {L0,L1, . . . } of the formulae in L such that for every k ≥ 0, there exists k′ ≥ 0 with the
property that

(A, ā0) ≡F
k′ (B, b̄0) implies

(
A |= ϕ(ā0) ⇔ B |= ϕ(b̄0)

)
, for all ϕ ∈ Lk.

If the converse holds as well, that is, for every k′ ≥ 0 there exists k ≥ 0 such that, (A, ā0) ≡F
k′ (B, b̄0),

whenever A |= ϕ(ā0) ⇔ B |= ϕ(b̄0) for every ϕ ∈ Lk, then we say that the F-game captures L.

All logics considered here have a notion of quantifier rank of their formulae, and we shall always
associate Lk with the set of L-formulae of quantifier rank k.

Notice that if F is a game for a logic L, and F′-games capture L, then for every k ≥ 0 there exists
k′ ≥ 0 such that

(A, ā) ≡F
k′ (B, b̄) =⇒ (A, ā) ≡F′

k (B, b̄) .

In finite model theory, games are typically used in inexpressibility proofs, in which case one only needs
the condition that a given game is a game for a logic. In many cases, however, the converse holds
too, that is, games completely characterize logics. The following is a reformulation, under our view of
games, of standard results on characterizing logics by games [5, 17, 14, 16, 25, 20, 29].

Proposition 3.3 If L is one of FO, L∗∞ω(Cnt), FO(Qp) or FO(QS), then F(L)-games are games
for L, with Lk being the set of L-formulae of quantifier rank k. Furthermore, for the case of FO,
L∗∞ω(Cnt), and FO(Qp), the games capture the corresponding logic.

4 Locality

Given a σ-structure A, its Gaifman graph, denoted by G(A), has A as the set of nodes. There is an edge
(a1, a2) in G(A) iff there is a relation symbol R in σ such that for some tuple t in the interpretation
of this relation in A, both a1, a2 occur in t. By the distance d(a1, a2) we mean the distance in the
Gaifman graph, with d(a, a) = 0. If there is no path from a1 to a2 in G(A), then d(a1, a2) = ∞. We
write d(ā, b̄) for the minimum of d(a, b), where a ∈ ā and b ∈ b̄.
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Let A be a σ-structure, and ā = (a1, . . . , am) ∈ Am. The radius r ball around ā is the set BA
r (ā) = {b ∈

A | d(ā, b) ≤ r}. The r-neighborhood of ā = (a1, . . . , am) in A is the structure NA
r (ā) over vocabulary

σ expanded with m constant symbols, where the universe is BA
r (ā); the σ-relations are restrictions of

the σ-relations in A to BA
r (ā), and them additional constants are interpreted as a1, . . . , am. Notice that

since we define a neighborhood around an m-tuple as a structure with additional constant symbols, for
any isomorphism h between NA

r (a1, . . . , am) and NB
r (b1, . . . , bm), it must be the case that h(ai) = bi,

1 ≤ i ≤ m.

Let A,B be σ-structures, where σ only contains relation symbols. Let ā ∈ Am and b̄ ∈ Bm. We write
(A, ā)�d(B, b̄) if there exists a bijection f : A→ B such that

NA
d (āc) ∼= NB

d (b̄f(c)), for every c ∈ A.

This definition is most commonly used when m = 0; then A�dB means that A and B realize the
same multiset of isomorphism types of d-neighborhoods of points. Equivalently, for some bijection
f : A→ B, we have NA

d (c) ∼= NB
d (f(c)) for all c ∈ A.

We say that a query Q is Hanf-local, if there exists a number d ≥ 0 such that,

(A, ā) �d (B, b̄) =⇒ (ā ∈ Q(A) ⇔ b̄ ∈ Q(B)) .

This concept was first introduced by Hanf [13] for FO over infinite structures, then modified by [8] to
work for sentences over finite models, and further extended in [15] to formulae with free variables.

Gaifman’s theorem [10] states that every FO formula ϕ(x̄) is equivalent to a Boolean combination
of sentences and formulae in which quantification is restricted to Br(x̄), with r determined by ϕ. In
particular, this implies that for every FO formula, we have two numbers, d and k, such that if A and
B agree on all FO sentences of quantifier-rank ≤ k and NA

d (ā) ∼= NB
d (b̄), then A |= ϕ(ā) ⇔ B |= ϕ(b̄).

This concept is normally used when A = B; then it says that a query Q is Gaifman-local if there exists
a number d ≥ 0 such that for every structure A,

NA
d (ā1) ∼= NA

d (ā2) =⇒ (ā1 ∈ Q(A) ⇔ ā2 ∈ Q(A)) .

A query Q is weakly-local [22] if the above condition holds for disjoint neighborhoods, that is, there is
a number d ≥ 0 such that for every structure A,

NA
d (ā1) ∼= NA

d (ā2) and BA
d (ā1) ∩BA

d (ā2) = ∅ =⇒ (ā1 ∈ Q(A) ⇔ ā2 ∈ Q(A)) .

The following implications are known [15, 22]:

Hanf-local ⇒ Gaifman-local ⇒ weakly-local.

Examples of logics in which all formulae are Hanf- (and hence Gaifman and weakly) local are all the
logics considered so far: FO, FO(Qp), FO(QPrime), L∗∞ω(Cnt) [10, 15, 21, 24]. There are examples of
formulae that are Gaifman- but not Hanf-local [15] and weakly but not Gaifman-local [22].

We now state the definition that relaxes the requirement of isomorphism of neighborhoods in the
usual notions of locality. For d, � ≥ 0, we use the notation (A, ā)�F

d,�(B, b̄) if there exists a bijection
f : A→ B such that

NA
d (āc) ≡F

� NB
d (b̄f(c)), for every c ∈ A.
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Definition 4.1 An agreement F is Hanf-local if for every k,m ∈ N, there exist d, � ∈ N such that for
every two structures A,B, and tuples ā ∈ Am and b̄ ∈ Bm,

(A, ā) �F
d,� (B, b̄) =⇒ (A, ā) ≡F

k (B, b̄).

We call F Gaifman-local if for every k,m ∈ N, there exist d, � ∈ N such that for every two structures
A,B, and tuples ā ∈ Am and b̄ ∈ Bm,

A ≡F
� B and NA

d (ā) ≡F
� N

B
d (b̄) =⇒ (A, ā) ≡F

k (B, b̄).

Finally, we call F weakly-local if for every k,m ∈ N, there exist d, � ∈ N such that for every A and
ā, b̄ ∈ Am,

NA
d (ā) ≡F

� N
A
d (b̄) and BA

d (ā) ∩BA
d (b̄) = ∅ =⇒ (A, ā) ≡F

k (A, b̄).

Notice that the new notions of locality are slightly asymmetric with respect to the classic ones: we
define locality of agreements instead of locality of queries. However, if the F-game is a game for a
logic L, then proving locality of the agreement F amounts to proving locality for each formula in L.

Also notice that the notion of Gaifman-locality for agreements as defined above is applied over two
different structures A and B, which are not necessarily isomorphic, and thus it represents a shift with
respect to the classical notion of locality for queries. We chose the notion over different structures
because it is more general than the one that is defined over a single structure. In fact, it is not hard
to see that if a logic L is captured by a Gaifman-local agreement F, then every L-definable query
ϕ(x1, . . . , xm) is Gaifman-local in the game-based sense; that is, there exist r, � ∈ N such that for
every A and ā, b̄ ∈ Am,

NA
r (ā) ≡F

� N
A
r (b̄) =⇒ (

A |= ϕ(ā) ⇔ A |= ϕ(b̄)
)
.

Further, as we will see in Section 8, the stronger notion of locality for agreements implies the existence
of “local” normal forms for logical formulae, in the style of Gaifman’s theorem.

Our main question is the following: When is a logic local under its games? Or, more precisely: suppose
F-games are games for a logic L; is F Hanf-, Gaifman-, or weakly-local? If a logic is local under its
games, we need an assumption weaker than isomorphism in order to prove that formulae cannot
distinguish some elements of a structure. Consider, for example, the case of Gaifman-locality, applied
to one structure A. Normally, to derive ϕ(ā1) ↔ ϕ(ā2), we would need to assume thatNd(ā1) ∼= Nd(ā2)
for some appropriate d. But suppose we know that ϕ comes from a logic that is Gaifman-local under
F-games. If k is such that (A, ā1) ≡F

k (A, ā2) implies ϕ(ā1) ↔ ϕ(ā2), then we find d, � ∈ N that ensure

NA
d (ā1) ≡F

� N
A
d (ā2) ⇒ (A, ā1) ≡F

k (A, ā2) ⇒ A |= ϕ(ā1) ↔ ϕ(ā2).

Thus, instead of isomorphism of neighborhoods, we have a weaker requirement that they be indistin-
guishable by the F-game, in � rounds.

Even though the notion of locality under games is easier to apply, it is harder to analyze than the
standard isomorphism-based locality. For example, if a logic L is local (Hanf-, or Gaifman-, or weakly)
under isomorphisms, and L′ is a sub-logic of L, then L′ is local as well. The same, however, is not
true for game-based locality, as we shall see, as properties of games guaranteeing locality need not be
preserved if one passes to weaker games.
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5 Basic structural properties

5.1 Admissible agreements

We now look at some most basic properties of agreements that are expected to hold, and that are true
in all games corresponding to the logics mentioned so far (and many others as well). Intuitively, they
are: (1) the spoiler is free to play any point he wants to; (2) the duplicator can mimic spoiler’s moves
when they play on the same structure; (3) the games on (A,B) and (B,C) can be composed into a
single game on (A,C), and (4) agreements do not depend on a particular choice of elements of U .

From now on, we shall write F(A,B) ∈ F instead of F(A,B) ∈ F(A,B).

Definition 5.1 An agreement F is said to be admissible if the following hold:

(1) For every F(A,B) ∈ F, we have
⋃{dom(f) | f ∈ F(A,B)} = A (the spoiler can play any point

he wants to);

(2) For every A ⊂ U , there exists F(A,A) ∈ F such that every f ∈ F(A,A) is the identity on
dom(f) (the duplicator can repeat spoiler’s moves if they play on the same set);

(3) For every F(A,B), F(B,C) ∈ F, the composition F(A,B) ◦ F(B,C) = {g ◦ f | f ∈
F(A,B) and g ∈ F(B,C)} is a tactic in F over (A,C) (games compose);

(4) If F(A,B) is a tactic in F, and g : A′ → A,h : B → B′ are bijections, then {h ◦ f ◦ g | f ∈
F(A,B)} is a tactic in F over (A′, B′) (agreements do not depend on the choice of elements of
U).

It is an easy observation that the agreements F(FO), F(L∗∞ω(Cnt)), F(FO(QPrime)), F(FO(Qp)) are
admissible. The next proposition shows that admissible agreements have nice structural properties,
or at least, properties that we would expect our games to have.

Proposition 5.2 Given an admissible agreement F and m,k ≥ 0,

(a) ≡F
k is an equivalence relation on structures (A, ā), ā ∈ Am;

(b) If h : A → B is an isomorphism, then (A, ā) ≡F
k (B, h(ā)).

Proof: (a) Reflexivity is an immediate consequence of Definition 5.1, and symmetry is an immediate
consequence of the definition of games. Let k ≥ 0. We show that if (A, ā) ≡F

k (B, b̄) and (B, b̄) ≡F
k

(C, c̄), then (A, ā) ≡F
k (C, c̄).

Since (A, ā) ≡F
k (B, b̄) and (B, b̄) ≡F

k (C, c̄), there exist tactics F1(A,B), F2(B,A), G1(B,C),
G2(C,B) ∈ F and, hence, F1(A,B) ◦ G1(B,C) and G2(C,B) ◦ F2(B,A) are in F. Thus, the F-game
on (A, ā) and (C, c̄) can be played. It is enough to show that the duplicator can always plays in such
a way that after i rounds, i ≤ k, if (a1, . . . , ai) and (c1, . . . , ci) are the moves played by spoiler and
duplicator on A and C, respectively, then (A, ā, a1, . . . , ai) ≡k−i (C, c̄, c1, . . . , ci).
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Assume that i < k moves have been played successfully. By induction hypothesis,
(A, ā, a1, . . . , ai) ≡k−i (C, c̄, c1, . . . , ci). Without loss of generality, assume that in the i+1-th round of
the game on (A, ā) and (C, c̄) the spoiler decides to play in (C, c̄). Then the duplicator picks a tactic
F(B,A) ∈ F as if he continued playing on (A, ā) and (B, b̄), and also picks a tactic G(C,B) as if he
continued playing on (B, b̄) and (C, c̄). He presents the spoiler with the tactic G(C,B)◦F(B,A). The
spoiler makes a move by picking a function h ∈ G(C,B) ◦ F(B,A) and an element ci+1 ∈ dom(h),
and the duplicator responds with ai+1 = h(ci+1). Given that h ∈ G(C,B) ◦ F(B,A), there exists f ∈
F(B,A), g ∈ G(C,B) and bi+1 ∈ rng(g)∩dom(f) such that h = f◦g, g(ci+1) = bi+1 and f(bi+1) = ai+1.
Furthermore, by the way the strategy is defined, and because (A, ā) ≡F

k (B, b̄) and (B, b̄) ≡F
k (C, c̄),

it is the case that (A, ā, a1 · · · aiai+1) ≡k−(i+1) (B, b̄, b1 · · · bibi+1) and (B, b̄, b1 · · · bibi+1) ≡k−(i+1)

(C, c̄, c1 · · · cici+1). Therefore, (A, ā, a1 · · · aiai+1) ≡k−(i+1) (C, c̄, c1 · · · cici+1). This concludes the proof
of (a).

(b) Assume that F is an admissible agreement, and |A| = |B| for two finite sets A,B. Then there
is F(B,B) such that every partial function f ∈ F(B,B) is the identity on dom(f). Therefore,
from condition (4) in the definition of admissibility, for every bijection h : A → B, there is a tactic
Fh(A,B) ∈ F(A,B) such that for every f ∈ Fh(A,B), f = h�dom(f). Furthermore, condition (2) in the
definition of admissibility implies that there exists F(A,A) ∈ F(A,B) such that every f ∈ F(A,A)
is the identity on dom(f). Using condition (4) we see that if idA is the identity function on A then
Fh(A,B) = {h ◦ f ◦ idA | f ∈ F(A,A)} ∈ F(A,B) is the desired tactic. Now (A, ā) ≡F

k (B, h(ā))
because in each round i ≤ k the duplicator can choose Fh(A,B) ∈ F. �

In many logics, the equivalence classes of ≡F
k are definable by formulae (they correspond to types, or

rank-k types, as k typically refers to the quantifier rank). Then definable sets are unions of types.
We introduce an abstract notion of definable sets: a set S ⊆ Am is (F, k)-definable in A if it is closed
under ≡F

k : that is, ā ∈ S and (A, ā) ≡F
k (A, ā1) imply ā1 ∈ S. For admissible agreements, definable

sets behave in the expected way.

Proposition 5.3 If F is an admissible agreement, then (F, k)-definable sets are closed under Boolean
combinations and Cartesian product; furthermore, the projection Am+1 → Am applied to an (F, k)-
definable set is an (F, k + 1)-definable set.

Proof: The closure under Boolean operations is immediate. The closure under the Cartesian product
is an immediate consequence of the fact that if (A, ā) ≡F

k (B, b̄), then (A, ā1) ≡F
k (B, b̄1) where ā1 and

b̄1 are similar subtuples of ā and b̄.

Let S ⊆ Am+1 be an (F, k)-definable set, and let S′ be its image under the projection Am+1 → Am.
Let ā′ = (a1, . . . , am) ∈ S′, and assume that (A, ā′) ≡F

k+1 (A, b̄′). Then for some am+1 ∈ A,
(ā′, am+1) ∈ S. By condition (1) of admissibility, the spoiler can play am+1 ∈ A, and thus there is
bm+1 ∈ A such that (A, ā′, am+1) ≡F

k (A, b̄′, bm+1). Thus, (b̄′, bm+1) ∈ S and b̄′ ∈ S′, which proves
closure under projection. �
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5.2 Basic agreements

To guarantee the locality of agreements, we impose two very mild conditions on F-games. The first
has to do with compositionality. Composition of games is a standard technique that allows one to use
A ≡F

k A′ and B ≡F
k B′ to conclude H(A,B) ≡F

� H(A′,B′), for some operation H (see, e.g., [23] for
a survey). While in general such compositionality properties depend on the type of games and the
operator H, there is one scenario where they almost universally apply: when H is the disjoint union
of structures [23] (in fact, � is usually equal to k in this situation). We want our games to satisfy this
property. We use � for disjoint union of sets and functions.

Definition 5.4 An agreement F is compositional, if for every two tactics F(A,B) and G(C,D) in F

such that A ∩ C = B ∩ D = ∅, the tactic F(A,B) � G(C,D) defined as the set of disjoint unions of
partial functions f : A→ B from F(A,B) and g : C → D from G(C,D) is in F.

The following proposition, which shows that compositional agreements behave in the expected way, is
immediate from the definitions.

Proposition 5.5 Let F be a compositional agreement. If (A, ā) ≡F
k (B, b̄) and (C, c̄) ≡F

k (D, d̄), with
A ∩C = B ∩D = ∅, then (A, ā) ∪ (C, c̄) ≡F

k (B, b̄) ∪ (D, d̄).

The second condition says that if in a game A ≡F
k B, both players play restricted to subsets C ⊆ A

and D ⊆ B, then such a game may be considered as a game on substructures of A and B generated
by C and D, respectively. Again, this condition is true for practically all reasonable games.

We formalize it as follows. We denote the set of all nonempty restrictions of partial functions from
F(A,B) to C ⊆ A by F(A,B)|C . Consider a tactic F(A,B), and nonempty sets C ⊆ A and D ⊆ B.
We say that F(A,B) is shrinkable to (C,D) if a ∈ C ⇔ f(a) ∈ D for every f ∈ F(A,B) and
a ∈ dom(f).

Definition 5.6 An agreement F is shrinkable if for every F(A,B) ∈ F, and nonempty subsets C ⊆ A
and D ⊆ B, if F(A,B) is shrinkable to (C,D), then F(A,B)|C is a tactic over (C,D) that belongs to
F.

An admissible F is called basic if it is both shrinkable and compositional.

Proposition 5.7 The agreements F(FO), F(L∗∞ω(Cnt)) and F(FO(Qp)) are basic.

Proof: For F(FO) and F(L∗∞ω(Cnt)) – by trivial inspection. We now show that F(FO(Qp)) is com-
positional. Let A,B,C,D be such that A ∩ C = B ∩ D = ∅. We have to show that for every
F(A,B),F(C,D) ∈ F(FO(Qp)), F(A,B) � F(C,D) ∈ F(FO(Qp)). Let B′ ∪ D′ ⊆ B ∪ D, where
B′ ⊆ B,D′ ⊆ D. There are f ∈ F(A,B) and g ∈ F(C,D) such that dom(f) = A, dom(g) = C,
|f−1(B′)| ≡ |B′| (mod p), and |g−1(D′)| ≡ |D′| (mod p). Then the disjoint union h of f and g satisfies
dom(h) = A ∪ C, and |h−1(B′ ∪D′)| ≡ |B′ ∪D′| (mod p).

11



Next we show that F(FO(Qp)) is shrinkable. Assume that F(A,B) ∈ F(FO(Qp)) is shrinkable to
(C,D), where C ⊆ A, D ⊆ B, and C,D 
= ∅. We show that F(A,B)|C ∈ F(FO(Qp)). Since F(A,B)
is shrinkable to (C,D), we know that f�C

is a function from C to D, for each f ∈ F(A,B). Consider
an arbitrary D′ ⊆ D. There is a function f : A → B ∈ F(A,B) such that |f−1(D′)| ≡ |D′| (mod p),
and f−1(D′) ⊆ C. Hence, f�C

is a function from C to D such that |f−1
�C

(D′)| ≡ |D′| (mod p). This
finishes the proof. �

Notice, on the other hand, that the agreement F(FO(QPrime)) is not compositional (because the sum
of two prime numbers is not necessarily a prime), and hence not basic.

5.3 Technical results on distance and shrinkability

The following results and definitions will be used in most proofs in the rest of the the paper. Lemma
5.8 says how far the duplicator can see in a game, while Lemma 5.9 states when a game on two
structures can be shrunk to a game of its substructures. For the sake of simplicity, in this section we
assume that the maximum arity of a predicate is 2. The results presented here can be easily extended
for predicates of higher arity.

Lemma 5.8 Let r > 0 and k ≥ �log r�. Consider σ-structures (A, ā) and (B, b̄), where ā =
(a1, . . . , am) and b̄ = (b1, . . . , bm), and an admissible agreement F. If (A, āc) ≡F

k (B, b̄c′) and
d(ai, c) ≤ r, for some i ∈ [1,m], then d(bi, c′) = d(ai, c).

Proof: By symmetry it suffices to prove d(bi, c′) ≤ d(ai, c). The proof is by induction on r. First
assume that r = 1 and (A, āc) ≡F

k (B, b̄c′). If d(ai, c) ≤ r (i ∈ [1,m]), then ai = c or there exists a
tuple R(ai, c) in A. Thus, given that (āc, b̄c′) is a partial isomorphism between A and B, bi = c′ or
R(bi, c′) is in B, and, hence, d(bi, c′) ≤ d(ai, c).

Let r > 1 and assume that the property holds for every r′ < r and that d(ai, c) = l ≤ r (i ∈ [1,m]).
Notice that in this case k ≥ �log r� ≥ 1. Let a′ be an element of A such that d(ai, a

′) = � l
2� and

d(a′, c) = � l
2�, and let F(A,B) ∈ F be a tactic that is chosen by the duplicator in the first round

of the game on (A, āc) and (B, b̄c′). Since F is an admissible agreement, there exists f ∈ F(A,B)
such that a′ ∈ dom(f). Assume that the spoiler picks a′ ∈ dom(f), and let f(a′) be the response
of the duplicator. Then (A, āca′) ≡F

k−1 (B, b̄c′f(a′)) and, therefore, (A, aia
′) ≡F

k−1 (B, bif(a′)) and
(A, ca′) ≡F

k−1 (B, c′f(a′)). Thus, given that k − 1 ≥ �log � r
2�� ≥ �log � l

2�� ≥ �log � l
2��, by the

induction hypothesis we conclude that d(bi, f(a′)) ≤ � l
2� and d(f(a′), c′) ≤ � l

2�. This implies that
d(bi, c′) ≤ l = d(ai, c). �

Lemma 5.9 Let r ≥ 0, k ≥ 0, r′ ≥ 2r, x ∈ [r, r′ − r], k′ = k+ �log x�+ 1. Consider structures (A, ā)
and (B, b̄), and an agreement F that is admissible and shrinkable:

1. If A′ is a substructure of A such that BA
r′(ā) ⊆ A′, and B′ is a substructure of B such that

BB
r′ (b̄) ⊆ B′, then (A′, ā) ≡F

k′ (B′, b̄) implies that there exists F(BA
x (ā), BB

x (b̄)) ∈ F such that,
for every function f that belongs to it and every c ∈ dom(f), NA

r (āc) ≡F
k N

B
r (b̄f(c)).

12



2. If A′ is a substructure of A such that BA
r (ā) ⊆ A′, and B′ is a substructure of B such that

BB
r (b̄) ⊆ B′, then (A′, ā) ≡F

k′−1 (B′, b̄) implies that for every subtuple ā′ of ā, and b̄′ the corre-
sponding subtuple of b̄, it is the case that NA

r (ā′) ≡F
k N

B
r (b̄′).

Proof: We only prove 1); the proof of 2) is very similar. Since (A′, ā) ≡F
k′ (B′, b̄) and k′ ≥ 1, there

exists F(A′, B′) ∈ F such that, for every f ∈ F(A′, B′) and c ∈ BA
x (ā) ∩ dom(f),

(A′, āc) ≡F
k′−1 (B′, b̄f(c)) ,

It follows from Lemma 5.8 that F(A′, B′) is shrinkable to (BA
x (ā), BB

x (b̄)). Let F(BA
x (ā), BB

x (b̄)) =
F(A′, B′)|BA

x (ā). For an arbitrary f ∈ F(BA
x (ā), BB

x (b̄)) we show how to build a winning duplica-
tor strategy for the k-round F-game on NA

r (āc) and NB
r (b̄f(c)) from the fact that (A′, āc) ≡F

k′−1
(B′, b̄f(c)). We prove, by induction on the round i ≤ k, the following claim which implies the result:
If Gi is a winning tactic chosen by the duplicator in round i ≤ k of the (k′−1)-round F-game on (A′, āc)
and (B′, b̄f(c)) (where Gi is a tactic from A′ to B′ if the spoiler decides to play in structure NA

r (āc)
in round i of the F-game on NA

r (āc) and NB
r (b̄f(c)), and from B′ to A′ otherwise), then – assuming

without loss of generality that in round i the spoiler decides to play in NA
r (āc) – Gi is shrinkable to

(BA
r (āc), BB

r (b̄f(c))), and Gi|BA
r (āc) can be chosen by the duplicator as a winning tactic in round i of

the F-game on structures NA
r (āc) and NB

r (b̄f(c)).

For round 0 there is nothing to prove. Assume that (a1, . . . , ai−1) and (b1, . . . , bi−1) are the moves on
NA

r (āc) and NB
r (b̄f(c)), respectively, in the first i−1 rounds of the F-game on NA

r (āc) and NB
r (b̄f(c)).

By the induction hypothesis,

(NA
r (āc), a1 · · · ai−1) ≡F

k−i+1 (NB
r (b̄f(c)), b1 · · · bi−1),

and
(A′, āc, a1 · · · ai−1) ≡F

k′−i (B′, b̄f(c), b1 · · · bi−1).

Given that k′ − i ≥ 1, the latter says that there exists Gi(A′, B′) ∈ F such that for every g in this
tactic and e ∈ dom(g),

(A′, āc, a1 · · · ai−1, e) ≡F
k′−i−1 (B′, b̄f(c), b1 · · · bi−1, g(e)).

Since F is admissible and k′ − i− 1 ≥ �log r�, by Lemma 5.8 we deduce that e ∈ BA
r (āc) if and only if

g(e) ∈ BB
r (b̄f(c)). The latter implies, together with the fact that BA

r (āc) ⊆ A′ and BB
r (b̄f(c)) ⊆ B′,

that Gi(A′, B′) is shrinkable to (BA
r (āc), BB

r (b̄f(c))), and since F is shrinkable we conclude that
Gi(A′, B′)|BA

r (āc) is in F, and can be used by the duplicator in the i-th round of the game on NA
r (āc)

and NB
r (b̄f(c)) to mimic the winning duplicator strategy in the i-th round of the game on (A′, āc)

and (B′, b̄f(c)). �

6 Weak locality

We now move to the first locality condition, weak locality. In many applications of locality, at least
for proving expressibility bounds, one actually uses weak locality as it is easier to work with disjoint
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neighborhoods. While examples of weakly-local formulae violating other notions of locality exist, they
are not particularly natural [22].

Recall that an agreement F is weakly-local if for every k,m ≥ 0, there exist d, � ≥ 0 such that for
every structure A and every ā, b̄ ∈ Am, if NA

d (ā) ≡F
� N

A
d (b̄) and the neighborhoods NA

d (ā) and NA
d (b̄)

are disjoint, then (A, ā) ≡F
k (A, b̄). We define the weak-locality rank with respect to F, denoted by

wlrF(k,m), as the minimum d for which the above condition holds. Our main result is as follows.

Theorem 6.1 Every basic agreement F is weakly-local. Furthermore, wlrF(k,m) = O(2k).

This immediately implies that the agreements F(FO), F(L∗∞ω(Cnt)) and F(FO(Qp)) are weakly-local,
and hence FO, FO(Qp), and L∗∞ω(Cnt) are weakly-local under their games.

It might be tempting to think that every extension of FO with simple unary generalized quantifiers is
weakly local under its games, but we show that this is not the case.

The counterexample is given by the prime quantifier QPrime. It is known [29, 20] that for every
FO(QPrime)-formula ϕ(x̄) of quantifier rank k, if (A, ā) ≡F(FO(QPrime))

k (B, b̄), then A |= ϕ(ā) iff B |=
ϕ(b̄). Thus, we show that FO(QPrime) is not weakly-local under its games by proving the following.

Proposition 6.2 F(FO(QPrime)) is not weakly-local.

In the rest of the section we prove these results. We start with Theorem 6.1. Assume that F is a basic
agreement and that ā = (a1, . . . , am) and b̄ = (b1, . . . , bm). To prove the theorem, we show that

Claim 6.3 If NA
2k(ā) ≡F

2k N
A
2k(b̄) and BA

2k(ā) ∩BA
2k(b̄) = ∅, then (A, ā) ≡F

k (A, b̄).

To prove the claim, we need to introduce some terminology. Assume that i rounds of the F-game on
(A, ā) and (A, b̄) have been played and that (c1, . . . , ci), (e1, . . . , ei) are the moves of the spoiler and
the duplicator on (A, ā) and (A, b̄), respectively. Furthermore, assume that x̄ is either ā or b̄. Then
we define d1 as 2k−1, and we define C1(x̄) and md1(x̄) as follows:

C1(x̄) =

{
{c1} d(x̄, c1) ≤ d1

∅ otherwise
md1(x̄) =

{
d(x̄, c1) C1(x̄) 
= ∅
0 otherwise

Intuitively, C1(x̄) contains c1 if it is “close” to x̄. For every j ∈ [2, i], we define dj , Cj(x̄) and md j(x̄)
inductively by considering the j-th move of the F-game on (A, ā) and (A, b̄) and the values of dj−1,
Cj−1(x̄) and md j−1(x̄). More precisely: dj is 2k−j + max{md j−1(ā),md j−1(b̄)} and

Cj(x̄) =

{
Cj−1(x̄) ∪ {cj} d(x̄, cj) ≤ dj

Cj−1(x̄) otherwise
md j(x̄) =

⎧⎨
⎩

max
c∈Cj(x̄)

d(x̄, c) Cj(x̄) 
= ∅
0 otherwise

Note that dj ≤ 2k − 1 for all j and, therefore, BA
dj

(ā) ⊆ BA
2k(ā) and BA

dj
(b̄) ⊆ BA

2k(b̄). We also define
Ej(x̄) = {e� | � ∈ [1, j] and d(x̄, e�) ≤ dj}.
The following claim shows some basic properties of Cj(x̄).
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Claim 6.4 For every j ≤ i, the following hold:

(a) If cj 
∈ Cj(ā)∪Cj(b̄), then for every � ∈ [j+1, i] we have d(ā, cj) > dj > d� and d(b̄, cj) > dj > d�.

(b) If cj 
∈ Cj(ā) (respectively, cj 
∈ Cj(b̄)), then for every � ∈ [j, i] we have that d(ā, cj) > d�

(respectively, d(b̄, cj) > d�).

(c) If cj 
∈ Cj(ā) (respectively, cj 
∈ Cj(b̄)), then cj 
∈ Ci(ā) (respectively, cj 
∈ Ci(b̄)).

(d) cj ∈ Ci(ā) (respectively, cj ∈ Ci(b̄)) if and only if d(ā, cj) ≤ di (respectively, d(b̄, cj) ≤ di).

Proof: The claim easily holds for j = i, so we assume that j < i.

(a) Assume that cj 
∈ Cj(ā) ∪ Cj(b̄) and that � ∈ [j + 1, i]. We show that d(ā, cj) > dj > d�

(the other case is similar). We have

d� ≤ max{md j(ā),md j(b̄)} +
l∑

p=j+1

2k−p ≤ max{md j(ā),md j(b̄)} + 2k−j − 1.

Since cj 
∈ Cj(ā) ∪ Cj(b̄), we have Cj−1(ā) = Cj(ā) and Cj−1(b̄) = Cj(b̄) and, therefore,
md j−1(ā) = md j(ā) and md j−1(b̄) = md j(b̄). Thus, given that dj = max{md j−1(ā),md j−1(b̄)}+2k−j,
we conclude that d� ≤ dj − 1 < dj < d(ā, cj) since cj 
∈ Cj(ā).

(b) Assume that cj 
∈ Cj(ā) (the proof is similar for the other case). If � = j, then by defini-
tion of Cj(ā) we have that d(ā, cj) > d�. Thus, suppose that � ∈ [j + 1, i].

To show that d(ā, cj) > d�, we consider two cases. First, suppose that cj ∈ Cj(b̄). Then by definition
of Cj(b̄) we have that d(b̄, cj) ≤ dj ≤ 2k and, hence, d(ā, cj) > 2k since BA

2k(ā) ∩ BA
2k(b̄) = ∅. We

conclude that d(ā, cj) > d� since d� ≤ 2k. Second, assume that cj 
∈ Cj(b̄). Then by (a) we conclude
that d(ā, cj) > d�. Part (c) follows immediately from (b).

(d) Let cj ∈ Ci(ā). Then cj ∈ Ci−1(ā) and, therefore, d(ā, cj) ≤ md i−1(ā), which implies
d(ā, cj) ≤ di. If cj 
∈ Ci(ā), then cj 
∈ Cj(ā), and by (b) we conclude that d(ā, cj) > di. This finishes
the proof of Claim 6.4.

Now we are ready to prove Claim 6.3. By induction on the round number i, next we show that the
duplicator can play in such a way that after round i the following conditions hold:

(1) (NA
2k(ā), c̄0) ≡F

2k−i (NA
2k(b̄), ē0), where c̄0 is the subtuple of (c1, . . . , ci) that contains all elements

in Ci(ā), and ē0 is the corresponding subtuple of (e1, . . . , ei). Note that ē0 is the subtuple
of (e1, . . . , ei) that contains all elements in Ei(b̄), and for each cj ∈ c̄0 and j ≤ i, we have
d(ā, cj) = d(b̄, ej).

(2) (NA
2k(b̄), c̄1) ≡F

2k−i (NA
2k(ā), ē1), where c̄1 is the subtuple of (c1, . . . , ci) that contains all elements

in Ci(b̄), and ē1 is the corresponding subtuple of (e1, . . . , ei). Note that ē1 is the subtuple
of (e1, . . . , ei) that contains all elements in Ei(ā), and for each cj ∈ c̄1 and j ≤ i, we have
d(b̄, cj) = d(ā, ej).
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(3) Let c̄2 be the subtuple of (c1, . . . , ci) that contains all elements not in Ci(ā) ∪ Ci(b̄). Then for
each cj ∈ c̄2 with j ≤ i we have cj = ej . Furthermore, if ē2 is the subtuple of (e1, . . . , ei)
corresponding to c̄2, then it is the case that ē2 is the subtuple of (e1, . . . , ei) that contains all
elements not in Ei(ā) ∪ Ei(b̄).

(4) ((ā, c1, . . . , ci), (b̄, e1, . . . , ei)) is a partial isomorphism between (A, ā) and (A, b̄).

For i = 0, there is nothing to prove. Assume that the property holds for i < k; we prove it for i+ 1.
Assume without loss of generality that in the (i+1)st round of the game, the spoiler chooses to play on
(A, ā). Consider A′ = A \ (BA

di+1
(ā)∪BA

di+1
(b̄)). Because F is admissible, if A′ 
= ∅ there is F(A′, A′) ∈

F such that for every f ∈ F(A′, A′) and c ∈ dom(f), f(c) = c. Also, since (NA
2k(ā), c̄0) ≡F

2k−i

(NA
2k(b̄), ē0), there is F(BA

2k(ā), BA
2k(b̄)) ∈ F such that for every f ∈ F(BA

2k(ā), BA
2k (b̄)) and c ∈ dom(f),

(NA
2k(ā), c̄0, c) ≡F

2k−(i+1) (NA
2k(b̄), ē0, f(c)) ;

and since (NA
2k(b̄), c̄1) ≡F

2k−i (NA
2k(ā), ē1), there is F(BA

2k(b̄), BA
2k(ā)) ∈ F such that for every f ∈

F(BA
2k (b̄), BA

2k(ā)) and c ∈ dom(f),

(NA
2k(b̄), c̄1, c) ≡F

2k−(i+1) (NA
2k(ā), ē1, f(c)) .

Using Lemma 5.8, we see that every f ∈ F(BA
2k(ā), BA

2k(b̄)) and c ∈ dom(f), c ∈ BA
di+1

(ā) if
and only if f(c) ∈ BA

di+1
(b̄), since di+1 ≤ 2k. Furthermore, from the fact that F is shrinkable,

F(BA
2k (ā), BA

2k(b̄))|BA
di+1

(ā) ∈ F. Similarly, F(BA
2k (b̄), BA

2k(ā))|BA
di+1

(b̄) ∈ F.

Since F is compositional and BA
di+1

(ā) ∩ BA
di+1

(b̄) = ∅, there exists F(BA
di+1

(ā) ∪ BA
di+1

(b̄), BA
di+1

(ā) ∪
BA

di+1
(b̄)) ∈ F that corresponds to the disjoint union of functions in F(BA

2k (ā), BA
2k(b̄))|BA

di+1
(ā) and

functions in F(BA
2k(b̄), BA

2k (ā))|BA
di+1

(b̄). Also, since F is compositional and (BA
di+1

(ā)∪BA
di+1

(b̄))∩A′ = ∅,
there is a tactic F(A,A) ∈ F that corresponds to the disjoint union of functions in F(A′, A′) and
functions in F(BA

di+1
(ā)∪BA

di+1
(b̄), BA

di+1
(ā)∪BA

di+1
(b̄)). We now show that this tactic F(A,A) provides

the strategy for the duplicator. We prove the four conditions of the induction.

(1) By definition of Ci+1(ā), we have Ci(ā) ⊆ Ci+1(ā). Furthermore, if cj 
∈ Ci(ā) (j ∈ [1, i]), then
cj 
∈ Cj(ā) and, therefore, by Claim 6.4 (c) we conclude that cj 
∈ Ci+1(ā). Thus, for every
j ∈ [1, i], we have that cj ∈ Ci(ā) if and only if cj ∈ Ci+1(ā). We use this property to show
that for every j ∈ [1, i], ej ∈ Ei(b̄) if and only if ej ∈ Ei+1(b̄). Let j ∈ [1, i]. First, assume
that ej ∈ Ei(b̄). Then by the induction hypothesis (1), cj ∈ Ci(ā). Thus, cj ∈ Ci+1(ā) and,
therefore, by Claim 6.4 (d) we have d(ā, cj) ≤ di+1. Thus, given that d(ā, cj) = d(b̄, ej), by the
induction hypothesis (1), we conclude that d(b̄, ej) ≤ di+1 and, hence, ej ∈ Ei+1(b̄). Second,
assume that ej 
∈ Ei(b̄). Then by the hypothesis (1), cj 
∈ Ci(ā). To show that ej 
∈ Ei+1(b̄) we
consider two cases. If cj ∈ Ci(b̄), then, from (2), ej ∈ Ei(ā) and, therefore, d(ā, ej) ≤ di ≤ 2k.
Since BA

2k(ā) ∩ BA
2k(b̄) = ∅ we conclude that d(b̄, ej) > 2k ≥ di+1 and, hence, ej 
∈ Ei+1(b̄). If

cj 
∈ Ci(b̄), then cj 
∈ Cj(b̄) and, thus, d(b̄, cj) > di+1 by Claim 6.4 (b). Since cj = ej by (3),
we conclude that d(b̄, ej) > di+1 and, hence, ej 
∈ Ei+1(b̄). Next we use this to show that if the
duplicator uses F(A,A) as his strategy in the (i + 1)st round of the game, then condition (1)
holds.
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Suppose first that for the (i+ 1) round the spoiler chooses f ∈ F(A,A) and ci+1 ∈ dom(f) such
that ci+1 
∈ BA

di+1
(ā), that is, ci+1 
∈ Ci+1(ā). Then the subtuple of (c1, . . . , ci, ci+1) that contains

all elements in Ci+1(ā) is c̄0. Furthermore, by the way F(A,A) is defined, f(ci+1) 
∈ BA
di+1

(b̄),
and hence the subtuple of (e1, . . . , ei, f(ci+1)) that contains all elements in Ei+1(b̄) is ē0. In
this case (1) holds by the induction hypothesis. Suppose on the other hand that for round
(i + 1) the spoiler chooses f ∈ F (A,A) and ci+1 ∈ dom(f) such that ci+1 ∈ BA

di+1
(ā), that is,

ci+1 ∈ Ci+1(ā). Then (c̄0, ci+1) is the subtuple of (c1, . . . , ci, ci+1) that contains all elements
in Ci+1(ā), and by the definition of F(A,A), (NA

2k(ā), c̄0, ci+1) ≡F
2k−(i+1) (NA

2k(b̄), ē0, f(ci+1)),
and f(ci+1) ∈ Ei+1(b̄), and (ē0, f(ci+1)) is the subtuple of (e1, . . . , ei, f(ci+1)) that contains all
elements in Ei+1(b̄). Furthermore, by the induction hypothesis, d(ā, cj) = d(b̄, ej), for each
cj ∈ c̄0, j ≤ i, and from Lemma 5.8, d(ā, cj+1) = d(b̄, f(cj+1)). This proves (1).

(2) The proof is very similar to the proof for (1).

(3) As in (1) and (2), we conclude that for every j ∈ [1, i], cj ∈ Ci(ā) ∪ Ci(b̄) if and only if
cj ∈ Ci+1(ā)∪Ci+1(b̄) and ej ∈ Ei(ā)∪Ei(b̄) if and only if ej ∈ Ei+1(ā)∪Ei+1(b̄). Now suppose
that for the (i + 1)st round the spoiler chooses f ∈ F(A,A) and ci+1 ∈ dom(f) such that
ci+1 
∈ (BA

di+1
(ā) ∪ BA

di+1
(b̄)), that is, ci+1 
∈ Ci+1(ā) ∪ Ci+1(b̄). Then (c̄2, ci+1) is the subtuple

of (c1, . . . , ci, ci+1) that contains all elements not in Ci+1(ā) ∪ Ci+1(b̄), and by the definition of
F(A,A), f(ci+1) = ci+1. Furthermore, (ē2, f(ci+1)) is the subtuple of (e1, . . . , ei, f(ci+1)) that
contains all elements not in Ei+1(ā)∪Ei+1(b̄), and, by the hypothesis (3), for each cj ∈ c̄2, j ≤ i,
we have cj = ej . Suppose on the other hand that for the (i+ 1)st round the spoiler chooses f ∈
F(A,A) and ci+1 ∈ dom(f) such that ci+1 ∈ BA

di+1
(ā) ∪BA

di+1
(b̄), that is, c ∈ Ci+1(ā) ∪ Ci+1(b̄).

Then f(ci+1) ∈ BA
di+1

(ā)∪BA
di+1

(b̄). This implies that c̄2 is the subtuple of (c1, . . . , ci, ci+1) that
contains all elements not in Ci+1(ā)∪Ci+1(b̄), and ē2 is the subtuple of (e1, . . . , ei, f(ci+1)) that
contains all elements not in Ei+1(ā) ∪ Ei+1(b̄). In this case, we conclude that (3) holds in the
(i+ 1)st round from the induction hypothesis.

(4) Suppose the spoiler chooses f ∈ F(A,A) and ci+1 ∈ dom(f) in round i + 1. Assume
first that for some relation symbol P in the vocabulary, A |= P (cj1, . . . , cjp), where each
cj�

∈ (ā, c1, . . . , ci, ci+1), � ∈ [1, p].

Since for every � ∈ [1, k], we have d� ≤ 2k−1, we conclude that if c�1 ∈ Ci+1(ā) and c�2 ∈ Ci+1(b̄),
where �1, �2 ∈ [1, i+1], then d(ā, c�1) < 2k and d(b̄, c�2) < 2k. Thus, given that BA

2k(ā)∩BA
2k(b̄) =

∅, we conclude that d(c�1 , c�2) > 1. Similarly, if c�1 ∈ Ci+1(ā) and c�2 
∈ Ci+1(ā) ∪ Ci+1(b̄),
where �1, �2 ∈ [1, i + 1], then by Claim 6.4 we conclude that d(ā, c�1) ≤ di+1 and d(ā, c�2) >
d�2 > di+1. Thus, d(c�1 , c�2) > 1. In the same way we conclude that if c�1 ∈ Ci+1(b̄) and
c�2 
∈ Ci+1(ā) ∪ Ci+1(b̄), then d(c�1 , c�2) > 1. Hence, to show that A |= P (ej1 , . . . , ejp) we only
have to consider the following cases:

- {cj1 , . . . , cjp} ⊆ Ci+1(ā): then, from condition (1), A |= P (ej1 , . . . , ejp).

- {cj1 , . . . , cjp} ⊆ Ci+1(b̄): then, from condition (2), A |= P (ej1 , . . . , ejp).

- {cj1 , . . . , cjp} ∩ (Ci+1(ā)∪Ci+1(b̄)) = ∅: then A |= P (ej1 , . . . , ejp) follows immediately from
condition (3).

The proof of the converse, that A |= P (ej1 , . . . , ejp) implies A |= P (cj1 , . . . , cjp), is identical. This
finishes the proof of Theorem 6.1.
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a

R(a1) R(ap)

b

R(b1) R(bq) R(c1) R(cs)

c

. . . . . . . . .

Figure 2: A structure for proving that FO(QPrime) is not weakly-local under its games.

Proof of Proposition 6.2. We give a formula ϕ(x) of FO(QPrime) such that for every d, l ≥ 0, there
is a structure A and a, b ∈ A such that NA

d (a) ≡F(FO(QPrime))
l NA

d (b), BA
d (a) ∩ BA

d (b) = ∅, and yet
A |= ϕ(a) ∧ ¬ϕ(b).

Let σ be a signature of a unary relation R and a binary relation E, and let d, l ≥ 0. Consider the
structure A whose E-relation is shown in Figure 2; the relation R is interpreted as the set of all ai’s,
bi’s, and ci’s. Let ϕ(x) be QPrime y (R(y) ∧ ¬E(x, y)). Notice that for elements a, b, c, their radius-1
neighborhood equals their radius-d neighborhood for every d ≥ 1.

There are infinitely many primes r such that all the numbers r − i (1 ≤ i ≤ l) are composite. Choose
two sufficiently large p, q (p 
= q) from this set so that NA

d (a) ≡F(FO(QPrime))
l NA

d (b) (notice that d can be
taken to be 1, without loss of generality). To see what we can play the l-round F(FO(QPrime))-game
on NA

1 (a) and NA
1 (b) notice that it suffices to have an l-round winning strategy on sets of cardinalities

p and q, for which in turn one has to ensure that for every i < l, either both p− i and q− i are prime,
or both are composite (for if there is a difference, after i rounds, the spoiler can win in one move).
But this is guaranteed by the condition that all p− i, q − i for i ≤ l are composite.

By Dirichlet’s Theorem, the arithmetic progression np+q (n = 0, 1, . . .) contains an infinite number of
primes. Let n ≥ 1 be such that np+ q is a prime and let s = np. Then, A |= ϕ(a), since q+ s = np+ q
is prime, and A 
|= ϕ(b), since p + s = (n + 1)p is composite. Thus, the agreement F(FO(QPrime)) is
not weakly-local. �

7 Hanf-locality

Recall that an agreement F is Hanf-local, if for every k,m ≥ 0 there exist r, � ≥ 0 such that, for every
two structures A, B and every ā ∈ Am and b̄ ∈ Bm, if (A, ā) �F

r,� (B, b̄), then (A, ā) ≡F
k (B, b̄). The

minimum r for which the above condition holds is called the Hanf-locality rank with respect to F, and
is denoted by hlrF(k,m).

Our main result here is the characterization of Hanf-locality for basic agreements (which, by the result
of the previous section, possess the simplest of our locality conditions: the weak locality). We say that
an agreement F is bijective if for every finite A,B ⊂ U , if both F(A,B) and F(B,A) are non-empty,
then |A| = |B|. An example of a bijective agreement is F(L∗∞ω(Cnt)). Note that each bijective
agreement F is equivalent to the agreement F′ obtained from F by removing each nonempty F(A,B)
such that |A| 
= |B|. That is, for every k ≥ 0 the relations ≡F

k and ≡F′
k are the same. Bijective

agreements are then usually identified with games for powerful counting logics, such as L∗∞ω(Cnt).
Intuitively, these agreements have the ability to “know” the cardinality of its domain.
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Our main result is:

Theorem 7.1 A basic agreement F is Hanf-local if and only if it is bijective.

In particular, F(L∗∞ω(Cnt)) is Hanf-local, and thus L∗∞ω(Cnt) is Hanf-local under its games.

We also derive from the Proof of Theorem 7.1 that hlrF(k,m) = O(3k) for every basic bijective F.

Non-bijective basic agreements are not Hanf-local, and hence logics they capture are not Hanf-local
under their game. An example of a basic non-bijective agreement is F(FO): hence FO is not Hanf-local
under Ehrenfeucht-Fräıssé games [26].

The second result of this section addresses the question to what extent can the results be pushed for
non-basic agreements. That is, suppose a logic L is Hanf-local under the usual isomorphism-based
locality and is captured by a non-basic agreement. Can such a logic be Hanf-local under its games?

We shall give a partial negative answer to this question. Many logics that are known to be Hanf-local
under the usual isomorphism-based locality are extensions of FO with unary generalized quantifiers.
Agreements that capture such logics are not necessarily basic. We show that such extensions are not
Hanf-local under their games, significantly strengthening the negative result in [26].

Theorem 7.2 No extension of FO with a finite collection of simple unary generalized quantifiers is
Hanf-local under its games.

In the rest of the section we prove these results. We start by showing that every basic bijective
agreement is Hanf-local. The proof of this follows from three intermediate results presented below.

Lemma 7.3 If F is a basic and bijective agreement, then either:

(a) For every nonempty F(A,B) it is the case that |A| ≤ |B|, or

(b) For every nonempty F(A,B) it is the case that |A| ≥ |B|.

Proof: To the contrary, assume that there exist A,B,C and D such that |A| < |B|, |C| > |D|, and
both F(A,B) and F(C,D) are nonempty. Let F(A,B) and F(C,D) be tactics in F(A,B) and F(C,D),
respectively.

Assume that |C| − |D| = p ≥ 1. Take |A| · p distinct fresh values aj
i in U , where i ∈ [1, |A|] and

j ∈ [1, p], and |B| · p distinct fresh values bji in U , where i ∈ [1, |B|] and j ∈ [1, p]. Let us denote
{aj

i | j ∈ [1, p], i ∈ [1, |A|]} by Ap, and {bji | j ∈ [1, p], i ∈ [1, |B|]} by Bp. Note that |Ap| = |A| · p and
|Bp| = |B| ·p. Then from condition (4) in the definition of F being admissible, for every j ∈ [1, p] there
exists a tactic Fj({aj

1, . . . , a
j
|A|}, {bj1, . . . , bj|B|}) in F. Since F is compositional, we conclude that there

exists a tactic F(Ap, Bp) in F. In the same way we can show that there exists a tactic F(Cq,Dq) in
F, where q = |B| − |A| ≥ 1, Cq is a set of cardinality |C| · q, and Dq is a set of cardinality |D| · q.
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Let us assume without loss of generality that |Bp| ≥ |Cq|, and |Bp|−|Cq| = r ≥ 0. Let E = {e1, . . . , er}
be r distinct fresh values in U . Then since F is admissible, there is a tactic F(E,E) in F. Furthermore,
since F is compositional, there is a tactic F(Cq ∪E,Dq ∪E) in F. Notice that

|Cq ∪ E| = |Cq| + |E| = |Cq| + r = |Bp|
and

|Dq ∪ E| = |Dq| + |E| = |D| · q + r = |D| · q + |B| · p− |C| · q
= |B| · p− p · q
= |B| · p− p · (|B| − |A|)
= |A| · p = |Ap|

But then from condition (4) in the definition of F being admissible, we conclude that there is a tactic
F(Bp, Ap) in F, which contradicts the fact that F is bijective since F(Ap, Bp) and F(Bp, Ap) are both
nonempty and |Ap| 
= |Bp|. �

Lemma 7.4 Let F be a basic and bijective agreement, r ≥ 0, � ≥ 0, �′ = �+�log r�, �′′ = �′+�log(2r+
1)� + 1 and (A, ā), (B, b̄) structures over the same signature, with ā ∈ Am and b̄ ∈ Bm. If A �F

r,� B

and NA
3r+1(ā) ≡F

�′′ N
B
3r+1(b̄), then (A, ā) �F

r,� (B, b̄).

Proof: Given that NA
3r+1(ā) ≡F

�′′ N
B
3r+1(b̄), by Lemma 5.9 there exists a tactic F(BA

2r+1(ā), B
B
2r+1(b̄))

in F such that for every f ∈ F(BA
2r+1(ā), B

B
2r+1(b̄)) and c ∈ dom(f):

NA
r (āc) ≡F

�′ NB
r (b̄f(c)).

The same argument shows that F(BA
2r+1(b̄), B

B
2r+1(ā)) is nonempty, and thus, |BA

2r+1(ā)| = |BB
2r+1(b̄)|

since F is bijective.

Let graph(f) be the graph of a function f : X → Y , that is, {(x, y) ∈ X × Y |f(x) = y}. Define a
relation ≈ as the minimal relation that contains⋃

f∈F(BA
2r+1(ā),BB

2r+1(b̄))

graph(f)

and satisfies the following: if a ≈ b′, a′ ≈ b and f(a′) = b′ for some f ∈ F(BA
2r+1(ā), B

B
2r+1(b̄)),

then a ≈ b. Another way of looking at this relation is the following: a ≈ b if there is a se-
quence 〈a0, b1, a1, b2, a2, . . . , bm−1, am−1, bm〉 where a0 = a, bm = b, and for every i, there are
f, f ′ ∈ F(BA

2r+1(ā), B
B
2r+1(b̄)) such that bi = f(ai−1) = f ′(ai), 1 ≤ i ≤ m− 1, and bm = f(am−1) for

some f ∈ F(BA
2r+1(ā), B

B
2r+1(b̄)). Notice from this that if a ≈ b, a′ ≈ b, and a′ ≈ b′, then also a ≈ b′.

Notice from the fact that F is basic, or more specifically, because ≡F
k is an equivalence relation from

Proposition 5.2, that for every c ∈ BA
2r+1(ā) and d ∈ BB

2r+1(b̄) such that c ≈ d, it is the case that
NA

r (āc) ≡F
�′ N

B
r (b̄d).

We use ≈ to define relations ≈A on BA
2r+1(ā) and ≈B on BB

2r+1(b̄). For every a, a′ ∈ BA
2r+1(ā), a ≈A a

′

if there exists b ∈ BB
2r+1(b̄) such that a ≈ b and a′ ≈ b, and for every b, b′ ∈ BB

2r+1(b̄), b ≈B b′ if there
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exists a ∈ BA
2r+1(ā) such that a ≈ b and a ≈ b′. It easily follows from the definition of ≈ and the fact

that F is basic that both ≈A and ≈B are equivalence relations on BA
2r+1(ā) and BB

2r+1(b̄), respectively.
Define [a]A and [b]B as the equivalence classes of a ∈ BA

2r+1(ā) and b ∈ BB
2r+1(b̄), respectively. We

need the following claim.

Claim 7.5 For every a ∈ BA
2r+1(ā) and b ∈ BB

2r+1(b̄) such that a ≈ b, we have that |[a]A| = |[b]B|.

Proof: Assume that a ≈ b, where a ∈ BA
2r+1(ā) and b ∈ BB

2r+1(b̄). If a1 ∈ [a]A, then there exists
b1 ∈ BB

2r+1(b̄) such that a ≈ b1 and a1 ≈ b1. Given that a ≈ b, we have that a1 ≈ b. Thus, for
every f ∈ F(BA

2r+1(ā), B
B
2r+1(b̄)), if f(a1) is defined, then we have that f(a1) ∈ [b]B since a1 ≈ f(a1).

Moreover, let a2 be an element of BA
2r+1(ā) and f a function of F(BA

2r+1(ā), B
B
2r+1(b̄)) such that

f(a2) ∈ [b]B. Then there exists a3 ∈ BA
2r+1(ā) such that a3 ≈ f(a2) and a3 ≈ b. Since a2 ≈ f(a2),

we have that a2 ≈ b. Thus, given that a ≈ b, we conclude that a2 ≈A a and, therefore, a2 ∈ [a]A.
We conclude that F(BA

2r+1(ā), B
B
2r+1(b̄)) is shrinkable to ([a]A, [b]B) and, hence, there exists a tactic

G([a]A, [b]B) in F since this agreement is basic.

Assume first, for the sake of contradiction, that |[a]A| > |[b]B|. Then there exist c ∈ BA
2r+1(ā) and

d ∈ BB
2r+1(b̄) such that c ≈ d and |[c]A| < |[d]B| (since |BA

2r+1(ā)| = |BB
2r+1(b̄)|). By using the same

argument shown above, we conclude that there exists a tactic G([c]A, [d]B) in F, which contradicts the
fact that F is bijective by Lemma 7.3. We arrive at a similar contradiction if we assume |[a]A| < |[b]B|.
We conclude that |[a]A| = |[b]B|. �

It follows from Claim 7.5 that there are partitions of BA
2r+1(ā) and BB

2r+1(b̄) into equivalence classes
[a1]A . . . , [am]A and [b1]B, . . . , [bm]B, respectively, such that ai ≈ bi and |[ai]A| = |[bi]B|, for every
i ∈ [1,m]. Using the fact that F is basic (in particular, condition (4) in the definition of admissibility),
we have, for every i ∈ [1,m], a tactic G([ai]A, [bi]B) in F such that

⋃
g∈G([ai]A ,[bi]B ) graph(g) is the

graph of a bijection from [ai]A to [bi]B. Let G(BA
2r+1(ā), B

B
2r+1(b̄)) be the disjoint union of all these

tactics. Since F is a basic agreement, this tactic belongs to it. Furthermore, given a ∈ BA
2r+1(ā) and

b ∈ BB
2r+1(b̄) such that a ≈ b, and given g ∈ G(BA

2r+1(ā), B
B
2r+1(b̄)) for which g(a) is defined, we have

g(a) ∈ [b]B and, therefore, there exists a1 ∈ BA
2r+1(ā) such that a1 ≈ g(a) and a1 ≈ b. Thus, a ≈ g(a).

From a previous remark, a ≈ g(a) implies

NA
r (āc) ≡F

�′ NB
r (b̄g(c)). (1)

for every g ∈ G(BA
2r+1(ā), B

B
2r+1(b̄)) and c ∈ dom(g). Let h1 be the bijection whose graph is⋃

g∈G(BA
2r+1(ā),BB

2r+1(b̄))
graph(g). Since �′ = � + �log r�, by (1) and Lemma 5.9 we obtain that for

every c ∈ BA
2r+1(ā),

NA
r (āc) ≡F

� NB
r (b̄h1(c)) (2)

and

NA
r (c) ≡F

� NB
r (h1(c)). (3)

Since A �F
r,� B, there exists a bijection h2 : A → B such that NA

r (c) ≡F
� N

B
r (h2(c)) for every c ∈ A.

By the existence of bijections h1 and h2, we conclude that there exists a bijection

h3 : (A \BA
2r+1(ā)) → (B \BB

2r+1(b̄)),
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such that for every c ∈ A \BA
2r+1(ā):

NA
r (c) ≡F

� NB
r (h3(c)). (4)

Let h be a bijection h1 ∪ h3. Given c ∈ A, if c ∈ BA
2r+1(ā), then h(c) = h1(c) and, therefore,

by (2) we know that NA
r (āc) ≡F

� NB
r (b̄h1(c)). If c 
∈ BA

2r+1(ā), then h(c) = h3(c) and, therefore,
d(ā, c) > 2r + 1 and d(b̄, h(c)) > 2r + 1. Thus, from (4) and closure under disjoint unions we
conclude that NA

r (ā) ∪ NA
r (c) ≡F

� NB
r (b̄) ∪ NB

r (h(c)) and, hence, NA
r (āc) ≡F

� NB
r (b̄h(c)) since

NA
r (āc) = NA

r (ā) ∪ NA
r (c) and NB

r (b̄h(c)) = NB
r (b̄) ∪ NB

r (h(c)). We deduce that (A, ā) �F
r,� (B, b̄).

This concludes the proof of the lemma. �

Lemma 7.6 Let F be a basic and bijective agreement, r ≥ 0, � ≥ 0, �′ = �+�log r�+�log(2r+1)�+1.
If (A, ā) �F

3r+1,�′ (B, b̄), then there exists a bijection f : A→ B such that for every c ∈ A:

(A, āc) �F
r,� (B, b̄f(c)).

Proof: Given that (A, ā) �F
3r+1,�′ (B, b̄), there exists a bijection f : A→ B such that for every c ∈ A:

NA
3r+1(āc) ≡F

�′ NB
3r+1(b̄f(c)). (5)

Given that �′ > �+ �log r�, By Lemma 5.9 we know that for every c ∈ A:

NA
r (c) ≡F

� NB
r (f(c)).

and, therefore, A �F
r,� B. Thus, by (5) and Lemma 7.4 we conclude that for every c ∈ A it is the case

that (A, āc) �F
r,� (B, b̄f(c)). �

We now finish the proof of Hanf-locality of basic bijective agreements by induction on k. For k = 0,
assume that A and B are structures over the same signature and that ā ∈ Am and b̄ ∈ Bm, for an
arbitrary m ≥ 0. Furthermore, assume that (A, ā) �F

0,0 (B, b̄). Then by definition of �F, there exists
a bijection f : A→ B such that for every c ∈ A:

NA
0 (āc) ≡F

0 NB
0 (b̄f(c)).

In particular, we conclude that (ā, b̄) defines a partial isomorphism between A and B. Thus, (A, ā) ≡F
0

(B, b̄).

Assume that the property holds for k ≥ 0: that is, for each m > 0, we have r, � ≥ 0 such that for
every pair of structures A and B over the same signature, and for every ā ∈ Am and b̄ ∈ Bm, if
(A, ā) �F

r,� (B, b̄), then (A, ā) ≡F
k (B, b̄). Next we show that the property holds for k + 1.

Assume that A and B are structures over the same signature and that ā ∈ Am and b̄ ∈ Bm. Further-
more, assume that (A, ā) �F

3r+1,�′ (B, b̄), where �′ = �+ �log r� + �log(2r + 1)� + 1. Then by Lemma
7.6 there exists a bijection f : A→ B such that for every c ∈ A:

(A, āc) �F
r,� (B, b̄f(c)).
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Thus, by induction hypothesis we have that for every c ∈ A:

(A, āc) ≡F
k (B, b̄f(c)). (6)

Since F is a basic agreement, there exist tactics F(A,B) and F(B,A) such that the graph of f
is

⋃
g∈G(A,B) graph(g) and the graph of the inverse of f is

⋃
g∈G(B,A) graph(g). Thus, there exists

a winning strategy for the duplicator in the (k + 1)-round F-game on A and B that initially uses
G(A,B) and G(B,A) and then uses the strategy given by the induction hypothesis. We conclude that
(A, ā) ≡F

k+1 (B, b̄). This concludes the proof of Hanf-locality.

We also notice that for every k,m ≥ 0, we have hlrF(k,m) = O(3k). Indeed, hlrF(0,m) = 0 and
hlrF(k + 1,m) ≤ 3 · hlrF(k,m+ 1) + 1, and the bound on hlrF(k,m) follows.

We next show the converse, that is, that a non-bijective basic agreement F is not Hanf-local. Assume,
for the sake of contradiction, that F is basic, non-bijective, and Hanf-local. Then for k = 2 and m = 0,
there exists r, � ≥ 0 such that for every pair of structures A and B such that A �F

d,� B, we have
A ≡F

2 B.

Since F is a non-bijective basic agreement, there exist X and Y such that |X| < |Y | and both F(X,Y )
and F(Y,X) are nonempty. Assume that |Y | − |X| = p ≥ 1. Then for every i ∈ [1, � + 1], we define
sequences {Xi

j}j∈N and {Y i
j }j∈N as follows. Let a1, . . . , ai be i fresh elements of U . Then

Xi
0 = X ∪ {a1, . . . , ai},

Y i
0 = Y ∪ {a1, . . . , ai}.

Assume that Xi
j and Y i

j have been defined (j ≥ 0) and let b1, . . ., bp be p fresh elements. Then

Xi
j+1 = Xi

j ∪ {b1, . . . , bp},
Y i

j+1 = Y i
j ∪ {b1, . . . , bp}.

We note that for every i ∈ [1, � + 1] and j ∈ N, we have that |Xi
j | = |X| + i + j · p and |Y i

j | =
|X| + i+ (j + 1) · p.

Claim 7.7 For every i ∈ [1, �+ 1] and j ∈ N, there exist tactics F(Xi
0,X

i
j) and F(Xi

j ,X
i
0) in F.

Proof: Let i ∈ [1, � + 1]. First, by induction on q ∈ N we show that there exist tactics F(Xi
q, Y

i
q ) and

F(Y i
q ,X

i
q) in F. For the case of q = 0, we note that given that F is an admissible agreement, there

exists a tactic F({a1, . . . , ai}, {a1, . . . , ai}) ∈ F. Since F is also compositional and {a1, . . . , ai}∩X = ∅
and {a1, . . . , ai} ∩ Y = ∅, by Proposition 5.5 we conclude that there exist tactics F(Xi

0, Y
i
0 ) and

F(Y i
0 ,X

i
0) in F. Assume that the property holds for q ∈ N. Then Xi

q+1 and Y i
q+1 are constructed by

adding p fresh elements to Xi
q and Y i

q , respectively. Given that by induction hypothesis there exist
tactics F(Xi

q, Y
i
q ) and F(Y i

q ,X
i
q) in F, and that F is admissible and compositional, as in the previous

case we conclude that there exist tactics F(Xi
q+1, Y

i
q+1) and F(Y i

q+1,X
i
q+1) in F.

Second, we note that for every q ∈ N, there exist tactics F(Y i
q ,X

i
q+1) and F(Xi

q+1, Y
i
q ) in F from the

fact that |Y i
q | = |Xi

q+1|, and conditions (2) and (4) in the definition of F being admissible. Thus, from
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condition (3) in the definition of F being admissible, for every j ∈ N there exist tactics F(Xi
0,X

i
j)

and F(Xi
j ,X

i
0) in F, which proves the claim. �

Assume that n = |X�+1
0 | = |X|+ �+ 1. By Claim 7.7 we know that for every i ∈ [1, �+ 1], there exist

tactics F(Xi
0,X

i
n) and F(Xi

n,X
i
0) in F. We use this fact to prove the following claim.

Claim 7.8 Let σ = {E(·, ·)} be a signature, A a clique over σ containing n elements and B a clique
over σ containing n · (p+ 1) elements. Then for every a ∈ A and b ∈ B, we have (A, a) ≡F

� (B, b).

Proof: The strategy of the duplicator in the �-round F-game on (A, a) and (B, b) is as follows.
Without loss of generality, assume that in the first round the spoiler decides to play in A. Given that
F is an admissible agreement, there exists a tactic F({a}, {b}) ∈ F. Also, since there exists a tactic
F(X�

0,X
�
n) ∈ F, and |A \ {a}| = n − 1 = |X�

0| and |B \ {b}| = n · (p + 1) − 1 = |X�
n|, there exists a

tactic F(A \ {a}, B \ {b}) because F is admissible. Thus, by compositionality of F and Proposition 5.5
we conclude that there exists a tactic F(A,B) ∈ F such that f(a) = b for every f ∈ F(A,B). The
duplicator picks F(A,B) in the first move. It is easy to see that no matter which element c1 ∈ A and
function f ∈ F(A,B) the spoiler chooses, the resulting position of the game (a, c1, b, f(c1)) defines a
partial isomorphism between A and B.

Let i ∈ [1, �−1] and (c1, . . . , ci), (e1, . . . , ei) be i moves of the F-game on (A, a) and (B, b), respectively,
and assume that

(
(a, c1, . . . , ci), (b, e1, . . . , ei)

)
defines a partial isomorphism between (A, a) and

(B, b). Without loss of generality, assume that in the (i + 1) round the spoiler decides to play in B.
Given that F is an admissible agreement, there exists a tactic F({b, e1, . . . , ei}, {a, c1, . . . , ci}) ∈ F

such that for every f ∈ F({b, e1, . . . , ei}, {a, c1, . . . , ci}), we have that f(b) = a, and f(ej) = cj
for every j ∈ [1, i] for which f(ej) is defined. Since there exists a tactic F(X�−i

n ,X�−i
0 ) ∈ F, and

|A\{a, c1, . . . , ci}| = n−(i+1) = |X�−i
0 | and |B \{b, e1, . . . , ei}| = n ·(p+1)−(i+1) = |X�−i

n |, we have
by admissibility of F and Claim 7.7 that there exists a tactic F(B \ {b, e1, . . . , ei}, A \ {a, c1, . . . , ci})
in F. Thus, by compositionality of F and Proposition 5.5 we conclude that there exists a tactic
F(B,A) ∈ F such that f(b) = a, and f(ej) = cj for every f ∈ F(B,A) and j ∈ [1, i] for which f(ej)
is defined. The duplicator picks F(B,A) in the (i + 1) move. It is easy to see that no matter which
element ei+1 ∈ B and function f ∈ F(B,A) the spoiler chooses, the resulting position of the game(
(a, c1, . . . , ci, f(ei+1)), (b, e1, . . . , ei, ei+1)

)
defines a partial isomorphism between A and B. This

concludes the proof of the claim. �

We are ready to show that the assumption that F is Hanf-local leads to contradiction. Let σ = {E(·, ·)}
be a signature, A a disjoint union of p+1 ≥ 2 cliques over σ containing n elements each and B a clique
over σ containing n · (p + 1) elements. We note that A 
≡F

2 B since if the spoiler picks two elements
in distinct cliques of A, then the duplicator cannot respond with two elements of B that are not
connected by an edge. Thus, if we prove that A �F

d,� B, then we have a contradiction. We note that
if d = 0, then A �F

d,� B holds trivially. Thus, we assume that d ≥ 1. But in this case for every c ∈ A,
we have that NA

d (c) is a clique containing n elements, and for every e ∈ B, we have that NB
d (e) is a

clique containing n ·(p+1) elements. Therefore, by Claim 7.8 we know that NA
d (c) ≡F

� N
B
d (e) for every

c ∈ A and e ∈ B. Thus, for every bijection g : A → B and c ∈ A, we have that NA
d (c) ≡F

� N
B
d (g(c))

and, hence, A �F
d,� B. This concludes the proof of Theorem 7.1. �
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Proof of Theorem 7.2. We need to show that for every set of simple unary generalized quantifiers
{QS1 , . . . ,QSp}, the agreement F(FO(QS1, . . . ,QSp)) is not Hanf-local. As noted in [26], for the case
of FO (empty set of simple unary generalized quantifiers) the latter is proved simply by taking G1 to be
the complete graph with 2N vertices, and G2 to be the disjoint union of two complete graphs with N
vertices each, where N ≥ �. Any bijection between the nodes of these graphs witnesses G1 �F(FO)

r,� G2,
and yet G1 and G2 disagree on ∃x∃y¬E(x, y). The following lemma generalizes this idea. Recall that
Kn stands for an n-element clique (complete graph).

Lemma 7.9 Let σ = {E(·, ·)} be a signature. For every � ∈ N and S1, . . . , Sp ⊆ N, there exist
n,m ≥ 1 such that n < m, n divides m and

(Kn, a) ≡F(FO(QS1
,...,QSp))

� (Km, b) ,

where a and b are arbitrary elements of Kn and Km, respectively.

Proof: If � = 0, then the property trivially holds for n = 1 and m = 2. Thus, assume that � ≥ 1. For
every i ∈ [1, p], let mi be defined as:

mi =

{
(�+ 1) + maxSi Si is finite
(2 · �+ 4)-th element of Si otherwise.

Furthermore, let qj = 2j ·max{m1, . . . ,mp}. Then there exist j0, j1 ∈ N such that j0 < j1 and for every
i ∈ [1, p] and j ∈ [0, �], we have (qj0 − j) ∈ Si if and only if (qj1 − j) ∈ Si. Let n = qj0 and m = qj1.
Assume that the domains of Kn and Km are A and B, respectively. Thus, we only need to show that
(Kn, a) ≡F(FO(QS1

,...,QSp))

� (Km, b), where a, b are arbitrary elements of A and B, respectively. For the
sake of simplicity, when playing an �-round F(FO(QS1 , . . . ,QSp))-game on (Kn, a) and (Km, b) we use
the game terminology given in [20] instead of using tactics. That is, in each round either the spoiler
plays a point move or a quantifier move. For the point move the spoiler chooses a structure, let us
say Kn, and an element a ∈ A, and the duplicator responds with b ∈ B. For the quantifier move the
spoiler chooses both a structure, let us say Kn, and a quantifier, let us say QSq (q ∈ [1, p]). Then the
spoiler chooses B′ ⊆ B with |B′| ∈ Sq, and the duplicator responds with A′ ⊆ A such that |A′| ∈ Sq.
Finally, the spoiler chooses a ∈ A, and the duplicator responds with b ∈ B such that a ∈ A′ iff b ∈ B′.

The strategy of the duplicator in the �-round F(FO(QS1 , . . . ,QSp))-game on (Kn, a) and (Km, b) is
as follows. Let i ∈ [0, � − 1] and (c1, . . . , ci), (e1, . . . , ei) be the first i moves of the game on (Kn, a)
and (Km, b), respectively, and assume that

(
(a, c1, . . . , ci), (b, e1, . . . , ei)

)
defines a partial isomorphism

between (Kn, a) and (Km, b). Notice that if i = 0, then only the constants have been played. If in the
(i + 1)st round the spoiler decides to play a point move, say ei+1 ∈ B, then the duplicator responds
with ci+1 ∈ A such that ci+1 = a iff ei+1 = b and for every j ∈ [1, i], ci+1 = cj iff ei+1 = ej . We note
that the duplicator can play in such a way since |A| ≥ �+ 1.

Assume now that the spoiler decides to play the quantifier move QSq (q ∈ [1, p]) in the (i+1)st round.
We consider two cases depending on whether Sq is finite or not. Assume first that Sq is finite. Then
the duplicator responds in the following way. Assume without loss of generality that the spoiler picks
B′ ⊆ B such that |B′| ∈ Sq. Then given that |B| = qj1 ≥ q0 ≥ mi = (� + 1) + maxSq, we know
that |B \ B′| ≥ � + 1. Then the duplicator picks an arbitrary A′ ⊆ A such that |A′| = |B′|, a ∈ A′
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iff b ∈ B′, and for every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. We note that the duplicator can always pick
such a set A′ since |A| = qj0 ≥ q0 ≥ mi = (�+ 1) + maxSq and, thus, |A \ A′| ≥ �+ 1. If the spoiler
picks ci+1 ∈ A′ then the duplicator responds with ei+1 ∈ B′ such that ei+1 = b iff ci+1 = a, and
for every j ∈ [1, i], ei+1 = ej iff ci+1 = cj . Notice that the duplicator can do this since |A′| = |B′|,
a ∈ A′ iff b ∈ B′ and for every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. If the spoiler picks ci+1 ∈ (A \ A′) then
the duplicator responds with ei+1 ∈ (B \ B′) such that ei+1 = b iff ci+1 = a, and for every j ∈ [1, i],
ei+1 = ej iff ci+1 = cj . Notice that the duplicator can do this since |B \B′| ≥ �+ 1, a ∈ A′ iff b ∈ B′

and for every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. In all these cases, it is easy to see that the resulting
position

(
(a, c1, . . . , ci, ci+1), (b, e1, . . . , ei, ei+1)

)
of the game defines a partial isomorphism between

(Kn, a) and (Km, b).

Assume on the other hand that Sq is infinite. Then the strategy of the duplicator is as follows. We
consider two cases.

• The spoiler picks A′ ⊆ A such that |A′| ∈ Sq. We consider three sub-cases.

– If |A′| ≤ �, then |A \ A′| ≥ � + 1 since |A| = qj0 ≥ q0 ≥ mi ≥ 2 · � + 3. In this case, the
duplicator picks an arbitrary B′ ⊆ B such that |B′| = |A′|, a ∈ A′ iff b ∈ B′, and for every
j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. We note that the duplicator can pick such a set B′ since
|A| < |B|. If the spoiler picks ei+1 ∈ B′ then the duplicator responds with ci+1 ∈ A′ such
that ci+1 = a iff ei+1 = b, and for every j ∈ [1, i], ci+1 = cj iff ei+1 = ej . Notice that the
duplicator can do this since |A′| = |B′|, a ∈ A′ iff b ∈ B′, and for every j ∈ [1, i], cj ∈ A′ iff
ej ∈ B′. If the spoiler picks ei+1 ∈ (B\B′) then the duplicator responds with ci+1 ∈ (A\A′)
such that ci+1 = a iff ei+1 = b, and for every j ∈ [1, i], ci+1 = cj iff ei+1 = ej . Notice that
the duplicator can do this since |A \ A′| ≥ �+ 1, a ∈ A′ iff b ∈ B′, and for every j ∈ [1, i],
cj ∈ A′ iff ej ∈ B′.

– If |A \ A′| ≤ �, then |A′| ≥ �+ 1 since |A| ≥ 2 · �+ 3. In this case, the duplicator picks an
arbitrary B′ ⊆ B such that |B′| ∈ Sq, |B \ B′| = |A \ A′|, a ∈ A′ iff b ∈ B′, and for every
j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. We note that the duplicator can pick such a set B′ since
|A′| = qj0 − j with j ∈ [0, �] and by definition of j0 and j1 we have that (qj0 − j) ∈ Sq iff
(qj1 − j) ∈ Sq. If the spoiler picks ei+1 ∈ B′ then the duplicator responds with ci+1 ∈ A′

such that ci+1 = a iff ei+1 = b, and for every j ∈ [1, i], ci+1 = cj iff ei+1 = ej . Notice that
the duplicator can do this since |A′| ≥ � + 1, a ∈ A′ iff b ∈ B′, and for every j ∈ [1, i],
cj ∈ A′ iff ej ∈ B′. If the spoiler picks ei+1 ∈ (B \ B′) then the duplicator responds with
ci+1 ∈ (A\A′) such that ci+1 = a iff ei+1 = b, and for every j ∈ [1, i], ci+1 = cj iff ei+1 = ej .
Notice that the duplicator can do this since |B \ B′| = |A \ A′|, a ∈ A′ iff b ∈ B′, and for
every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′.

– If |A′| > � and |A \ A′| > �, then the duplicator picks an arbitrary B′ ⊆ B such that
|B′| = |A′|, a ∈ A′ iff b ∈ B′, and for every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. We note that the
duplicator can pick such a set B′ since |A| < |B|. If the spoiler picks ei+1 ∈ B′ then the
duplicator responds with ci+1 ∈ A′ such that ci+1 = a iff ei+1 = b, and for every j ∈ [1, i],
ci+1 = cj iff ei+1 = ej . Notice that the duplicator can do this since |A′| = |B′|, a ∈ A′ iff
b ∈ B′, and for every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. If the spoiler picks ei+1 ∈ (B \B′) then
the duplicator responds with ci+1 ∈ (A \ A′) such that ci+1 = a iff ei+1 = b, and for every
j ∈ [1, i], ci+1 = cj iff ei+1 = ej . Notice that the duplicator can do this since |A\A′| ≥ �+1,
a ∈ A′ iff b ∈ B′, and for every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′.
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In all these three cases, it is easy to see that the resulting position of the game(
(a, c1, . . . , ci, ci+1), (b, e1, . . . , ei, ei+1)

)
defines a partial isomorphism between (Kn, a) and

(Km, b).

• The spoiler picks B′ ⊆ B such that |B′| ∈ Sq. We consider three sub-cases.

– If |B′| ≤ �, then |B \ B′| ≥ � + 1 since |B| = qj1 ≥ q0 ≥ mi ≥ 2 · � + 3. In this case, the
duplicator picks an arbitrary A′ ⊆ A such that |A′| = |B′|, a ∈ A′ iff b ∈ B′, and for every
j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. We note that the duplicator can pick such a set A′ since
|A| ≥ 2 · � + 3. If the spoiler picks ci+1 ∈ A′ then the duplicator responds with ei+1 ∈ B′

such that ei+1 = b iff ci+1 = a, and for every j ∈ [1, i], ei+1 = ej iff ci+1 = cj . Notice
that the duplicator can do this since |A′| = |B′|, a ∈ A′ iff b ∈ B′, and for every j ∈ [1, i],
cj ∈ A′ iff ej ∈ B′. If the spoiler picks ci+1 ∈ (A \ A′) then the duplicator responds with
ei+1 ∈ (B\B′) such that ei+1 = b iff ci+1 = a, and for every j ∈ [1, i], ci+1 = cj iff ei+1 = ej .
Notice that the duplicator can do this since |B \B′| ≥ �+1, a ∈ A′ iff b ∈ B′, and for every
j ∈ [1, i], cj ∈ A′ iff ej ∈ B′.

– If |B \ B′| ≤ �, then |B′| ≥ � + 1 since |B| ≥ 2 · � + 3. In this case, the duplicator picks
an arbitrary A′ ⊆ A such that |A′| ∈ Sq, |A \ A′| = |B \ B′|, a ∈ A′ iff b ∈ B′, and for
every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. We note that the duplicator can pick such a set A′ since
|B′| = qj1 − j with j ∈ [0, �] and by definition of j0 and j1 we have that (qj1 − j) ∈ Sq iff
(qj0 − j) ∈ Sq. If the spoiler picks ci+1 ∈ A′ then the duplicator responds with ei+1 ∈ B′

such that ei+1 = b iff ci+1 = a, and for every j ∈ [1, i], ei+1 = ej iff ci+1 = cj . Notice that
the duplicator can do this since |B′| ≥ � + 1, a ∈ A′ iff b ∈ B′, and for every j ∈ [1, i],
cj ∈ A′ iff ej ∈ B′. If the spoiler picks ci+1 ∈ (A \ A′) then the duplicator responds with
ei+1 ∈ (B\B′) such that ei+1 = b iff ci+1 = a, and for every j ∈ [1, i], ci+1 = cj iff ei+1 = ej .
Notice that the duplicator can do this since |A \ A′| = |B \ B′|, a ∈ A′ iff b ∈ B′ and for
every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′.

– If |B′| > � and |B \ B′| > �, then the duplicator picks an arbitrary A′ ⊆ A such that |A′|
is equal to the (� + 2)-th element of Sq, a ∈ A′ iff b ∈ B′, and for every j ∈ [1, i], cj ∈ A′

iff ej ∈ B′. We note that the duplicator can pick such a set A′ since |A| = qj0 ≥ q0 ≥ mi

and mi is defined as the (2 · � + 4)-th element of Sq. We also observe that in this case
|A′| ≥ �+ 1 and |A \A′| ≥ �+1. If the spoiler picks ci+1 ∈ A′ then the duplicator responds
with ei+1 ∈ B′ such that ei+1 = b iff ci+1 = a, and for every j ∈ [1, i], ei+1 = ej iff ci+1 = cj .
Notice that the duplicator can do this since |B′| ≥ � + 1, a ∈ A′ iff b ∈ B′, and for every
j ∈ [1, i], cj ∈ A′ iff ej ∈ B′. If the spoiler picks ci+1 ∈ (A\A′) then the duplicator responds
with ei+1 ∈ (B \ B′) such that ei+1 = b iff ci+1 = a, and for every j ∈ [1, i], ei+1 = ej iff
ci+1 = cj . Notice that the duplicator can do this since |B \ B′| ≥ � + 1, a ∈ A′ iff b ∈ B′,
and for every j ∈ [1, i], cj ∈ A′ iff ej ∈ B′.

In all these cases, it is easy to see that the resulting position of the game(
(a, c1, . . . , ci, ci+1), (b, e1, . . . , ei, ei+1)

)
defines a partial isomorphism between (Kn, a) and

(Km, b). This concludes the proof of the lemma.

�
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We now conclude the proof of Theorem 7.2. Let QS1, . . ., QSp be a set of simple unary generalized
quantifiers such that F(FO(QS1 , . . . ,QSp)) is Hanf-local. Then for k = 2 andm = 0, there exist d, � ≥ 0

such that for every pair of structures A and B, if A �F(FO(QS1
,...,QSp))

d,� B, then A ≡F(FO(QS1
,...,QSp))

2 B.

By Lemma 7.9, there exist n,m ≥ 1 such that n < m, n divides m and for every a ∈ A and b ∈ B:

(Kn, a) ≡F(FO(QS1
,...,QSp))

� (Km, b). (7)

Let q = m/n, and let A be a disjoint union of q cliques containing n elements each and B a clique

containing m elements. We note that A 
≡F(FO(QS1
,...,QSp))

2 B since A and B disagree on ∃x∃y¬E(x, y).

Thus, if we prove that A �F(FO(QS1
,...,QSp))

d,� B, then we have a contradiction. We note that if d = 0,

then A �F(FO(QS1
,...,QSp))

d,� B holds trivially. Thus, we assume that d ≥ 1. But in this case for every
c ∈ A, we have that NA

d (c) is a clique containing n elements, and for every e ∈ B, we have that

NB
d (e) is a clique containing m elements. Therefore, by (7) we know that NA

d (c) ≡F(FO(QS1
,...,QSp))

�

NB
d (e) for every c ∈ A and e ∈ B. Thus, for every bijection g : A → B and c ∈ A, we have that

NA
d (c) ≡F(FO(QS1

,...,QSp))

� NB
d (g(c)) and, hence, A �F(FO(QS1

,...,QSp))

d,� B. This concludes the proof of
Theorem 7.2. �

8 Gaifman-locality

Recall that F is Gaifman-local if for every k,m ≥ 0 there exist d, � ≥ 0 such that, for every A and B

and every ā ∈ Am and b̄ ∈ Bm, we have (A, ā) ≡F
k (B, b̄) whenever A ≡F

� B and NA
d (ā) ≡F

� N
B
d (b̄).

The minimum such d is called Gaifman-locality rank with respect to F, and denoted by lrF(k,m).

This is a rather strong notion that implies the existence of normal forms for logical formulae (much
in the same way as Gaifman’s theorem for FO and its variants imply normal forms for FO formulae
[10, 26].) Assume that all the relations ≡F

k are of finite index (as they are for FO and several other
logics). In that case, every formula is equivalent to a Boolean combination of sentences and formulae
evaluated in a neighborhood of its free variables. More precisely, if L is a logic captured by an
admissible Gaifman-local agreement F such that all the relations ≡F

k are of finite index, then for each
ϕ(x̄) in L, the models (A, ā) of ϕ(x̄) form a finite union of equivalence classes ≡F

k for some k. If L is
closed under Boolean combinations, this implies that the set of models of ϕ(x̄) is a Boolean combination
of ≡F

� equivalence classes of structures A and ≡F
� equivalence classes of radius-d neighborhoods, for

some d and �, by Gaifman-locality. It is easy to see that each such equivalence class is definable by a
formula in the logic, if it is captured by F-games. Hence, we obtain the following normal form result.

Proposition 8.1 Let L be a logic captured by an admissible Gaifman-local agreement F, where F

has the property that for every k, the relations ≡F
k are of finite index. Then, for every L-formula

ϕ(x̄), one can find a number d, a sequence Φ1, . . . ,Φn of L-sentences, a sequence ϕ1(x̄), . . . , ϕm(x̄) of
L-formulae, and a Boolean function β : {0, 1}n+m → {0, 1} such that

A |= ϕ(ā) ⇔ β
(
Φ1(A), . . . ,Φn(A), ϕ1(NA

d (ā)), . . . , ϕm(NA
d (ā))

)
= 1
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where

Φi(A) =

{
1 if A |= Φ
0 if A |= ¬Φ

and ϕj(NA
d (ā)) =

{
1 if NA

d (ā) |= ϕj(ā)
0 if NA

d (ā) |= ¬ϕj(ā).

Our main goal is to show that FO, FO(Qp), and L∗∞ω(Cnt), are Gaifman-local under their games.
For FO, of course, this follows from Gaifman’s normal form [10]. As before, we shall state a general
condition on agreements that implies Gaifman-locality, and use it to derive Gaifman-locality of the
agreements corresponding to these logics.

Definition 8.2 • Let θ be an equivalence relation on N. We say that an agreement F is uniform
with respect to θ, if for every A,B ⊂ U , F(A,B) is the minimal set containing all tactics F(A,B)
such that for each D ⊆ B, there is f ∈ F(A,B) such that dom(f) = A and |D|θ|f−1(D)|.

• An agreement F is uniform if it is uniform with respect to some equivalence relation θ.

• An agreement F is strongly uniform if it is uniform with respect to an equivalence relation θ
which is a congruence with respect to +, and the operation p − q for p > q, and in addition
satisfies the following: there exists t ≥ 0 such that θ restricted to [0, t] is the identity, and for all
p, q > t, if pθq then θ([0, p]) = θ([0, q]) (where θ(X) = {s | ∃s′ ∈ X s′θs}).

An example of an equivalence relation θ that satisfies the condition for strong uniformity is nθpm ⇔
n −m ≡ 0 (mod p). It is clear that F(Qp) is uniform; however, neither F(FO) nor F(L∗∞ω(Cnt)) is
uniform.

Our main result is as follows.

Theorem 8.3 • Every basic and strongly-uniform agreement is Gaifman-local.

• Let L be one of FO, FO(Qp), or L∗∞ω(Cnt). Then there exists an agreement G(L) such that:

1. For every k ≥ 0, the relations ≡F(L)
k and ≡G(L)

k are the same.

2. G(L) is basic and strongly uniform.

We conclude from here that FO, FO(Qp), and L∗∞ω(Cnt) are Gaifman-local under their games.
The proof also applies to unions of Gaifman-local agreements, which implies that any logic
FO(Qp1, . . . ,Qpr) is also Gaifman-local under its games.

As a corollary to the proof, we derive a bound O(7k) for lrF(k,m) for a Gaifman-local agreement F.

There is another way of getting Gaifman-local agreements, given by the result below.

Proposition 8.4 If F is a basic and bijective agreement, then F is Gaifman-local, and lrF(k,m) ≤
3 · hlrF(k,m) + 1.
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In particular, this shows that the bound on lrF(L∗∞ω(Cnt)) can be lowered from O(7k) to O(3k). A
similar local normal form for the logic L∗∞ω(Cnt) was obtained in [19], and the locality rank of the
logic is there shown to be O(2k) (which is the best possible).

In the rest of the section, we prove these results.

Proof of Theorem 8.3. The theorem follows from several intermediate results. Since F is basic, all
the ≡F

k ’s are equivalence relations. We write a ∼r
k b when NA

r (a) ≡F
k N

B
r (b) (structures A and B will

always be clear from the context).

Lemma 8.5 Let F be a basic agreement. For every s, k, r ≥ 0, � ≥ r, ā = (a1, . . . , am), and b̄ =
(b1, . . . , bm), there is k′ ≥ 0 such that, if A ≡F

k′ B and NA
�+r(ā) ≡F

k′ NB
�+r(b̄), then for every element

e ∈ B\BB
3�(b̄), if the set {e′ ∈ B\BB

3�(b̄) | e ∼r
k e

′} has at least s elements, then the set {c ∈ A\BA
� (ā) |

c ∼r
k e} has at least s elements.

Proof: We prove the lemma for the case m = 2. The case m > 2 uses exactly the same kind of
reasoning. We use k′ = s · (k + 2�log �� + 8). (In general, k′ is parameterized by m).

Assume without loss of generality that s > 0. Fix an arbitrary element e ∈ B \ BB
3�(b̄). Consider an

element b ∈ B \ BB
3�(b̄) such that b ∼r

k e. We now show that there exists an element a in A \ BB
� (b̄)

such that a ∼r
k b.

Given A ≡F
k+2�log ��+8 B, there is an element c1 ∈ A such that (A, c1) ≡F

k+2�log ��+7 (B, b). Since F is

also shrinkable and � ≥ r, from Lemma 5.9 we deduce that NA
r (c1) ≡F

k N
B
r (b). If c1 
∈ BA

� (ā) then we
set a = c1; otherwise, assume without loss of generality that c1 ∈ BA

� (a1). From NA
�+r(ā) ≡F

k+2�log ��+5

NB
�+r(b̄), we deduce that there exists e1 ∈ BB

�+r(b̄) such that (NA
�+r(ā), c1) ≡F

k+2�log ��+4 (NB
�+r(b̄), e1).

From Lemma 5.8 and d(a1, c1) ≤ �, we deduce that d(b1, e1) ≤ �. The latter implies that d(e1, b) > 2�.
From Lemma 5.9 and the fact that � ≥ r, we obtain that NA

r (āc1) ≡F
k+�log r� N

B
r (b̄e1), and from

Lemma 5.9, we get NA
r (c1) ≡F

k N
B
r (e1).

Now, since (A, c1) ≡F
k+2�log ��+7 (B, b), there exists an element c2 ∈ A such that (A, c1, c2) ≡F

k+2�log ��+6

(B, b, e1), and an a′1 ∈ B such that (A, c1, c2, a1) ≡F
k+2�log ��+5 (B, b, e1, a′1). From Lemma 5.9 and

� ≥ r, we get NA
r (c1, c2, a1) ≡F

k+�log r� N
B
r (b, e1, a′1). By Lemma 5.9, NA

r (c2) ≡F
k NB

r (e1), implying

that NA
r (c2) ≡F

k N
B
r (b). We show next that c2 
∈ BA

� (a1). Assume on the contrary that d(a1, c2) ≤ �.
Since (A, c1, c2, a1) ≡F

k+2�log ��+5 (B, b, e1, a′1), by Lemma 5.8 we derive that d(a′1, e1) ≤ �. Also, since
d(a1, c1) ≤ �, by Lemma 5.8 we obtain that d(a′1, b) ≤ �. We conclude d(e1, b) ≤ 2�, which is a
contradiction.

If c2 
∈ BA
� (a2), set a = c2. Otherwise, c2 ∈ BA

� (a2) and the proof continues as fol-
lows. From (NA

�+r(ā), c1) ≡F
k+2�log ��+4 (NB

�+r(b̄), e1), there exists e2 ∈ BB
�+r(b̄) such that

(NA
�+r(ā), c1, c2) ≡F

k+2�log ��+3 (NB
�+r(b̄), e1, e2). From Lemma 5.8 and d(a2, c2) ≤ �, we deduce that

d(b2, e2) ≤ �. The latter implies that d(e2, b) > 2�. Also, from Lemma 5.9 and the fact that � ≥ r,
NA

r (āc2) ≡F
k+�log r� N

B
r (b̄e2), and from Lemma 5.9, NA

r (c2) ≡F
k N

B
r (e2).

Now, since (A, c1, c2, a1) ≡F
k+2�log ��+5 (B, b, e1, a′1), there exists an element c3 ∈ A such that
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(A, c1, c2, a1, c3) ≡F
k+2�log ��+4 (B, b, e1, a′1, e2). From Lemma 5.9 and � ≥ r, NA

r (c1, c2, a1, c3) ≡F
k+�log r�

NB
r (b, e1, a′1, e2). By Lemma 5.9, NA

r (c3) ≡F
k N

B
r (e2), implying that NA

r (c3) ≡F
k N

B
r (b) (because ≡F

k

is transitive). By using an argument similar to the case of c2, we show that d(a1, c3) ≤ � implies that
d(e2, b) ≤ 2�, which is a contradiction. This shows that d(a1, c3) > �. In the following we show that
d(a2, c3) > �, and hence, that c3 
∈ BB

� (b̄) and we thus can choose a to be c3.

Assume on the contrary that d(a2, c3) ≤ �. Since (A, c1, c2, a1, c3) ≡F
k+2�log ��+4 (B, b, e1, a′1, e2), there

exists a′2 ∈ B such that (A, c1, c2, a1, c3, a2) ≡F
k+2�log ��+3 (B, b, e1, a′1, e2, a′2). Furthermore, since

d(a2, c3) ≤ � and d(a2, c2) ≤ �, we obtain by Lemma 5.8 that d(e1, a′2) ≤ � and d(e2, a′2) ≤ �. From
(NA

�+r(ā), c1, c2) ≡F
k+2�log ��+3 (NB

�+r(b̄), e1, e2), we know there is an element a∗2 ∈ BA
�+r(ā) such that

(NA
�+r(ā), c1, c2, a

∗
2) ≡F

k+2�log ��+2 (NB
�+r(b̄), e1, e2, a

′
2), and from Lemma 5.8, d(e1, a′2) ≤ � implies that

d(c1, a∗2) ≤ �, and d(e2, a′2) ≤ � implies that d(c2, a∗2) ≤ �.

Since (A, c1, c2, a1, c3, a2) ≡F
k+2�log ��+3 (B, b, e1, a′1, e2, a′2), there exists a∗∗2 ∈ B such that

(A, c1, c2, a1, c3, a2, a
∗
2) ≡F

k+2�log ��+2 (B, b, e1, a′1, e2, a
′
2, a

∗∗
2 ). By Lemma 5.8 and both d(c1, a∗2) ≤ �

and d(c2, a∗2) ≤ �, we deduce that d(b, a∗∗2 ) ≤ � and d(a∗∗2 , e1) ≤ �, implying that d(b, e1) ≤ 2�, which
is a contradiction. Hence, d(a2, c3) > �.

Now, applying the same argument to the remaining s− 1 elements in {e′ ∈ B \BB
3�(b̄) | e′ ∼r

k e} \ {b},
we conclude that |{c ∈ A \BA

� (ā) | c ∼r
k e}| ≥ s. �

Lemma 8.6 Let F be basic and strongly-uniform. For every k and r, there exist �′′, �′ ≥ 0 such that,
if

A ≡F
�′′ B and NA

7r+3(ā) ≡F
�′ N

B
7r+3(b̄) ,

where ā ∈ Am and b̄ ∈ Bm, then there exists F(A,B) ∈ F such that for every f ∈ F(A,B) and
c ∈ dom(f),

NA
r (āc) ≡F

k NB
r (b̄f(c)) .

Proof: Let t ≥ 0 be given by the definition of strong uniformity: that is, θ restricted to [0, t] is the
equality. Let

• �′′ = max {k′, k + �log r� + 1}; and

• �′ = max {k′ + �log (6r + 3)�, k + 2�log (6r + 3)� + 2�log (2r + 1)� + t+ 1};

where k′ is obtained from Lemma 8.5 for the following parameters: s = min {t, 1}, and � = 2r + 1.
We show how to construct F(A,B) using assumptions A ≡F

�′′ B and NA
7r+3(ā) ≡F

�′ NB
7r+3(b̄). Let

D ⊆ B. We need to construct a function f : A → B such that |D|θ|f−1(D)|, and for every c ∈ A,
NA

r (āc) ≡F
k NB

r (b̄f(c)).

Let D0 = D ∩ NB
2r+1(b̄). Since F is basic and �′ ≥ k + �log (2r + 1)� + 1, by Lemma 5.9 there exists

F(BA
2r+1(ā), B

B
2r+1(b̄)) ∈ F such that for every function f in it and every c ∈ dom(f), NA

r (āc) ≡F
k

NB
r (b̄f(c)). In particular, there is f0 ∈ F(BA

2r+1(ā), B
B
2r+1(b̄)) such that dom(f0) = BA

2r+1(ā),
|D0|θ|f−1

0 (D0)|, and for every c ∈ dom(f0), NA
r (āc) ≡F

k N
B
r (b̄f0(c)).
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Next, for every e ∈ D \ BB
2r+1(b̄), define its ∼r

k equivalence class restricted to D \ BB
2r+1(b̄), that is,

[e] = {e′ ∈ D \BB
2r+1(b̄) | e′ ∼r

k e}. Let E be a set of representatives of these equivalence classes.

Define C ′ =
⋃

e∈E[c]e, where for each e ∈ E, the set [c]e is defined as follows:

• If there is no e′ ∈ B \ (D ∪BB
2r+1(b̄)) such that e′ ∼r

k e, then [c]e = {c ∈ A \BA
2r+1(ā) | c ∼r

k e}.
• Otherwise we choose [c]e to be a subset of {c ∈ A \BA

2r+1(ā) | c ∼r
k e} such that |[c]e|θ|[e]|.

We need to show that this is well-defined. This is done in the following claim.

Claim 1 Let A ≡F
�′′ B and NA

7r+1(ā) ≡F
�′ N

B
7r+1(b̄). Then the following hold for every e ∈ E:

1. |{e′ ∈ B \BB
2r+1(b̄) | e′ ∼r

k e}| θ |{c ∈ A \BA
2r+1(ā) | c ∼r

k e}|.
2. If |{e′ ∈ B \BB

2r+1(b̄) | e′ ∼r
k e}| ≥ t, then |{c ∈ A \BA

2r+1(ā) | c ∼r
k e}| ≥ t.

Proof: (1) We first prove that [c]e 
= ∅. Assume that e ∈ BB
6r+3(b̄). Since NA

7r+3(ā) ≡F
k+2�log (6r+3)�+1

NB
7r+3(b̄) and F is admissible, from Lemma 5.9 there exists a function h : BB

6r+3(b̄) → BA
6r+3(ā) such

that NA
r (āh(e)) ≡F

k+�log (6r+3)� N
B
r (b̄e). From Lemma 5.8, h(e) 
∈ BB

2r+1(b̄). Also, from Lemma 5.9,
h(e) ∼r

k e. Hence, h(e) ∈ [c]e.

Now assume e 
∈ BB
6r+3(b̄). Then, from Lemma 5.9 and the facts that NA

7r+3(ā) ≡F
k′+�log (6r+3)� N

B
7r+3(b̄)

and that F is basic, NA
3r+1(ā) ≡F

k′ NB
3r+1(b̄). From Lemma 8.5 and A ≡k′ B, we have

|{c ∈ A \BA
2r+1(ā) | c ∼r

k e}| ≥ 1 .

Now, since F is strongly uniform, the claim follows from the following statements:

|{e′ ∈ B | e′ ∼r
k e}| θ |{c ∈ A | c ∼r

k e}| (8)

|{e′ ∈ BB
2r+1(b̄) | e′ ∼r

k e}| θ |{c ∈ BA
2r+1(ā) | c ∼r

k e}| (9)

We now proceed to prove these statements. For (8), let S = {e′ ∈ B | e ∼r
k e′}. Since F is

uniform and �′′ ≥ k + �log r� + 1, there is F(A,B) ∈ F and a function h : A → B ∈ F(A,B)
such that, |{c ∈ A | h(c) ∈ S}|θ|S|, and for every c ∈ A, (A, c) ≡F

k+�log r� (B, h(c)). By Lemma 5.9,

NA
r (c) ≡F

k N
B
r (h(c)). Hence,

{c ∈ A | c ∼r
k e} = {c ∈ A | h(c) ∈ S} .

For (9), let S0 = {e′ ∈ BB
2r+1(b̄) | e′ ∼r

k e}. From Lemma 5.9 and the fact that F is basic,
there exists F(BA

2r+1(ā), B
B
2r+1(b̄)) ∈ F such that for every function f in it and every c ∈ dom(f),

NA
r (āc) ≡F

k+�log r� N
B
r (b̄f(c)) (because NA

7r+3(ā) ≡F
k+2�log (2r+1)�+1 N

B
7r+3(b̄)). In particular, there is

f ′ ∈ F(BA
2r+1(ā), B

B
2r+1(b̄)) such that dom(f ′) = BA

2r+1(ā), and |{c ∈ BA
2r+1(ā) | f ′(c) ∈ S0}|θ|S0|, and
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for every c ∈ dom(f ′), NA
r (āc) ≡F

k+�log r� N
B
r (b̄f ′(c)). From the latter and Lemma 5.9, we deduce that

NA
r (c) ≡F

k N
B
r (f ′(c)). This implies that

{c ∈ BA
2r+1(ā) | c ∼r

k e} = {c ∈ BA
2r+1(ā) | f ′(c) ∈ S0} .

(2) For the proof of the second item, assume to the contrary that |{c ∈ A\BA
2r+1(ā) | c ∼r

k e}| = t′ < t,
and |{e′ ∈ B \BB

2r+1(b̄) | e′ ∼r
k e}| ≥ t. We shall then derive (to contradict the assumption):

a. |{c ∈ BA
6r+3(ā) \BA

2r+1(ā) | c ∼r
k e}| = |{e′ ∈ BB

6r+3(b̄) \BB
2r+1(b̄) | e′ ∼r

k e}, and

b. |{c ∈ A \BA
6r+3(ā) | c ∼r

k e}| = |{e′ ∈ B \BA
6r+3(b̄) | e′ ∼r

k e}|.

a. Using NA
7r+3(ā) ≡F

k+�log (6r+3)�+2�log r�+t N
B
7r+3(b̄) and Lemmas 5.9 and 5.9, we derive

max
(
t, |{c ∈ BA

6r+3(ā) \BA
2r+1(ā) | c ∼r

k e}|
)

= max
(
t, |{e′ ∈ BB

6r+3(b̄) \BB
2r+1(b̄) | e′ ∼r

k e}|
)
.

Since |{c ∈ BA
6r+3(ā) \BA

2r+1(ā) | c ∼r
k e}| ≤ t′ < t, we conclude that

|{c ∈ BA
6r+3(ā) \BA

2r+1(ā) | c ∼r
k e}| = |{e′ ∈ BB

6r+3(b̄) \BB
2r+1(b̄) | e′ ∼r

k e}| .

b. By using essentially the same argument we show that

|{c ∈ A \BA
6r+3(ā) | c ∼r

k e}| θ |{e′ ∈ B \BA
6r+3(b̄) | e′ ∼r

k e}| .

Furthermore, if |{e′ ∈ B \BA
6r+3(b̄) | e′ ∼r

k e}| ≥ t, then by using Lemma 8.5 and the facts that
A ≡F

k′ B and NA
3r+1(ā) ≡F

k′ NB
3r+1(b̄), we deduce that |{c ∈ A \ BA

2r+1(ā) | c ∼r
k e}| ≥ t, which is

a contradiction. Therefore, |{e′ ∈ B \ BB
6r+3(b̄) | e′ ∼r

k e}| < t, and by using strong uniformity,
we conclude that

|{c ∈ A \BA
6r+3(ā) | c ∼r

k e}| = |{e′ ∈ B \BA
6r+3(b̄) | e′ ∼r

k e}| .

This finishes the proof of the claim. �

We now continue with the proof of the lemma. Since F is strongly uniform, the claim implies that [c]e

is well-defined, and |[c]e|θ|[e]| for every e ∈ E.

Define C = C ′ ∪ f−1
0 (D0). We now show that |C|θ|D|, and that there is f : A → B such that for

every c ∈ A, NA
r (āc) ≡F

k N
B
r (b̄f(c)), and c ∈ C iff f(c) ∈ D. This will prove the lemma.

We first prove that |C|θ|D|. Since |C0|θ|D0|, and F is strongly uniform, it suffices to show that
|C ′| θ |(D \BB

2r+1(b̄))|. This follows from:

1. |(D \BB
2r+1(b̄))| =

∑
e∈E |[e]|;

2. |C ′| =
∑

e∈E |[c]e|; and
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3. |[c]e|θ|[e]| for every e ∈ E.

It remains to show that there is f : A → B such that for every c ∈ A, NA
r (āc) ≡F

k NB
r (b̄f(c)), and

c ∈ C iff f(c) ∈ D.

Choose any function fout : A \BA
2r+1(ā) → B \BB

2r+1(b̄) such that c ∼r
k fout(c) for every c ∈ dom(fout)

and c ∈ C iff fout(c) ∈ D. That such an fout exists can be seen from the following:

• If c ∈ C ′, then fout(c) is any element e ∈ D \ BB
2r+1(b̄) such that c ∼r

k e. That such an element
exists follows from the definition of C ′.

• If c ∈ A \ BA
2r+1(ā) but c 
∈ C ′, we consider two possibilities. Either there is an element

e′ ∈ D \ BB
2r+1(b̄) such that e′ ∼r

k c, or there is no such an element. In the first case there
must be an element e ∈ B \ BB

2r+1(b̄) but e 
∈ D such that c ∼r
k e. Then we set fout(c) = e.

In the second case, again we have two possibilities. The first one is that c 
∈ BA
6r+3(ā). Since

A ≡F
k′ B and NA

6r+3(ā) ≡F
k′ NB

6r+3(b̄), from Lemma 8.5 there exists e ∈ B \ BB
2r+1(b̄) such that

c ∼r
k e. Since e 
∈ D, and we can set fout(c) = e. The second case is that c ∈ BA

6r+3(ā). Since
NA

7r+3(ā) ≡F
k+2�log (6r+3)�+1 N

B
7r+3(b̄), there exists a function h : BA

6r+3(ā) → BB
6r+3(b̄) such that

NA
r (āc) ≡F

k+�log (6r+3)� N
B
r (b̄h(c)).

From Lemma 5.8, h(c) 
∈ BB
2r+1(b̄). Also, from Lemma 5.9, c ∼r

k h(c). We then let fout(c) = h(c).
Again, fout(c) 
∈ D, by definition.

Define f = fout ∪ f0. Clearly, f is a function from A to B. It remains to show that NA
r (āc) ≡F

k
NB

r (b̄f(c)) for every c ∈ A (the fact that c ∈ C iff f(c) ∈ D comes directly from the definition of f0

and fout). This is done by cases:

• For c ∈ BA
2r+1(ā) this follows from the definition of f0.

• For c 
∈ BA
2r+1(ā) notice that NA

r (ā) ≡F
k N

B
r (b̄), NA

r (c) ≡F
k N

B
r (fout(c)), and BA

r (ā) ∩ BA
r (c) =

BB
r (b̄) ∩BB

r (fout(c)) = ∅. Then, from Proposition 5.5 and the fact that F is basic, we conclude
that NA

r (ā)∪NA
r (c) ≡F

k N
B
r (b̄)∪NB

r (f(c)). Since d(ā, c) > 1 and d(b̄, f(c)) > 1, NA
r (ā)∪NA

r (c) =
NA

r (āc) and NB
r (b̄) ∪NB

r (f(c)) = NB
r (b̄f(c)). Therefore, NA

r (āc) ≡F
k N

B
r (b̄f(c)).

This concludes the proof of the lemma. �

We continue now with the proof of Theorem 8.3. We first show that for every k,m ≥ 0 there exist
r, s, � ≥ 0 such that, for every A and B over the same vocabulary, and every ā ∈ Am and b̄ ∈ Bm,

A ≡F
� B and NA

r (ā) ≡F
s N

B
r (b̄) =⇒ (A, ā) ≡F

k (B, b̄).

This is done by induction on k. For k = 0 we simply choose �, r, s = 0, no matter what m is. For the
induction step, we assume that r, s, � witness the statement for k and m+1, and find r′, s′, �′ ≥ 0 that
witness it for k + 1 and m, that is, for every A and B, and every ā ∈ Am and b̄ ∈ Bm,

A ≡F
�′ B and NA

r′ (ā) ≡F
s′ N

B
r′ (b̄) =⇒ (A, ā) ≡F

k+1 (B, b̄).
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From Lemma 8.6 we know that there exist �′, r′, s′ ≥ 0 such that, if

A ≡F
l′ B and NA

r′ (ā) ≡F
s′ N

B
r′ (b̄)

then there exists F(A,B) ∈ F such that for every f ∈ F(A,B) and every c ∈ dom(f),

A ≡F
l B and NA

r (āc) ≡F
s N

B
r (b̄f(c)) ,

and there exists F(B,A) ∈ F such that for every f ∈ F(B,A) and every e ∈ dom(f),

A ≡F
l B and NA

r (āf(e)) ≡F
s N

B
r (b̄e) .

From the latter we deduce that there exists F(A,B) ∈ F such that for every f ∈ F(A,B) and every
c ∈ dom(f), (A, āc) ≡F

k (B, b̄f(c)), and there exists F(B,A) ∈ F such that for every f ∈ F(B,A)
and every e ∈ dom(f), (A, āf(e)) ≡F

k (B, b̄e). In other words, (A, ā) ≡F
k+1 (B, b̄), which completes the

proof of Gaifman-locality of strongly uniform agreements.

It remains to show the second item of the theorem, namely that there exist alternative agreements
G(FO), G(FO(Qp)), and G(L∗∞ω(Cnt)) which are strongly uniform. They are defined below.

G(FO): given A,B ⊂ U , a tactic is a set G(A,B) of maps such that for every D ⊆ B, there exists
g ∈ G(A,B) such that dom(g) = A and g−1(D) = ∅ iff D = ∅. Then G(FO) contains all possible
tactics.

G(Qp): this is just F(Qp).

G(L∗∞ω(Cnt)): given A,B ⊂ U such that |A| = |B|, a tactic is a set G(A,B) of maps such that
for every D ⊆ B, there exists g ∈ G(A,B) such that dom(g) = A and |g−1(D)| = |D|. Then
G(L∗∞ω(Cnt)) contains all possible tactics.

We now show that ≡F(L)
k and ≡G(L)

k are the same, by induction on k, separately for each L. The base
case is immediate for all three logics. Now we show how to use the hypothesis for k to prove the
statement for k + 1.

G(FO): It is easy to see that ≡G(FO)
k+1 is contained in ≡F(FO)

k+1 (since the duplicator can win the
F(FO)-game by mimicking the strategy of the duplicator in the G(FO)-game where the spoiler always
chooses D = B). Thus, we need to prove the converse, namely that (A, ā) ≡F(FO)

k+1 (B, b̄) implies

(A, ā) ≡G(FO)
k+1 (B, b̄). To do this, it is enough to construct a tactic G(A,B) ∈ G(FO) such that, for

every g ∈ G(A,B) and every c ∈ dom(g), (A, āc) ≡F(FO)
k (B, b̄g(c)) and apply the hypothesis. Consider

an arbitrary D ⊆ B. Because (A, ā) ≡F(FO)
k+1 (B, b̄), for each element e ∈ B there is c ∈ A such that

(A, āc) ≡F(FO)
k (B, b̄e), and for each element c ∈ A there is e ∈ B such that (A, āc) ≡F(FO)

k (B, b̄e).
Now, for each e ∈ B let [e]A be the set of all c ∈ A such that (A, āc) ≡F(FO)

k (B, b̄e). Let C =
⋃

e∈D[e]A.
Thus, there is a function h1 : C → D such that (A, āc) ≡F(FO)

k (B, b̄h1(c)), and there is a function
h2 : A \ C → B \D such that (A, āc) ≡F(FO)

k (B, b̄h2(c)) (since for every element c ∈ A \ C there is
e ∈ B such that (A, āc) ≡F(FO)

k (B, b̄e), and by the definition of C, e 
∈ D). Therefore, g = h1 ∪ h2 is
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a function from A to B such that for every c ∈ A, (A, āc) ≡F(FO)
k (B, b̄g(c)), and by the induction

hypothesis, (A, āc) ≡G(FO)
k (B, b̄g(c)). Furthermore, since for every c ∈ A, c ∈ C if and only if

g(c) ∈ D, we have g−1(D) = ∅ iff D = ∅. This allows us to conclude that (A, ā) ≡G(FO)
k+1 (B, b̄).

For G(FO(Qp)) there is nothing to prove. The case of G(L∗∞ω(Cnt)) is very similar to (and
in fact simpler than) the case of G(FO).

We finally show that G(FO), G(FO(Qp)), and G(L∗∞ω(Cnt)) are basic and strongly uniform. The
proof that they are basic is the same as the proof of Proposition 5.2). To show strong uniformity we
simply present the equivalence relations witnessing it:

• For G(FO) – nθm iff n = m = 0 or n,m > 0.

• For G(FO(Qp)) – nθm iff n−m ≡ 0 (mod p).

• For G(L∗∞ω(Cnt)) – nθm iff n = m.

This completes the proof of Theorem 8.3. �

Proof of Proposition 8.4. From Theorem 7.1, F is Hanf-local. Then for every k ≥ 0 there is d, � ≥ 0
such that (A, ā) �F

d,� (B, b̄) implies (A, ā) ≡F
k (B, b̄). In the following paragraph, we show that for

k′ = � + �log d� + �log (2d+ 1)� + 1, we have that A ≡F
k′ B implies A �F

d,� B. Thus, by Lemma
7.4 we conclude that A ≡F

k′ B and NA
3d+1(ā) ≡F

k′ NB
3d+1(b̄) imply (A, ā) �F

d,� (B, b̄) and, therefore,
(A, ā) ≡F

k (B, b̄) holds since F is Hanf-local.

Assume A ≡F
k′ B. Because k′ ≥ 1, there is F(A,B) ∈ F such that for every f ∈ F(A,B) and

c ∈ dom(f), (A, c) ≡F
k′−1 (B, f(c)). Since F is a bijective agreement, exactly as in the proof of Lemma

7.4 we conclude that there exists a tactic G(A,B) ∈ F such that
⋃

g∈G(A,B) graph(g) is the graph of a
bijection from A to B and for every g ∈ G(A,B) and c ∈ dom(g), (A, c) ≡F

k′−1 (B, g(c)). Let h be the
bijection whose graph is

⋃
g∈G(A,B) graph(g). Because k′− 1 ≥ �+ �log d�, we deduce from Lemma 5.9

that h is a bijection from A to B such that for every c ∈ A, NA
d (c) ≡F

� N
B
d (h(c)), that is, A �F

d,� B.
This completes the proof. �

Open problem Can the bound O(7k) in Theorem 8.3 be lowered?

It is known that Gaifman’s theorem, originally proved for FO [10] with the O(7k) bound (where k is
the quantifier rank) can be restated with the O(4k) bound [18]. If one deals with a weaker notion
inspired by Gaifman’s theorem that only applies to tuples in the same structure, then the bound can
be further lowered to O(2k). But it is still open whether in the case of game-based locality, or just
the statement of Gaifman’s theorem for FO, the bounds O(7k) and O(4k) can be replaced by O(2k).
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